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Abstract

Preparing datasets and analyzing the results is difficult and time-consuming, and I hope the points 

raised here will help other scientists avoid some of the thorny issues we wrestled with.

Introduction

People have asked me what lessons we have learned from running four CSAR Benchmark 

Exercises.1–6 Some lessons simply taught me about human nature: 1) few will actually turn 

in their data in the requested format, 2) there will always be people who need an extension 

of the deadline, and 3) some people will not like the answers. Also, despite being common 

knowledge, I had to learn the hard way that you really can’t make everybody happy. More 

importantly, the Exercises were an opportunity to think deeply about our science, question 

our basic assumptions, and engage colleagues in thoughtful discussion.

Lesson 1: Good crystal structures are hard to find

I must thank Greg Warren of OpenEye for teaching me this valuable lesson! In our first 

Exercise,1,2 we focused on identifying excellent crystal structures with really pristine 

electron density in the binding site (see Figure 1). One of the most important features of a 

good structure is that the ligand have well resolved density and a real-space correlation 

coefficient (RSCC) of ≥0.9.7 The structures were also required to have no contacts to the 

ligand from crystal additives or symmetry packing, so that any artificial deformation of the 

ligand coordinates could be avoided. If the coordinates of the ligand are poorly resolved or 

artificially deformed, any disagreement between the docked pose and the crystal coordinates 

is meaningless. Regardless, that meaningless disagreement would result in a higher RMSD 

and an unfair, negative assessment of the docking method. We started with the entire Protein 

Data Bank (PDB)8 from 2008 and pared it down from 47,132 structures to 342! Less than 

1% of the PDB structures met our “HiQ” definition. Recently, our HiQ criteria have been 

adopted by PDBbind for their “core” set,9 and we are pleased this same rigor is being 

adopted by other major resources for docking and scoring.
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Lesson 2: Several metrics are needed for assessing docking and scoring

Now that we have good crystal structures to use, we must do proper assessments of docking 

methods. The most common metric to assess docked poses is root mean squared deviation 

(RMSD) of ligands, where one compares the heavy atom positions from the pose to the 

crystallographic coordinates of the bound ligand. Corrections must be made if there is any 

symmetry in the ligand or the pocket, and RMSD ≤ 2.0 Å is the accepted definition of a 

correct pose. However, RMSD is not necessarily the best metric when cross-docking ligands 

or when trying to include protein flexibility in docking because choosing a frame of 

reference is subjective. Structural alignments can be based on the protein backbone or on the 

binding-site residues. If aligning the binding sites, one must choose which residues to 

include. For our previous study,4 we chose to superimpose protein structures by their 

backbones, using our Gaussian-weighted method (wRMSD,10 which is available in that 

paper’s supplemental information and in the MOE software package11 as the “Gaussian-

weighted” option for superimposing structures). Our method emphasizes the most agreement 

between two structures, whereas standard RMSD places the greatest mathematical emphasis 

on the positions that are most different between the structures. With wRMSD, the frame of 

reference is dictated by the most common core structure of the protein. These were our 

choices for calculating RMSD of submitted ligand poses in our 2012 Exercise, but different 

test systems might call for alternate choices.

It is important to remember that most crystal structures only provide a single, static snapshot 

of a protein-ligand complex. If an NMR structure exists for the same complex, each 

structure in the NMR ensemble will have a different RMSD when compared to the crystal 

structure. This is true even if the same contacts are maintained between the ligand and the 

protein in each structure of the ensemble. Clearly, all of those NMR structures are correct 

answers. To account for this perspective, we also measured protein-ligand contacts when 

evaluating docked poses as an alternative metric to RMSD.4 There is still some subjectivity 

when choosing which residues to include and what cutoffs to use when measuring the 

contacts, but the choices are relatively straightforward. Corrections are needed for ligand 

symmetry, and “equivalent” contacts to side chains must be counted as correct (contacts to 

