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Abstract

Identifying binding hotspots on protein surfaces is of prime interest in structure-based drug 

discovery, either to assess the tractability of pursuing a protein target or to drive improved potency 

of lead compounds. Computational approaches to detect such regions have traditionally relied on 

energy minimization of probe molecules onto static protein conformations in the absence of the 

natural water environment. Advances in high performance computing now allow us to assess 

hotspots using molecular dynamics (MD) simulations. MD simulations integrate protein flexibility 

and the complicated role of water, thereby providing a more realistic assessment of the complex 

kinetics and thermodynamics at play. In this review, we describe the evolution of various 

cosolvent-based MD techniques and highlight a myriad of potential applications for such 

technologies in computational drug development.

Graphical Abstract

Introduction

Identifying binding sites and hotspots on protein surfaces has been of long-standing interest 

to the scientific community. With the explosion of protein targets, we need to focus time, 

resources, and efforts on those where high-affinity ligands are attainable. Experimental 

approaches have been developed to partly fulfill this need. The seminal work of Dagmar 

Ringe’s Multiple Solvent Crystal Structures (MSCS) has provided the experimental 

benchmarks that are used to create a variety of hotspot-mapping techniques.1 In brief, MSCS 

involves solving crystal structures of proteins in the presence of various organic cosolvents. 
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Overlapping locations of different cosolvents were found to be highly correlated with 

regions of biological significance. MSCS studies played a pivotal role in the development of 

several, recent computational analogs. Here, we follow the natural progression of events 

from the first experimental studies to the current state of the art in mapping methods that 

rely on cosolvent Molecular Dynamics (MD) simulations. Though the initial motivation for 

cosolvent MD was identifying binding hotspots, we also discuss the diverse nature of 

problems that can be addressed with these methods.

Multiple Solvent Crystal Structures

Some of the first studies of protein crystal structures with cosolvents were motivated by the 

difference in catalytic activities in the presence of organic solvents. Subsequently, the crystal 

structure of subtilisin was solved in the presence of water and acetonitrile to determine if the 

difference in activities resulted from geometric changes in the active site.2 Similar studies 

were performed with γ-chymotrypsin in hexane.3 While there was no difference in the 

active site of the protein in both cases, these studies formed the basis for MSCS for locating 

binding sites on protein surfaces.1 Initial validation studies for MSCS were performed on 

elastase using acetonitrile as the cosolvent.1 Acetonitrile was found to map the active site 

and crystal-packing interfaces. Subsequent studies with elastase extended the range of 

solvents to include acetone, dimethylformamide, 5-hexene-1,2-diol, isopropanol, ethanol, 

and trifluoroethanol.4 Interestingly, when the range of solvents was extended, many different 

cosolvent molecules were found to populate the active site (Figure 1) and bind along the 

crystal-packing regions. From these results, it was proposed that potential binding sites can 

be identified by regions that bind a diverse set of cosolvent molecules. Several subsequent 

studies have come to a similar conclusion using MSCS.5–7

One of the limitations of MSCS is that most protein crystals are destabilized by the organic 

cosolvents. This results in a loss of resolution at best and no useful spectra at worst. In fact, 

the MSCS method was developed using cross-linked proteins to stabilize the crystals, but 

this is not possible in all systems. For the many proteins are simply intractable to MCSC, 

simulation methods allow us to examine cosolvents on a wide variety of targets.

Computational approaches for mapping rigid protein structures

Truth be told, the idea of mapping protein surfaces was introduced roughly a decade before 

the MSCS method was developed. In 1985, Goodford revolutionized the field with the 

introduction of GRID.8 Figure 2 shows how the method placed a protein target inside a 

mathematical grid, and “probes” were used to calculate which functional groups would best 

complement the different surfaces of the binding site. The probes included water, a methyl 

group, an amine nitrogen, a carboxy oxygen, and a hydroxyl. The grid points with the most 

favorable energetics identified regions of attraction between each unique probe and the 

protein. The grids could be displayed in contours, much like crystallographic electron 

density. The spatial arrangement of each favorable region was then used to design lead 

molecules to complement the binding site. The use of grids and probes underlie many 

computational approaches developed after GRID. The most popular alternative is to energy 

minimize small, organic molecules on the protein surface in vacuum. For many years, all 
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these methods focused on using static protein conformations from X-ray and NMR 

experiments.9 A few of the most important ones are described in further detail below.

Multiple Copy Simultaneous Search

Multiple Copy Simultaneous Search (MCSS) was developed by Nobel Laureate Martin 

Karplus. In an MCSS calculation, small organic molecules (probes like acetate, methanol, 

methylammonium, methane, and water) are energy minimized onto the protein surface 

(Figure 3).10,11 Several copies of the probes are dispersed in the site of interest (ranging 

from 1,000 – 5,000). The probes are minimized independently of each other.12 Convergence 

is achieved during the minimization procedure typically after 3,000 – 6,000 steps. The 

probes are then further sampled on a grid limited to the vicinity of its final minimized 

location. This is achieved by fixing the center of mass of the probe at each grid point and 

exploring the rotational degrees of freedom. These results are then visualized as density 

maps. In the first application of MCSS for Structure-Based Drug Discovery (SBDD), the 

sialic acid binding site of influenza hemagglutinin was examined.10 The probe molecules 

were found to satisfactorily map the sialic acid binding site. In a follow up study on HIV-1 

protease (HIVp), the technique was extended to include N-methylacetamide as an additional 

probe. Using the MCSS approach, favorable locations for N-methylacetamide in the active 

site were used successfully to reconstruct the binding orientation of MVT-101, a peptide 

known to bind HIVp.13

The fact that the probes do not interact with one another results in the loss of any possible 

cooperativity in their binding. This limitation was first addressed by Joseph-McCarthy et al. 
when they compared MCSS minima to MSCS for formate bound to Ribonuclease A (RNase 

A).14 The experimental method showed two formate bound near one another, but MCSS 

reproduced only one formate binding site. To accurately reproduce occupancy at the second 

binding site, the first formate had to be present (the same way one might include a cofactor 

within a protein in any SBDD calculation).

Dynamic pharmacophore models and the Multiple Protein Structure method

Our Multiple Protein Structure (MPS) method is an experimentally verified computational 

mapping approach for obtaining receptor-based pharmacophore models.15–25 Our method 

was originally called the dynamic pharmacophore method because the static protein 

conformations were obtained from snapshots of traditional MD simulations of proteins in 

water. Later, we changed the name to MPS to reflect that the static conformations can come 

from any source: crystallography, NMR ensembles, or MD snapshots. The approach is 

similar to MCSS. A binding site is initially flooded with benzene, ethane, and methanol 

probe molecules. These probes are then minimized independent of each other using a Monte 

Carlo method called Multi-Unit Search for Interacting Conformers as implemented in the 

BOSS program.16,26 The minimized probe molecules are clustered23 to identify favorable 

interaction sites on the protein surface (much like the two sites for probes in Figure 3C). 

These clusters are then converted into pharmacophore elements. Benzene clusters are 

converted into aromatic pharmacophore elements, but overlapping benzene and ethane 

clusters are converted to more generic hydrophobic pharmacophore elements. Donor, 

acceptor, and doneptor pharmacophore elements are obtained from methanol clusters. The 
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size of the pharmacophore elements is based on the root mean square deviation (RMSD) of 

the elements in the cluster. Using the MPS method, the first receptor-based pharmacophore 

model was derived for HIV-1 integrase.16 Subsequently, several optimization studies were 

undertaken to obtain robust pharmacophore models using structures from X-ray,16,19,20 