CD1 are equivalent to contacts to CD2 in Leu, OE1 is equivalent to OE2 in Glu, NH1 is 

equivalent to NH2 in Arg, etc). We examined all protein atoms within 4.0 Å of the ligand’s 

non-hydrogen atoms. The total count of those protein atoms is a measure of “general 

packing” that captures both tight and loose van der Waals (vdw) interactions provided to the 

ligand. Our cutoff for hydrogen-bonding and electrostatic interactions was the standard value 

of ≤ 3.5 Å (first-row atoms N, O, and F), but the cutoff to larger atoms (S, Br, Cl, etc) was 

slightly longer at ≤ 3.8 Å. For ligands coordinated to metal ions, we recommend ≤ 2.8 Å as a 

contact cutoff, but the value will likely be system dependent. The contacts for docked poses 

can then be compared to the native contacts in a crystal structure or NMR structure. A 

benefit of counting protein-ligand contacts are the insights they give about the limitations of 

the pair-wise potentials that underlie the docking method. For example, it is possible to learn 

whether vdw contacts are sacrificed to make additional hetero-hetero contacts with hydrogen 

bonds. If a method’s poses have systematically high total-packing counts, it may indicate a 

need to introduce desolvation terms. Systematic miscounts for a particular functional group 

Carlson Page 2

J Chem Inf Model. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



point to poor parameterization. This information is more difficult to find when focusing on 

RMSDs.

When comparing experimental affinities to scoring/ranking ligands, we used Pearson R, R2, 

Spearman ρ, and Kendall τ.1–6 Those four values cover the most common parametric and 

non-parametric tests for relative ranking. When assessing a method’s ability to discriminate 

active from inactive compounds, receiver operator curves (ROC plots) were used and 

quantified by area under the curve (AUC). Enrichment rates are also useful to quantify a 

method’s ability to weed out inactive compounds from a dataset. At this time, computational 

methods for docking and scoring are good at identifying actives over inactives, but relative 

ranking of actives is very difficult.

Lesson 3: Embrace statistics, error bars, and confidence intervals

I am thoroughly convinced that the limited progress in scoring/ranking comes from ignoring 

statistics in our studies. There is no excuse for publishing results without some measure of 

error. Even if a scientist does not know how to analytically calculate standard deviations or 

confidence intervals (ci), these can be estimated through bootstrapping. Bootstrapping is 

used to randomly sample your dataset with replacement, meaning the same data point can be 

chosen more than once (sampling without replacement is jack-knifing which gives smaller 

estimates of error). Scientists may choose different sample sizes, but in general, one 

repeatedly chooses a random subset of data and re-calculates their chosen metric (eg, AUC). 

If we have N ligands scored by a ranking method, our procedure to estimate error for AUC is 

to randomly sample 90% of those N scores (with replacement) and repeat this 10,000 times, 

which gives a distribution of 10,000 AUC values. That distribution provides mean, median, 

standard deviation, and 95% ci of AUC for any scoring/ranking method. For clarity, it should 

be noted that the 95% ci is the range of values from 2.5% to 97.5% of the distribution, which 

leaves out the extreme 5% of AUC values divided between both tails of the distribution. The 

95% ci is the estimate of the range of AUC values likely – 95% of the time – when the 

method is applied to a new data set. Think of how wildly different the results frequently are 

for a method applied to two different systems!

In our first exercise,1,2 the statistics showed that the great majority of methods were 

equivalent. With so many performing basically the same, I specifically chose not to name 

which methods gave which results (results were labeled as code 1, code 2, etc). Many people 

strongly disagreed with that choice; they wanted a ranking of different software packages. 

They argued that even if methods were equivalent, it would be possible to learn something 

from the trends. That is not true. The great majority of methods – 13 of 17 submissions plus 

the two “null” metrics – had Spearman ρ ranging 0.64–0.53 with 95% ci spanning roughly 

±0.07. When the confidence intervals overlap so significantly, it means that doing the same 

test using different protein-ligand complexes will scramble the ordering of the methods. The 

trends people wanted were meaningless, despite having a dataset of almost 350 data points. 

However, two methods with ρ >0.7 were equivalent to one another and had statistically 

significantly higher ρ than the rest. Of course, those successes had important insights to 

share, and they were discussed in full detail by the submitters in their own papers for our 

first special issue.12,13
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The statistics underpinning our evaluation metrics show that datasets need to be at least 1000 

ligands with affinities, which are not available at this time.14 Frankly, most datasets used in 
our field are so small that we have been chasing random noise. Large datasets produce 95% 

ci that are small enough to clearly distinguish what improvements move a ranking method 

from below average (ρ = 0.4) to acceptable (ρ = 0.5) to improved (ρ ≥ 0.6). The submissions 

we have received over the years show that this is the “critical” range for improving the 

majority of current methods across the whole field. Unfortunately, those ρ values are so low 

that we need a large number of ligand affinities to get statistically significant results. 

Suppose you wanted to introduce a new term to your ranking method. You need a dataset of 

864 to show that the new version’s ρ = 0.65 is better than the old approach’s ρ = 0.55 

because their 95% ci do not overlap.14 To say ρ = 0.65 is better than ρ = 0.6, you need 2974 

affinities.14 No datasets are anywhere close to that size, which means there is less likelihood 

that new terms are real improvements in our methods. The overwhelming majority of 

scoring studies use a few hundred complexes and compare “top” methods that differ by Δρ 
= 0.05–0.15. There is no statistical significance to those differences with so few complexes. I 

challenge the reader to re-examine their favorite scoring papers.

Lesson 4: Making a good dataset is a difficult multi-optimization process

It is best if the ligands in datasets span a large range of physical properties such as molecular 

weight, number of rotatable bonds, number of hydrogen-bonding groups, etc. This allows 

developers to examine numerous factors that influence scoring. Furthermore, experimentally 

verified, inactive compounds with similar chemistry should be included, but no “assumed 

inactives.” The original DUD set15 is all assumed inactive compounds, and it is known that 

some of the original “duds” are misclassified and actually active.* In the updated DUD-E 

set,16 only half of the “duds” are assumed inactives. However, it is important to note that 

Shoichet’s work on off-target binding17 has shown that ligands that are chemically similar to 

a target’s native ligands have a 50% chance of binding. Through extension, could many of 

the assumed inactives in the literature actually be active? If so, this leads to an over-inflated 

enrichment problem, which can only be rectified by experimentally verified inactive 

compounds.

For the active compounds, their affinities should evenly span ≥4 orders of magnitude to 

reduce the influence of experimental error. Kramer et al18 elegantly derived that the 

maximum Pearson R for a dataset18 is dictated by the range of data and the accuracy of the 

experiments (see equation in Figure 2). If a model fits the data better than Rmax, it is likely 

the result of over-fitting the data with too many parameters, thought it could also be sheer 

luck. The Pearson R from that lucky/overfit model would have a high 95% ci to indicate the 

low statistical significance.

Kramer et al18 also analyzed ChEMBL19 with a specific focus on molecules that had 

affinities measured in multiple, independent labs. They found that the standard deviation 

over that subset of ChEMBL was σexpt = 0.54 pKi. Anecdotally, my experimental 

collaborators consider 3-fold differences in independently measured Ki values (or Kd or 

*Vogel, S. M.; Bauer, M. R.; Boeckler, F. M. DEKOIS: demanding evaluation kits for objective in silico screening – a versatile tool for 
benchmarking docking programs and scoring functions. J. Chem. Inf. Model. 2011, 51, 2650–2665
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IC50) to be good agreement, which translates to a very similar value of 0.48 pKi. This makes 

the error from lab to lab ~0.5 pKi, which is higher than the error bars reported in the 

literature (which are measures within one lab). We can rearrange the equation in Figure 2 to 

derive the range of data needed, based on the desired Rmax:

We know that a normal distribution of data has ~95% of the data within 2 standard 

deviations of the mean, so we can approximate the needed range using 4 × σdata and σexpt = 

0.5 pKi:

Kramer et al18 based their derivation on normally distributed experimental error and 

normally distributed data, but all of the rules they used for covariance and variance still hold 

true for uniform distributions, which means that the same equation for Rmax can be used. It 

is still appropriate to use normally distributed experimental error, as that assumption has not 

changed. Though the standard deviation of uniform data is calculated differently, it is 

fortunate that it is directly proportional to the max–min range of data used. Any basic 

statistics text shows that the variance of a uniform distribution is σdata(uniform)2 = (max–

min range)2/12. Therefore, the range we seek is directly related to σdata(uniform), which is 

still directly related to σexpt and Rmax:

Clearly, the range needed is slightly less if the data is evenly distributed from high to low 

values. If Rmax = 0.95, then Rmax
2 = 0.9 and the range needed is 5.4 pKi for uniformly dist 

data. If Rmax = 0.89, then Rmax
2 = 0.8 and the range needed is 3.8 pKi. This is why we 

recommend at least 4 orders of magnitude. Of course, the field typically has to use datasets 

with a smaller range of affinities, which would lead to much smaller Rmax. What rescues 

Rmax for smaller datasets is that they tend to be based on experimental studies from one lab 

that tend to have lower σexpt. Extrapolating models built on that data to new data on the 

same system from a different lab will be limited by lab-to-lab agreement.