NMR,20 and MD simulations.17,18,21,22 A common theme throughout our method 

development was the positive impact on MPS performance when using larger ensembles to 

capture more protein flexibility. Additionally, MPS pharmacophore models were shown to 

exhibit species specificity for human vs Pneumocystis carinii variants of dihydrofolate 

reductase (DHFR).19 Several MPS pharmacophore models were experimentally validated by 

the identification of inhibitors from MPS pharmacophore screening. Small molecules that 

target MDM2 were identified using MPS pharmacophore models.21 More recently, 

pharmacophore models created from an allosteric site on HIVp were experimentally verified 

to be active against drug-resistant strains of HIVp.24,25

FTMap

FTMap developed by Vajda and co-workers is a mapping technique that samples billions of 

probe molecules on a densely space grid.27 This mapping is performed using sixteen 

different probe molecules which include ethanol, isopropanol, isobutanol, acetone, 

acetaldehyde, dimethyl ether, cyclohexane, ethane, acetonitrile, urea, methylamine, phenol, 

benzaldehyde, benzene, acetamide, and N,N-dimethylformamide. Sampling of several 

copies of many different probe molecules is achieved by an energy function that is evaluated 

using a fast-Fourier transform approach. The adoption of this approach in FTMap provided 

significant acceleration over their earlier probe mapping technique CS-Map.28 FTMap’s 

energy function incorporates cavity terms to reward hydrophobic enclosure and a statistical, 

knowledge-based, pair-wise potential to account for solvation effects. In an early application 

of FTMap, the binding sites of the proteins elastase and renin were shown to be mapped by 

probe molecules. The FTMap technique was also applied to the proteins DJ-1 and 

glucocerebrosidase.29 The binding sites identified by FTMap were shown to be in agreement 

with subsequent MSCS solved for these proteins.29 Favorable results were also found upon 

application to H5N1 neuraminidase,30 Ras GTPase,31 and Hen Egg-White Lysozyme 

(HEWL).32 In fact, the H5N1 neuraminidase study applied CS-Map across an ensemble of 

protein structures from MD simulations, much like MPS.

MD simulations of proteins in mixed-solvent environments

MD simulations are based on the same computational framework as the energy 

minimizations shown in Figure 3, except that all molecules interact with one another and 

cannot occupy the same space. Newton’s equations of motion are used to integrate the 

system through time and sample the behavior of a protein in water. The reader has likely 

done this same exercise in Physics 101: a ball at point x has velocity v and acceleration a; 

where will it be after Δt time? Each atom is a point in space, and all atoms have a velocity 

vector in an MD simulation. The velocities are based on the temperature of the simulation 

(hotter systems have faster moving atoms). A “downhill” energy surface creates a force that 

pulls on the molecules, and “uphill” surfaces push molecules away, both of which provide 

acceleration. MD simulations solve these equations of motion for thousands of atoms over 
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millions of femtosecond time steps. This provides physically reasonable conformational 

sampling for the interaction of the protein and its solvent environment.

MD-based approaches for mapping protein surfaces involve simulating proteins in a solution 

of water and cosolvent molecules. The conformational sampling incorporates protein 

flexibility and allows the protein to adapt to the presence of the probes. Furthermore, the 

probes have to compete with water to occupy sites on the protein surface. It is important to 

know which subsites prefer organic molecules and which prefer water. Such techniques have 

the potential to present a cost effective and widely applicable alternative to MSCS. Several 

approaches that use MD-based methods are summarized in Table 1 and are described in 

further detail below. All of these methods use grids to count the presence of probe molecules 

on the surface of proteins. These occupancy maps identify binding sites by the grid points 

that most frequently contain the cosolvents (a high density of probes, see Figure 4).

The differences between the methods in Table 1 lie in detailed choices for MD setup and 

execution. Those details are familiar to scientists with computational backgrounds. For 

experimentalists, how the details change the predictions is what matters most. The figures 

emphasize the bottom-line outcomes that can be used by SBDD teams.

Barril’s MDmix

The first cosolvent-based simulations for mapping protein surfaces were reported by Barril 

and co-workers.33 In this approach, simulations of isopropanol and water at concentrations 

of 20% were run for at least 16ns. The approach was evaluated by its ability to reproduce the 

locations of isopropanol molecules located in MSCS structures of thermolysin,6 p53 core 

domain (p53),68 and elastase.4 The maps of the protein surfaces were broken down into 

separate occupancy grids for isopropanol’s hydroxyl oxygen and methyl carbons. While it is 

reported that the densities from the isopropanol maps matched the location of isopropanol 

molecules from MSCS, there are several additional sites that are mapped on the protein 

surface that are not discussed, despite their likelihood of complicating prospective 

applications of the method (Figure 5). Also, the reasons for not comparing the density of the 

entire isopropanol probe with the location of isopropanol found in MSCS structures were not 

discussed.

They calculated free energies with equation (1) where Ni and No are the bin counts at grid 

point i and the expected bin count in the absence of any bias from the protein, respectively. 

This is a measure of the free energy change for moving an atom from the bulk solvent to 

grid point i. In their case, this atom could be the oxygen atom or the methyl groups of the 

cosolvent isopropanol.

(1)

When the “atomic” free energies were computed, they note that in some cases, the ΔGbind 

per non-hydrogen atom exceeded the empirical limit of free energy of −1.5 kcal/mol·atom 

that was observed by Kuntz et al.69 Subsequent work from our group set the limit as −1.75 

Ghanakota and Carlson Page 5

J Med Chem. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kcal/mol·atom,70 and it is unclear if Barril’s values reported exceeded this limit as well. The 

authors propose that this behavior for isopropanol is a result of partial phase separation 

cause by apolar patches on the protein surface. However, our work has indicated the phase 

separation was caused by bad parameters for isopropanol, not by the protein environment.51 

We note that the authors no longer use the alcohol parameters from their first paper, which 

we suspect caused the difficulties with phase separation that they found.35

Because of the unusual behavior in those simulations, the expected bin counts were rescaled 

so that the free energy values conformed to the limit of −1.5 kcal/mol·atom. The maximal 

affinity of the probe molecules were then estimated using the principle that atoms in a drug-

sized molecule are not only involved in establishing affinity, but also form a framework for 

allowing molecules to optimize such interactions. The authors noted that probe molecules 

are under no such constraint and proposed their free energies on a per atom basis could be 

much higher. As such, their maps were used to establish an upper limit for the volume of 

drug-like molecules. In validating this concept, a comparison is made between the maximal 

limits established by their approach and examples of drug molecules with the most favorable 

free energies. Comparisons between predicted and observed free energies were made for the 

protein targets MDM2, LFA-1/ICAM-1 complex, Protein Tyrosine Phosphatase 1B 

(PTP1B), p38 mitogen-activated protein kinase (p38 MAPK), Androgen Receptor (AR).

In a follow up study, prompted by our finding that full protein flexibility was needed for 

properly mapping hotspots with cosolvent MD simulations,49 they examined the relationship 

between protein flexibility and its effect on binding free energy.35 They derived a 

logarithmic relationship between flexibility and its effect on ΔGbind. They concluded that if 

the restrained protein has a preformed binding site, ΔGbind would become more favorable as 

the entropic cost of restraining the protein had already been paid. However, if this was not 

the case, then clashes with the protein binding site would make ΔGbind less favorable.

More recently, they have moved to a setup where two cosolvent simulations are performed 

separately with 20% ethanol in water and 20% acetamide in water.36 An updated simulation 

protocol consists of 3 runs of 20ns while holding the heavy atoms in the protein with a weak 

restraint. The method was validated on Heat Shock Protein 90 N-terminal domain (Hsp90) 

and HIVp. Pharmacophore models created from ligands bound in crystal structures of these 

proteins were compared with the binding free energy maps calculated by equation (1). They 

observed that some key features in the HIVp pharmacophore model were not mapped and 

proposed to extend the technique by using other probes in the future. Furthermore, they state 

that using atoms within the probe molecule to define pharmacophore elements is limited by 

the assumption that these atoms behave independently of the probe molecules as a whole. It 

is notable that the authors compared their MDmix maps with those created by GRID and 

showed a marked improvement with MDmix (Figure 6). The role of explicit water creates 

much more detail in the maps and indicates regions were bridging water molecules may play 

an important role in binding. The authors specifically note, “GRID lacks selectivity because 

polar probes acquire negative values almost everywhere on the binding site. […] By 

contrast, the ensemble of conformations obtained with MDmix reflects both the excluded 

volume and the electrostatic screening effects created by water molecules...”
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MacKerell’s SILCS

By far, SILCS (Site-Identification by Ligand Competitive Saturation) is the technique that 

has made the most progress, expanding use of cosolvent simulations from only identifying 

binding sites to improvements such as pharmacophore modeling, free energy perturbation, 

and developing methods for sampling occluded pockets in proteins. The first study used a 

1M benzene and propane solution on the BTB domain of BCL-6.37 Benzene probes were 

used to identify aromatic interactions, propane molecules were used to identify aliphatic 

interactions, and water molecules were used to report upon the hydrogen-bond donating and 

accepting properties. Unique to the SILCS methodology is the use of artificial repulsive 

terms centered on dummy atoms in the center of benzene and the central carbon of propane. 

The repulsive term was necessary to avoid aggregation of the hydrophobic cosolvents. 

SILCS results were analyzed using simulation data generated from 10 runs of 5ns. Notably, 

a weak restraint was placed on the Cα atoms during the simulations to establish a stable 

frame of reference. Snapshots from the simulations are combined and visualized as density, 

described as “FragMaps”. Results from SILCS simulations of BCL-6 were verified by their 

ability to predict biologically relevant binding sites on the protein.

In a second study, a much wider set of systems were used: trypsin, α-thrombin, HIVp, 

FK506-binding protein 12 (FKBP), Factor Xa (FXa), NadD, and RNase A. The length of 

SILCS simulations was increased to 20ns, and the authors converted their FragMaps to Grid 

Free Energies (GFE).38 These GFE were computed in a manner similar to the Barril 

approach, wherein equation (1) is used to report upon the free energy at each grid point. 

Using these GFEs, crystal ligand poses were found to score higher than decoy sets. Ligands 

were scored by assigning each atom in the ligand to one of aromatic, aliphatic, hydrogen-

bond donor, and hydrogen-bond acceptor types. These atom types correspond to different 

probes used in SILCS simulations. After bringing the crystal ligands into the GFE frame of 

reference, the atom type of the ligand and its position within the grid were used to obtain the 

free energy value from the corresponding GFE grid. These values were then summed to 

arrive at the Ligand Grid Free Energy (LGFE) score for a given pose of the ligand (Figure 

7).

In a follow up to that study, the authors assessed the use of free energy perturbation to 

expand the range of fragments that can be predicted to bind to proteins.40 Using benzene as 

an example, they first demonstrate that relative hydration energies for moving to mono-

substituted benzene were correctly captured with an R2 of 0.95. These benzene analogues 

were chosen based on experimental binding affinities that existed for ligands in α-thrombin 

and p38 MAPK. Then, a comparison was made between single-step free energy 

perturbations of benzene to its analogues with changes in experimental binding free energy 

that involved a similar transition. It is exciting that promising results were obtained for α-

thrombin, but the same could not be said for p38 MAPK. This highlights the inherent 

limitations of extrapolating results from fragments to those found in drug-like ligand 

molecules.

SILCS simulations were also used to present an optimum solution for balancing target 

flexibility and possible denaturation in cosolvent-based simulations.39 Using various levels 

of positional restraints on Interleukin-2 (IL-2), the authors found that allowing for full 
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protein flexibility resulted in denaturation of the protein in certain runs. The authors in this 

SILCS study present two strategies to overcome unfolding problems, removing trajectories 

that denature or restraining the backbone of the protein while performing cosolvent 

simulations. It could be argued that the first option seems more appealing since restraining 

the protein will limit the breathing motions, thereby hampering the identification of cryptic 

pockets on the protein surface. In the case of IL-2, this did not seem to be an issue, and these 

cryptic pockets were found even when using a restrained potential on the protein. It is 

interesting that the authors’ simulation with acetonitrile at 50% concentration did not map 

the binding site in IL-2. In our application of MixMD, we have not seen target denaturation 

like MacKerell’s team, but their studies clearly demonstrate that target denaturation should 

be considered a possibility when running cosolvent simulations and adequate inspection of 

the protein’s behavior should be performed to detect them. In order to reduce these concerns, 

we moved from our initial simulations of 50% cosolvent to a 5% setup in MixMD.52

In the SILCS Tier-II update,41 more cosolvents were introduced. Probes were added to the 

initial benzene/propane protocol that included methanol, formamide, acetaldehyde, 

methylammonium, and acetate. All the aforementioned cosolvents were simulated in a 

single box of protein and water using a concentration 0.2 M for each probe. The simulations 

were performed for 20ns using weak restraints on the Cα to prevent the unfolding of the 

protein in the high concentration of probes, and repulsion terms between the probes were 

used to prevent aggregation. The densities of the cosolvents were combined in the following 

manner for analysis, generic nonpolar (benzene and propane carbons), neutral donor 

(methanol and formamide polar hydrogens), neutral acceptor (methanol, formamide, and 

acetaldehyde oxygens), positive donor (methylammonium polar hydrogens), and negative 

acceptor (acetate oxygens). Using these combined atom grids, GFE values were computed. 

These were then contoured at various values for each grid type and compared by visual 

inspection of the overlap with example of ligands from crystal structures. The technique was 

validated using FXa, p38 MAPK, RNase A, and HIVp. In addition to a visual inspection, the 

authors developed a suite of scoring functions based around the LGFE scoring scheme that 

they used earlier. A Monte Carlo-based sampling of the ligands within the GFE grids gave 

the best correlation between the scores generated and the experimental binding affinity of 

the ligands, see Figure 8. This approach worked for FXa, p38 MAPK, and RNase A, but the 

values were anti-correlated for HIVp. The authors note that this deviation of HIVp behavior 

emphasized how measures of affinity obtained from GFE come from cosolvents and do not 

reflect the configurational entropy and strain in real ligands.

SILCS simulations have also been converted to pharmacophore models.42,44 In their initial 

study, the pharmacophore models were derived from benzene, propane, and water locations 

from SILCS ternary simulations. The authors found that generating pharmacophore models 

from SILCS simulations using a GFE cutoff of −1.2 kcal/mol for aromatic|aliphatic 

FragMaps and −0.5 kcal/mol for water-based, hydrogen-bond donors|acceptors to be an ideal 

starting point. Grid points that were below the earlier mentioned GFE cutoffs were then 

clustered using a distance cutoff of 1 Å, 2.8 Å, and 2.6 Å for the water, aromatic, and 

aliphatic SILCS maps, respectively. These clusters are converted to “FragMap features” 

which are modeled as spheres whose center is the center of cluster. The radius of the 

FragMap feature is defined as the radius that encloses all the grid points that belong to this 
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cluster. FragMap features were not allowed to have a radius greater than 2.5 Å for 

hydrophobic and 1.5 Å for hydrogen-bond features. The sum of the GFE within each cluster 

is then reported as the Feature Grid Free Energy (FGFE) of the FragMap feature. In a 

subsequent step, the FragMap features are converted to pharmacophore elements. The most 

important considerations in generating pharmacophore elements was the use of overlapping 

FragMaps features for defining aromatic|aliphatic features and donor|acceptor 

pharmacophore elements. Overlapping clusters of aromatic and aliphatic FragMap features 

are considered aromatic|aliphatic pharmacophore elements. Given that these simulations are 

conducted in a ternary system, it might be hard to establish overlapping features and this 

may be an area where simulations using a single cosolvent have an advantage. Using an 

automated approach, water locations of high density were converted to donor, acceptor, or 

donor|acceptor pharmacophore elements. These pharmacophore elements are then combined 

in different combinations and ranked using the cumulative FGFE of the elements in the 

pharmacophore model. That measure is called the Hypothesis Grid Free Energy (HGFE). 

The pharmacophore models using this approach were obtained from SILCS simulations of 

HIVp, FXa, and DHFR. Pharmacophore models with the lowest HGFE values using 3 to 6 

pharmacophores were selected for screening. These pharmacophore models were then 

screened against ligands and decoys from the DUD dataset.71 A hit was reported when all 

pharmacophore elements in the model matched features in the ligands using MOE.72 

Furthermore, a comparison is made between results from pharmacophore screening to the 

docking programs Dock73 and AutoDock.74 The authors note that the best performing 

SILCS pharmacophore model outperformed results from Dock and AutoDock. A 

comparison is also made with a receptor-based pharmacophore model technique based on 

hydration data75, and the authors note the superior performance of their approach.