Lesson 5: Please stop using FXa as a model system

For a discussion of this point, please see our paper on the 2014 Exercise in this issue.6

Conclusion

The 2014 CSAR Benchmark Exercise is our last exercise. There was one last CSAR dataset 

of Hsp90 structures and affinities that was donated by colleagues at Abbott (now AbbVie) 
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and augmented by in-house experiments at Michigan. That data has been passed on to the 

Drug Design Data Resource (D3R, www.drugdesigndata.org), a new effort for docking and 

scoring data that is headed by Rommie Amaro, Mike Gilson, and Vicki Feher at the 

University of California, San Diego. I recently attended their first workshop where 

participants discussed their outcomes for docking and scoring, using the Hsp90 set and 

another system from Genentech.

I was very impressed by their push for the community to develop accurate automated 

pipelines for docking and scoring, much like the protein-folding community has adopted. It 

is an important direction for our field to go if we want to make docking and scoring a robust 

tool that is not limited to the expert user’s intuition. Furthermore, automated pipelines would 

make advanced preparation of structures uncalled-for and improve reproducibility across the 

field. Our last exercise6 and results from other contests20–22 have pointed to some negative 

issues about setting up protein-ligand systems for participants to use. Everyone’s method is 

calibrated to their own setup, not someone else’s. This introduces unfair bias that would be 

eliminated if pipelines were accurate and improved.

Lastly, the D3R workshop was well attended and included sessions from participants of the 

SAMPL 5 Challenge. SAMPL 5 was based on prediction of host-guest binding free energies 

and estimation of water-cyclohexane partition coefficients for druglike ligands. It was a 

terrific idea to include a wider community interested in binding calculations and solvation 

phenomena. I know that National Institute of General Medical Science’s effort to create 

good datasets for docking and scoring is in good hands at UCSD, and I cannot wait to see 

the other new developments they will introduce.
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Figure 1. 
Crystal structures 2hoc and 2yxj have been used as benchmarking structures in other 

datasets. Their structures above show missing ligand density and influential symmetry 

contacts. Poor density gives unjustified ligand coordinates, and crystal-packing contacts 

force ligands and side chains to adopt incorrect orientations. (A) In 2hoc, the ligand has very 

poor density for roughly half the molecule, notably the ring on the right side of the figure. 

(B) In 2yxj, the tertiary amine of the ligand has poor density, and it is modeled in contact 

with the protein in the neighboring unit cell in the upper right. (C) Structure 4fkw was 

produced as part of CSAR’s experimental efforts, and it shows a ligand with pristine 

electron density for all atoms in the molecule. All side chains in the binding site are also 

well resolved, and even individual water molecules have good density. The ligand 62k (in 

the center of panel C) has an RSCC = 0.959. Ligands have yellow carbons; the protein 

backbone is a green chain; symmetry contacts have gray carbons. The electron density (2fo-

fc map) is shown with standard blue contouring at 1.5σ. The errors (fo-fc map) are in the 

standard green and red colors.
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Figure 2. 
The statistical limits of any model are derived from characteristics of the training data. The 

maximum of the model’s Pearson R (Rmax) is dictated by the standard deviation of the 

individual experimental values (σexpt) and the range of affinities (characterized by σdata over 

all the values in the dataset). Clearly, low error in the experiments leads to higher Rmax. The 

diagram above show the effect of varying σdata while keeping the same σexpt. They show 

that weak models (red) have reduced Rmax because of the low σdata that comes from tightly 

clustered data with few outliers. Robust models (blue) have higher Rmax from larger values 

for σdata that come from adding data, extending the max–min limits of the data, and/or more 

evenly covering the range of data.
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