In a more elaborate study, the authors used SILCS Tier-II to obtain pharmacophore 

models.44 The primary advantage served by this approach was the use of cosolvents that 

allowed them to better probe hydrogen-bond donating and accepting capabilities. This meant 

they could move away from using water to obtain such information. As the number of 

cosolvents expanded, the authors were able to add more pharmacophore element types to 

their repertoire. The additions included positive-donor and negative-acceptor pharmacophore 

elements. Also, excluded volumes were placed wherever grid points were not occupied by 

water or other cosolvents. In screening the pharmacophore models, all pharmacophore 

elements were used. However, certain pharmacophore elements were required for a match, 

which the authors describe as “key features.” In testing their pharmacophore models, these 

key features were selected after sorting all the pharmacophore elements based on the FGFE 

value. The authors note that using 3 or 4 key features resulted in the best enrichment. When 

5 or more key features were used, degradation in performance was observed. The effects of 

HGFE on model performance was also tested, wherein it was found that models that 

performed well for the most part had a low HGFE. The performance of the pharmacophore 

models using this approach was tested against the systems that were used in their earlier 

approach for pharmacophore models (HIVp, FXa, and DHFR). Additional systems were 

also used to test SILCS pharmacophore models, including p38 MAPK, Fibroblast Growth 

Factor Receptor 1 (FGFr1) kinase, adenosine deaminase, ligand binding domain of the 

Estrogen Receptor α (ERα), and AmpC β-lactamase. The data sets for evaluating the 
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performance of pharmacophore models were obtained from the DUD dataset71. Screening 

results for SILCS pharmacophore models were also compared with results from Dock,73 

AutoDock,74 AutoDock Vina,76 Full Protein Pharmacophore, and Hydration Site Restricted 

Pharmacophore.75 In comparing across all the methods, the authors note that SILCS 

pharmacophore models outperformed other methods except the case of AmpC β-lactamase. 

For most of the proteins, an area under the curve of 0.7 was observed for ROC plots when 

SILCS pharmacophore models were screened. However, FGFr1 kinase and p38 MAPK 

yielded values that were lower than 0.6. Interestingly, similar results were seen for these 

proteins with the other methods, suggesting that they were challenging targets for virtual 

screening in general, not a limitation specific to SILCS.

Further advancements in the application of SILCS were made by implementing a type of 

Grand Canonical Monte Carlo (GCMC) approach coupled with MD simulations.43 In this 

method, the excess chemical potential of water and solutes is varied to arrive at the target 

concentrations during the simulation process. The method in brief involves the simulated 

system being coupled to a reservoir of water and cosolvents. The water/cosolvent molecules 

from the reservoir are inserted/deleted from the reservoir into the system being simulated or 

translated and rotated if they are already present in the system. These moves are accepted or 

rejected based on Metropolis criteria, which depends on the change in energy upon the 

occurrence of the move, the target density, and excess chemical potential. Following several 

such moves (100,000 moves when used for simulating the protein), an MD simulation is 

performed. Finally, the excess chemical potential is changed. This change in excess 

chemical potential is based on a function of the deviation of the current concentration from 

the target concentration of the species under consideration. The whole process described 

above is repeated several times till the excess chemical potential converges. This approach 

was validated by reproducing the hydration free energies of the cosolvent molecules used in 

SILCS-Tier II simulations. Following this validation, the authors investigated the use of the 

method to map the occluded binding site of T4 lysozyme L99A mutant (T4-L99A). 

Following the GCMC-MD procedure, the occluded binding site of T4-L99A was 

successfully mapped by SILCS simulations. Moreover, the LGFE values correlated with a 

R2 of 0.72 to the experimental binding affinities for the different molecules that are known 

to bind within this occluded pocket.

The GCMC-MD approach was further applied to several systems with occluded ligand-

binding pockets.46 These systems included AR, peroxisome proliferator activated-γ 
(PPARγ), metabotropic glutamate receptor 5 (mGluR5), and β2-adreneric receptor (β2AR). 

The occluded binding sites in all the protein targets were successfully mapped during SILCS 

simulations. Furthermore, a SILCS pharmacophore model obtained from β2AR was 

screened against a compound collection of 1.8 million from the Chembridge and Maybridge 

libraries. Following an elaborate procedure of docking with AutoDock Vina76 into the active 

and in-active conformations of β2AR, molecules were identified that preferentially bound 

the active conformation, see Figure 9. The hits were clustered. Of the 16 molecules that were 

handpicked and tested, seven were found to be active. At this point, it is unclear if the 

molecules target the binding site of β2AR, but this exciting result nevertheless points to the 

utility of cosolvent simulations in prospective SBDD.
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Additional prospective applications of the GCMC-MD approach were undertaken with a 

homology model of mGluR5.47,48 Specific derivatives of two different scaffolds of interest 

to the project were screened to identify those with favorable LGFE values eventually leading 

to satisfactorily active molecules. The IC50 values for the tested compounds for these two 

different scaffolds were converted to binding free energies and compared with LGFE values. 

The resulting correlation with LGFE values was R2 ~ 0.3547 and R2 ~ 0. 26.48 While 

promising, the low correlations underscore the need for further development in this area.

Carlson’s MixMD

Our approach for performing cosolvent simulations is called mixed-solvent MD (MixMD). 

MixMD involves binary solvent simulations of proteins with water and water-miscible, 

organic probe solvents. An emphasis on using water-miscible organics as cosolvent 

distinguishes our approach from other techniques that rely on artificial repulsive terms 

between cosolvents. A first step in validating MixMD was evaluating its ability to reproduce 

the cosolvent binding location obtained from MSCS experiments. Using the acetonitrile 

binding site in HEWL as a test case, MixMD was shown to recapture the binding location of 

acetonitrile.49 Our first MixMD simulations used a 50% concentration of acetonitrile and 

were run five times for 10 ns duration. The last 2ns of these simulations were used for 

obtaining the preferential location of acetonitrile binding on the protein surface. This work 

also noted the importance of protein flexibility on the accuracy of mapping the acetonitrile 

binding site. Using a series of MixMD simulations wherein the protein was subjected to 

varying levels of restraint, the acetonitrile binding site was mapped accurately and without 

spurious minima only when full protein flexibility was allowed, see Figure 10. When the 

protein was held rigid, we found that the acetonitrile binding site was mapped as strongly as 

many (incorrect) local minima across the whole protein surface. When the protein is 

flexible, those spurious minima “smear” out and become less densely occupied. With 

flexible proteins, the true hotspots are still strongly mapped.

In a follow up to our first MixMD study, we focused on extending the approach to protic 

solvents.50 Isopropanol was used as the cosolvent, and several proteins were used as test 

cases: elastase, HEWL, p53, RNase, and thermolysin. MixMD results were shown to be in 

excellent agreement with the isopropanol binding sites found in MSCS of these proteins. 

During the course of optimizing the technique, the number of runs and the simulation length 

were also investigated. The importance of multiple, short simulations was highlighted, and 

using 10 runs of 20ns was found to be optimal.

More recently, the importance of probe parameters51 was established by comparing 

cosolvent simulations using our approach and parameters for isopropanol to that of the 

original Barril approach33. These cosolvent simulations were performed on thermolysin 

using 50% isopropanol. To our surprise, the cosolvents separated into two phases when 

using Barril’s parameters (see Figure 11). Our simulations based on OPLS parameters for 

alcohols77 remained evenly mixed.51 This result made us step back and evaluate water-

cosolvent mixtures alone without proteins. We used radial distribution functions to monitor 

miscibility. We recommend that all cosolvent simulations include radial distribution 

functions of the solvents to show proper behavior of the environment. This is just as 
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important as monitoring protein’s RMSD to show no unfolding. We investigated the use of 

several different organic probes for MixMD simulations. Upon testing eleven different 

solvents, six were found to have even mixing with TIP3P water. These cosolvents were 

acetonitrile, isopropanol, acetone, N-methylacetamide, imidazole, and pyrimidine.

Using HIVp as a test case, we have successfully mapped the catalytic site and potential 

allosteric sites.52 In that work, we compared the use of 50% concentration to a low 

concentration of 5%. Experimentally, proteins unfold at high concentrations of cosolvents. 

Though this might not be a problem in the short time scales of MD, comparing back to 

experiments may not be feasible. Therefore, lower concentrations of cosolvents could 

facilitate the comparison of results from cosolvent simulations with real experimental data. 

Most surprisingly, we found this reduction in the concentration of the cosolvent resulted in a 

significantly improved signal-to-noise ratio, meaning the occupancy of real hotspots and 

spurious minima had greater differences with less cosolvent.

In a more recent study, we have established a rigorous protocol for the identification and 

ranking of binding sites on the protein surface.53 Our approach requires binding sites to be 

mapped by more than one type of probe at a high signal-to-noise ratio. Using cosolvent 

simulations of 5% acetonitrile, isopropanol, and pyrimidine, we have successfully detected 

both competitive and allosteric sites within the top four ranked sites across several allosteric 

systems which included ABL kinase, AR, CHK1 kinase, glucokinase, PDK1 kinase, PTP1B, 

and farnesyl pyrophosphate synthase. Interestingly, lower-ranked sites consistently mapped 

multimerization interfaces, other biologically relevant sites, or crystal-packing interfaces. 

Also, we compared our results to FTMap as a benchmark, see Figure 12. FTMap identified 

all competitive binding sites, but it did not identify the allosteric sites in four of the seven 

systems used in our study: ABL kinase, AR, PDK1 kinase, and PTP1B. There were also 

many spurious hotspots identified outside the known sites. However, there was a case where 

FTMap identified all subsites of the competitive site in glucokinase, whereas MixMD only 

mapped part of the competitive site occupied by the cofactor (Figure 12).

Yang and Wang’s method

In their first use of cosolvent simulations, Yang and Wang compared the cosolvent locations 

in MSCS structures of thermolysin.54 This important study was the first to compare free 

energies obtained from equation (1) with more rigorous statistical mechanics-based 

approaches such as the double-decoupling method.78,79 For this study, the MSCS structures 

of thermolysin with three different probes (isopropanol, phenol, and acetone) were used.5 

Their primary focus was on two isopropanol sites identified on thermolysin named site 1 and 

site 2 that appeared at high (≥10%) and low (5%) concentrations of isopropanol, 

respectively. Site 2 was also mapped by phenol and acetone whereas site 1 was not. The 

double decoupling method78,79 was initially used to compute the free energies of site 1 and 

site 2. In applying this technique, they note that site 2 (−4.87 kcal/mol) had a more favorable 

free energy for binding isopropanol compared to site 1 (−3.25 kcal/mol); this observation 

was consistent with the identification of site 2 at a lower concentration of isopropanol. For 

site 1, they note the free energy changes for the different cosolvents ranged from −3.35 to 

−4.32 kcal/mol. These results from the double decoupling method were compared with the 
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values obtained from performing and computing the free energies of isopropanol using the 

Barril approach. The binding free energy for isopropanol in site 1 and site 2 were found to 

be −3.91 and −5.01 kcal/mol. The authors note that the values computed using the cosolvent 

occupancies was higher compared to the more rigorous double decoupling method, but both 

methods give free energies of binding within 1 kcal/mol for both sites, which is the limit of 

the best free energy calculations. We consider the agreement in the methods much more 

interesting than differences within error of the best techniques available.

In a subsequent study of protein-protein interfaces (PPI), the authors compared simulations 

of different conformations of Bcl-xL and Mcl-1 in mixures of water and isopropanol.55 

Starting from conformations obtained from one apo and three holo Bcl-xL crystal structures, 

32ns simulations in water were shown to exhibit hydrophobic collapse which prevented Bcl-

xL from adopting conformations that allowed it to bind to its partners. However, in the 

presence of 20% isopropanol, conformations that resembled those used to bind with other 

partners were retained. Furthermore, the authors note that the hotspots identified on the 

protein surface changed based on the starting conformation used for cosolvent simulations of 

Bcl-xL. They suggest that such information in principle allows one to target different 

conformations separately. In continuation of their earlier work, cosolvent simulations using 

isopropanol (20%), phenol (10%), and 2M trimethylamine N-oxide were performed on Bcl-

xL and Mcl-1.56 In that study, the authors note that there were similarities and differences in 

the location of hotspots within both the proteins, Figure 13. Using this information, it was 

suggested that the differences (green arrows) in the location of hotspots within the active site 

between the two proteins could be exploited to obtain potent and selective drug-like 

molecules.

More recently, hotspots on the protein surface of the ectodomain of interleukin-1 receptor 

type 1 (IL-1R1) were investigated using cosolvent simulations of 10% phenol.57 The 

authors’ primary motivation for using phenol cosolvent simulations came from the frequent 

observation of these groups in fragment screening libraries for targeting protein-protein 

interactions. Cosolvent simulations were used to investigate three druggable sites identified 

using Sitemap,80,81 which were named P1, P2, and P3. As P1 and P3 could already be 

identified from crystal structures, they focused their attention on assessing the druggability 

of the P2 site using cosolvent simulations. While Sitemap identified four conformations in 

which the P2 site was deemed as druggable, cosolvent simulations identified only two 

conformations of the protein in which the P2 site exhibited high affinity for phenol 

cosolvent. These studies highlight the importance of including protein flexibility in assessing 

druggability of proteins. Based on this analysis, further efforts were focused on one of the 

two conformations that adopted a novel conformation. Using in silico screening 

methodology, fragments that bound to the P2 site were identified and further simulations of 

these fragments revealed that when bound to the P2 site, these fragments restricted the 

conformations accessible to IL-1R1.

The effect of cosolvent simulations on protein conformations was further investigated using 

the protein Bcl-xL.58 In this study, the authors compared different cosolvent simulation 

setups. A comparison of pure water MD simulations, cosolvent simulations, accelerated MD 

simulations, and a combination of cosolvent simulations with accelerated MD were 
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performed. The authors used apo conformations of Bcl-xL as a starting point for all the 

simulations Interestingly, the combination of cosolvent simulations with accelerated MD 

resulted in the generation of ideal protein conformations that were found to be the most 

useful in docking.

GlaxoSmithKline and Bahar

Bahar and colleagues at GlaxoSmithKline (GSK) used cosolvent simulations to address the 

druggability of protein binding sites.59 In this approach, two cosolvent simulations were 

conducted, one in the presence of isopropanol and another using a mixture of acetamide, 

acetic acid, and isopropylamine. The ratio of probes to water was set at one probe molecule 

for every 20 water molecules. This corresponds to ~2.3M probe concentration in the 

cosolvent simulations. Several simulations of varying time length of 32 and 40ns were 

performed. Free energies were calculated using equation (1). However, it is important to 

note that the free energies were calculated based on the maximally occupied grid point in the 

volume of an entire probe (Figure 14). This is a very important distinction from other 

approaches where these measures are reported on a per-atom basis. These free energies 

calculated for volumes of the size of a probe were termed “interaction spots”. Reasonable 

constraints were placed on the definition of these interaction spots. They were required to 

not overlap with other interaction spots. Only those interaction spots with energy lower than 

−1 kcal/mol were considered, and the energy of an interaction spot was determined to be that 

of the central grid point (all other grid points within the radius of the probe were eliminated). 

In cosolvent simulations using mixtures, the radius of the interaction site was the sum of the 

radii of all the probes used in the simulation. An interaction spot was given a charge based 

on the fraction of time it is occupied by a charged probe. The interaction spots were then 

clustered using a 6.2Å distance to identify druggable sites under the constraint that the 

clusters can have a charge of no more than 2e−. Finally, maximum achievable free energies 

of binding were obtained from the free energies of the interaction spots within the clusters 

(Figure 14).

These cosolvent simulations were applied to a test set of five proteins: MDM2, PTP1B, 

LFA-1, kinesin Eg5, and p38 MAPK. The authors found that the maximal free energies of 

binding computed using their approach are in perfect agreement with the affinities of the 

best known ligands for the binding sites on these proteins. Interestingly in MDM2, the 

occluded binding site was open for access only in cosolvent simulations. Similar results 

were obtained for LFA-1 and Eg5 where rearrangement of side chains resulted in access to 

the allosteric site. The authors attribute the opening of partially occluded sites to the use of 

an annealing procedure during the equilibration protocol wherein the system was heated to 

600K under a restraint placed on the heavy atoms to prevent unfolding. Furthermore, in 

comparing the water and cosolvent simulations, it was noted that the probe molecules 

prevented hydrophobic collapse of binding sites during the equilibration (a phenomenon also 

observed by Yang and Wang in their simulations of Bcl-xL54). In Eg5, the pocket opening 

happened more frequently when a mixture of polar and charged cosolvents were used 

instead of isopropanol. In p38 MAPK, the druggability of the allosteric site was better 

captured by a mixture of probes instead of the use of isopropanol alone. These results 

certainly highlight the advantages of using probe mixtures over the single-cosolvent 
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simulations used in our approach. The authors note that many drug molecules are either 

charged or zwitterionic in nature, so mixtures of probes that include charged cosolvents are 

likely required for many druggable proteins.

Caflisch approach

What sets this work apart from the aforementioned is the fact that the cosolvent MD was 

used to estimate on/off rates and binding affinities based on kinetics. Caflisch and co-

workers performed simulations of FKBP with dimethylsulfoxide (DMSO).60 Ten 

simulations lasting for 70ns each using 50 molecules of DMSO (~440mM) were performed. 

DMSO primarily mapped the active site of FKBP in these simulations. Interestingly, the 

binding and unbinding events of DMSO in these simulations were used to obtain the 

dissociation constant of DMSO for the active site (~300mM). These values were in 

agreement with results from experiments. The authors also note that using DMSO 

concentrations higher or lower by a factor of two did not change the obtained results.

In a follow up study, cosolvent simulations were performed for two bromodomains: zinc 

finger domain 2B (BAZ2B) and the CREB binding protein (CREBBP).61 These simulations 

were conducted separately using the cosolvents DMSO, methanol, and ethanol. Two 0.5μs 

simulations for each cosolvent were performed using 50 cosolvent molecules (~440mM). 

Cosolvent simulations were able to successfully map the acetyl-lysine binding site of 

CREBBP. Furthermore, the location of DMSO in these simulations was in perfect agreement 

with the position of DMSO found in a crystal structure of CREBBP.82 Similar mapping of 

the acetyl-lysine binding site by different cosolvents was also noted for BAZ2B. The authors 

note that there were several binding and unbinding events of the cosolvents observed in the 

simulation. An analysis of the kinetics of cosolvent binding revealed that unbinding events 

for DMSO and ethanol were slower than methanol possibly due to their larger size and 

hydrophobicity. Interestingly, an analysis of the water molecules within the acetyl-lysine 

binding revealed that while some were retained during the entire simulation, others were 

transiently replaced by cosolvents. Based on this information, the authors proposed that 

water molecules that do not exchange with cosolvent should be included in the protein 

binding site during high-throughput docking studies. Furthermore, they suggested that 

hydroxyl substituents could be designed into ligands when water molecules are replaced by 

cosolvents.

Additional variations on the methods described above

Tan and Abell—Tan et al. used cosolvent simulations with a low concentration of benzene 

(0.2M) to reduce aggregation issues.62 In an application of this method to the polo-box 

domain of polo-like kinase 1, they note that a tyrosine residue lining the secondary binding 

site of this protein adopts a closed conformation during water simulations. However, when 

cosolvent simulations were performed with benzene, this residue flipped to open a cryptic 

pocket. Furthermore, a ligand was successfully designed to take advantage of this cryptic 

binding site. These studies highlight the potential of cosolvent simulations to open cryptic 

pockets on the protein surface that can then be targeted through SBDD.
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More recently, the authors were motivated by the abundance of halogens in drug-like 

molecules to focus on the use of chlorobenzene as a cosolvent.63 They note that 

chlorobenzene aggregates when used at a concentration of 0.2M and thus decreased the 

concentration of the probe molecules to 0.15M. This decrease in chlorobenzene 

concentration necessitated an increase the simulation length from 5ns to 10ns to achieve 

adequate sampling. Protein targets with halogenated ligands were selected to test the 

approach. This set of test cases included MDM2, Mcl-1, IL-2, and Bcl-xL. In starting their 

cosolvent simulations, they chose conformations of the protein where these halogen binding 

sites were absent. For the most part, simulations were able to identify cryptic binding sites 

on the protein surface. The authors note that the only site not mapped by cosolvent 

simulations was in Bcl-xL, but opening that site required major rearrangement of helices.

In a follow up study, their approach was used to detect hydrophobic binding sites at PPI. 

Using Aurora-A, RAD51, and MDM2 as a test set with benzene as a cosolvent they were 

able to identify hydrophobic binding sites at the PPI.64 Interestingly, cryptic pockets that 

opened in cosolvent simulations of MDM2 and RAD51 were absent when run using regular 

water MD simulations. The ability of benzene cosolvent simulations to detect binding sites 

of hydrocarbon staples of stapled peptides was also investigated. Benzene cosolvent 

simulations were applied to a dataset of crystal structures with known locations of 

hydrocarbon staples, which added MDMX, Mcl-1, ERα and ERβ to the study. The resulted 

indicated agreement between benzene cosolvent simulations and locations of hydrocarbon 

staples in stapled peptides from crystal structures.

Fersht’s application—Fersht and co-workers used isopropanol-based, cosolvent 

simulations to study a cancer causing mutant of the p53 protein.65 This mutant protein, p53-

Y220C, has a mutation of the wild type’s tyrosine to a cysteine that results in a pocket being 

opened. The authors investigated the use of cosolvent simulations to identify druggable 

binding sites on the protein surface. Interestingly, the site with the highest isopropanol 

density was located at the dimer interface. Two other sites were also found, one within the 

cavity created by the mutation and another which the authors could not account for. The 

authors note that during their experimental fragment screen, they were only able to identify 

hits that targeted the mutation-induced cavity on p53-Y220C and could not find hits for the 

other two sites. The setup and execution of the isopropanol simulations was similar to the 

Barril approach but using a concentration of 20%. In the initial equilibration period, the 

protein was simulated at 600K while placing a restraint on the heavy atoms of the protein to 

allow for the distribution of probes. This was followed by an equilibration of 1ns followed 

by 19ns of production simulation under constant pressure at 300K. Binding free energies for 

the isopropanol molecules were also estimated using the Barril approach.

Gorfe’s pMD—Gorfe and co-workers have investigated the location of hotspots on the 

protein surface of K-ras using pMD, an approach that uses isopropanol as a probe in 

cosolvent simulations.66 In their approach a simulated annealing procedure was used similar 

to the one reported by Bahar and GSK collaborators. Here, the system was initially 

equilibrated by heating to 650K followed by cooling to 310K, all while significantly 

restraining the protein’s heavy atoms. In their opinion, this procedure prevented kinetic 
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trapping of the probe molecules inside the protein. Following further equilibration wherein 

the restraints on the protein were gradually removed, the system was simulated for three 

runs for varying lengths of time ranging from 30 to 100 ns. Further analysis was then 

performed by combining the three runs. The results were visualized by converting each grid 

point to free energy values using equation (1). The maps were then subsequently contoured 

at −0.5 kcal/mol for visualization. In an approach similar to the one adopted by Bahar and 

co-workers, maximal free energies were calculated for binding sites. The grid point with the 

most favorable free energy was identified, and all other points within a 5Å radius were 

discarded. After exhaustively processing the grid points in this manner, the retained points 

were clustered using a 6Å clustering distance. “Druggable sites” were defined as clusters 

with four or more interaction points and “subsites” were defined as clusters with two or 

three interaction points. Five druggable sites and three subsites were identified on K-ras. 

These sites were then found to capture known allosteric sites on K-ras. An additional 

comparison was made between pockets identified using the curvature analysis MDpocket83 

and pMD simulation maps. The authors note that some of the sites were not identified by 

MDpocket as they did not conform to the definition of a pocket. Thereby, the authors point 

to the advantage of using cosolvent maps to identify binding sites as opposed to those 

obtained from techniques that rely on protein curvature.83 A comparison was also made 

between water simulations and pMD using MDpocket, wherein they found that pockets 

formed during pMD simulations were larger in size.

More recently, the authors extended the pMD technique to work on protein targets 

embedded in membranes.67 Noting that cosolvent simulation with membranes represent a 

unique problem since they can exert a disrupting influence on the integrity of the membrane, 

they altered non-bonded interactions between cosolvents and lipid bilayers. The pMD-

membrane approach was used to identify allosteric ligand binding sites on mutant K-Ras 

protein in the presence of lipid bilayer.

Future Directions

With the ever-increasing accessibility of computing power, cosolvent MD simulations are a 

practical mechanism to better incorporate the role of protein flexibility and competition with 

water into SBDD. Their use for identifying hotspots on protein surfaces has been highlighted 

by several research groups. However, the domain of applicability for cosolvent simulations 

extends beyond hotspot mapping. Here, we comment on current and potential future 

applications of cosolvent simulations in SBDD.

Converting cosolvent simulations into pharmacophore models

The location of cosolvent molecules during cosolvent simulations are not only indicative of 

hotspots, but point to the interactions required to achieve optimal potency. The latest 

developments in cosolvent MD have focused on converting the information derived from 

simulations into pharmacophore models. Currently, protocols for extracting pharmacophore 

models exist for the Barril approach36 and the MacKerell approach.42,44 Most development 

in this direction has been very similar to our MPS method.15–20,22,23 Creating 
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pharmacophore models by wedding our ideas of MPS and MixMD would be a natural 

progression of our method development.

Using cosolvent simulations to assist in scoring and ranking ligands

What cosolvent MD needs most is an accurate method for translating occupancy grids into a 

quantitative measure of binding. MacKerell and co-workers in their development of SILCS 

simulations37–46,84,85 have moved beyond the concept of simple pharmacophores. By 

presenting the binding preference of cosolvents on a grid and summing up the occupancies 

at grid points which overlap with known crystal structure ligands, they provide a more 

quantitative picture of the agreement between cosolvent simulations and known active 

ligands for proteins.38 This description allows one to move beyond a typical binary, hit/no-

hit outcome from screening pharmacophore models. These developments have the potential 

to add immense value to current computational techniques by providing means of ranking 

active and inactive molecules. As the preference for cosolvent probes in MD simulations is a 

complex interplay between competition with water and favorable interaction energies with 

the protein, accounting for it through scoring and ranking would provide an extra dimension 

to current docking approaches that typically lack a means of dealing with solvation effects or 

treat it in a rudimentary fashion.

Identifying allosteric sites and cryptic pockets using cosolvent simulations

Cosolvent simulations have demonstrated that it is possible to map cryptic allosteric pockets 

that open upon side-chain movement are achievable. However, it is yet to be determined if 

such simulations are enough to allow large-scale backbone motions that are accurate. 

Methods that accelerate conformation sampling such as accelerated MD86 and 

metadynamics87 are attractive alternatives to these problems and need to be investigated in 

conjunction with cosolvent simulations. A recent study using the Yang and Wang approach 

suggests this to be a promising area of research.58 Using cosolvent simulations with 

accelerated MD, they were able to identify suitable conformations (starting from an apo 

conformation of Bcl-xL) that performed better at docking known ligands. Identifying cryptic 

allosteric pockets is an area on immense interest as one could then drive selectivity between 

proteins where the orthosteric sites are similar. Further studies in this direction, might 

unravel important applications of cosolvent simulations.

Assessing druggability of PPIs

Targeting protein-protein interactions using small molecules is challenging as these 

interactions are typically spread over a larger shallow surface area.88 Understanding whether 

sites that disproportionately contribute to binding exist and targeting them will be key in 

assessing the druggability and success rate of disrupting PPIs. In an application of MixMD 

to farnesyl pyrophosphate synthase, we have observed strong mapping of the protein-protein 

interaction interface.53 These results prompt the need to assess the utility of cosolvent 

simulations in prioritizing which protein-protein interactions to target with small molecules.
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Expanding the range of probe molecules used with cosolvent simulations

The identity of cosolvents used in MD simulations can have a significant impact on the 

outcome and interpretation of results. The choice of “probe” solvents in most 

implementations of cosolvent MD has primarily tried to provide a representative set of 

frequently occurring fragments in drug-like molecules. Using only water-miscible 

cosolvents has been a defining principle in our development of MixMD and in Barril’s 

development of his approach, but others have used repulsive terms to include less soluble 

fragments in their cosolvent MD. With a wide variety of organic solvent possible, it remains 

to be seen if cosolvent simulations with different sets of probes can be used to tailor the 

technology to various SBDD applications like fragment-based design. Identifying the 

optimal set of cosolvents for pursing each application will be one of the big challenges for 

the future.

Cosolvent simulations with multiple probe molecules

The use of single cosolvent simulations is needed if one defines druggable binding sites 

through independent mapping by multiple cosolvents, like MSCS and FTMap. However, 

several of the methods discussed above use a mixture of cosolvents, not a single cosolvent. 

Currently, no guidelines exist for choosing one approach over the other, and it may depend 

on the application. It is possible that the optimal combinations of cosolvents may be system 

dependent, and it requires investigation. There is great potential for synergistic effects that 

arise from two different cosolvents binding near each other, and this may yield further 

insights that could be exploited in SBDD.

Exploring conformational dependence of cosolvent simulations

The effect of starting conformation on the outcome of cosolvent simulations has not been 

explored in depth. The only notable exception in this area was work done by Yang and Wang 

who found that hotspots identified on the protein surface differed based on the starting 

conformation used for cosolvent simulations.55 In principle, one could target different 

protein conformations. More recently, they found that conformations extracted from 

cosolvent simulations (in tandem with accelerated MD) resulted in improved docking of 

ligands for Bcl-xL.58 In our application of MixMD, we have similar observations using 

active vs inactive conformations of ABL kinase.53 MixMD simulations starting from two 

ABL kinase conformations resulted in hotspot mapping consistent with the biological 

function of the two different conformations. The inactive conformation, which is not 

expected to bind peptide substrates, showed no hotspot mapping in this region with MixMD. 

However, the active conformation of ABL kinase that processes peptide substrates, did yield 

hotspots in this region. Similar results across other systems would strengthen the argument 

for the use of cosolvent simulations to evaluate the importance of different conformations in 

the context of biological function.

Summary

The successful application of cosolvent simulations to a wide variety of protein targets by 

various groups has presented a very encouraging picture for this nascent field. Improvements 

in MD simulation codes, coupled with significant advances in computing power, have finally 
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brought MD methods to the point of practical use in SBDD. Cosolvent simulations are a way 

of using MD for more than just conformational sampling of a protein system. However, 

there remain several pressing questions on the optimal use and best practices for the various 

approaches. Future developments will provide these answers and continue the significant 

strides to integrate cosolvent MD with mainstream computational approaches for SBDD. 

The progress thus far suggests that cosolvent MD is poised to become the next significant 

advance in computational techniques to drive drug discovery forward.
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Abbreviations

AR androgen receptor

β2AR β2-adreneric receptor

BAZ2B zinc finger domain 2B

CREBBP CREB binding protein

DHFR dihydrofolate reductase

DMSO dimethylsulfoxide

ERα estrogen receptor α

ERβ estrogen receptor β

FGFE feature grid free energy

FGFr1 fibroblast growth factor receptor 1

FKBP FK506-binding protein 12

FXa Factor Xa

GCMC grand canonical Monte Carlo

GFE grid free energies

GSK GlaxoSmithKline

HEWL hen egg-white lysozyme

HGFE hypothesis grid free energy

HIVp HIV-1 protease

Hsp90 heat shock protein 90 N-terminal domain

IL-1R1 interleukin-1 receptor type 1

IL-2 Interleukin-2
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LGFE ligand grid free energy

MCSS multiple copy simultaneous search

MD molecular dynamics

mGluR5 metabotropic glutamate receptor 5

MixMD mixed-solvent molecular dynamics

MPS multiple protein structure

MSCS multiple solvent crystal structures

p38 MAPK p38 mitogen-activated protein kinase

p53 p53 core domain

PPARγ peroxisome proliferator activated-γ

PPI protein-protein interface

PTP1B protein tyrosine phosphatase 1B

SBDD structure-based drug discovery

SILCS site-identification by ligand competitive saturation

T4-L99A L99A mutant of T4 lysozyme

RMSD root mean square deviation

RNase A ribonuclease A
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Figure 1. 
An overlay of the all the MSCS crystal structures of elastase is shown (PDB structures: 

2FOE, 2FOD, 2FOG, 2FOH, 2FOF, 2FOA, 2FOB, 2FO9, and 2FOC).1,4 Many different 

cosolvent molecules occupy the same hotspots within the active site (red circle). The overlay 

provides “clusters” of probes on the protein surface (white). Probes outside the active site 

tend to bind along crystal-packing interfaces.
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Figure 2. 
The original GRID program used a regularly spaced grid (A) to place probe atoms (red 

circles, B) throughout the binding site and across the protein surface (yellow). (C) At each 

position, the interaction energy is calculated for the probe, summing over all atoms in the 

protein binding site. The energies are based on van der Waals contacts, Coulombic charges, 

and a hydrogen-bonding term. Across the surface, different sub-pockets can provide a good 

combination of favorable contacts (red/orange numbers). Far from the protein surface, there 

is only weak interaction (purple/blue numbers), and some points can be too close and clash 

with the protein atoms. Different probes create different maps; clearly, the favorable regions 

for a hydrophobic probe are not the same as a hydrophilic one.
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Figure 3. 
The MCSS method is based on energy minimization of probe molecules in the target binding 

site. Different probes map different interactions with the pocket, just like the GRID method, 

but the underlying mathematic implementation is different. (A) The binding site is initially 

flooded with thousands of probe molecules in random locations. (B) Each probe is treated 

independently, and its energy is based only on its interaction with the protein atoms. The 

arrows show the pathways toward the closest, local energy minima. The probes are 

systematically stepped “downhill” toward locations with more favorable energy. (C) No 

interactions between the probes are included in the calculations, so they can overlap one 

another at the end of the minimization. These clusters of probes map the favorable 

interaction sites on the protein surface. Further refinement of the probe locations and 

orientations uses a grid-based approach.
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Figure 4. 
Cosolvent MD simulations are conceptually very simple. (A) The schematic shows how a 

traditional MD simulation is modified. A protein (white ribbon) is placed in a box of explicit 

water molecules (blue background) with a modest number of small, organic molecules 

(orange triangles) in the solvent. Over the course of the simulation, the waters and 

cosolvents sample the local environments around the protein and out in the bulk. The 

cosolvents displace water on the protein surface and identify regions where drug-like, 

organic molecules may favorably bind. A grid is used to count the number of times a 

cosolvent probe occupies every position in the simulation box. The more frequently a grid 

point is occupied, the more favorable the interaction. (B) The occupancy grid counted from 

an entire MD simulation can be viewed in isodensity contours (orange mesh surfaces) that 

show the grid points of the most favorable interactions with the cosolvents.

Ghanakota and Carlson Page 30

J Med Chem. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
MDmix maps compared to experimentally determined isopropanol binding sites on the 

surface of elastase. Isosurfaces of the maps are color-coded as follows: orange, 16 times the 

expected density of OH group in isopropanol; green, 16 times the expected density of Me 

group in isopropanol; cyan, 4 times the expected water density. The ball-and-stick molecules 

are isopropanol from experimental MSCS. The maps coincide with two of the isopropanol 

sites (black arrows), but the site with the yellow arrow was not identified at this contour 

level. More concerning are the highly occupied green/orange hotspots (red circle) that do not 

match the known sites and could be misleading in a prospective study. It should be noted 
that many cosolvent MD methods produce these “spurious” sites, and this is not a weakness 
that is specific to MDmix alone. This figure is a modified version of Figure 1c from 

reference 33. The color saturation of the protein surface of elastase was reduced to better 

emphasize the maps and the isopropanol binding sites, and the red circle was added.
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Figure 6. 
Interaction potential of an –NH2 probe in the active site of Hsp90 derived from MDmix 

(acetamide’s N atom; top) and GRID (N2 probe; bottom). ADP is superimposed on the maps 

for reference only. The inset shows a smoothened 2D profile of the interaction potentials 

along the drawn vector. The role of explicit water creates much more detail in the MDmix 

maps and indicates regions were bridging water molecules may play an important role in 

binding. This is Figure 3 in reference 36.
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Figure 7. 
The S1-pocket of trypsin is shown with MacKerell’s FragMaps of benzene (purple), propane 

(green), hydrogen-bond donor (blue) and acceptor (red). Crystallographic poses of four 

inhibitors are overlaid (A–D) with the maps; polar hydrogens are shown. The benzene/

propane FragMaps overlap the central aromatic rings of all the inhibitors (purple arrows). A 

critical recognition element is the hydrogen bonding between trypsin’s Asp189 and 

positively charged groups in the inhibitors; it is captured in the hydrogen-bond donor 

FragMap (blue arrows). The last inhibitor in (D) places an acid group in an appropriate 

position in the hydrogen-bond acceptor FragMap. The units of the LGFE and experimental 

binding affinities are in kcal/mol. This is Figure 2 from reference 38.
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Figure 8. 
A) For p38 MAPK, the minimized crystal conformation is shown for the 1BL7 complex 

from the PDB, but the protein is not shown to emphasize the fit of the ligand in the maps. 

All FragMaps are drawn with a −1.2 kcal/mol cutoff. The FragMaps are colored green for 

nonpolar, blue for hydrogen-bond donor, red for hydrogen-bond acceptor, orange for 

negative acceptor, and cyan for positive donor. (B) Boltzmann-averaged GFE are shown for 

the atoms of the ligand in 1BL7. Favorable GFE values are displayed in blue and 

unfavorable in red. This figure is a composite of Figure 2d and Figure 7b from reference 41.
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Figure 9. 
FragMaps of the active and inactive states of β2AR are overlaid with ligands BI-167107 

(right, PDB: 3P0G) and carazolol (center, PDB: 2RH1), respectively. Differential maps 

(right) highlight differences between the two maps; the red, dashed circle marks a large 

nonpolar region that overlaps well with the agonist B1-167107. The FragMaps are colored 

green for nonpolar, blue for hydrogen-bond donor, red for hydrogen-bond acceptor, orange 

for negative acceptor, and cyan for positive donor. Hydrogen-bonding FragMaps are set to a 

cutoff of −0.5 kcal/mol, while the nonpolar and charged FragMaps are set to a cutoff of −1.2 

kcal/mol. This is Figure 4A of reference 46; for clarity, the protein surface has been 

lightened and the amino acid labels are changed to black font.
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Figure 10. 
Our MixMD results from restrained vs unrestrained protein simulations of acetonitrile and 

HEWL (white surface).49 The single hotspot for acetonitrile that was experimentally 

identified by MSCS is shown in cyan ball-and-stick in the center of each figure. (A) High 

occupancy regions of the map from the fully restrained simulation are shown in orange, (B) 

the backbone-restrained density in green, and (C) the occupancy map from fully flexible 

MixMD is in blue. Many incorrect local minima in green and orange can be seen, but the 

correct position alone dominates the blue map from the simulation of the fully flexible 

protein.
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Figure 11. 
Snapshots of MixMD simulations of thermolysin in 50% w/w isopropanol and water. (A) 

When using Barril’s original isopropanol parameters,33 the solvent separated into two 

phases after a few nanoseconds of simulation time. This behavior is unrealistic because 

isopropanol and water are completely miscible. (B) The same simulation using OPLS 

parameters77 for the isopropanol molecules resulted in both solvents remaining well-

distributed for the entire simulation time. This is Figure 1 of reference 51.
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Figure 12. 
Maps53 from MixMD are compared to the hotspots provided by the FTMap server. 

Competitive sites are circled in green and the allosteric sites are marked with brown. Both 

competitive and allosteric sites are mapped by the top-four sites in MixMD. In FTMap, 

hotspots are determined from clusters of probe molecules and ranked according to their 

average energy (cluster numbers are shown). Each cluster above is colored on the basis of 

whether it overlaps with known ligands. Green indicates a cluster that overlaps with 

competitive ligands, and brown clusters overlap allosteric ligands. Black clusters do not 

overlap either binding site, and their rank numbers are not shown. Cyan clusters in 

glucokinase overlap correct positions for sugar binding that were not mapped by MixMD. 

Please note that numbering in FTMap starts at 0, and we have shifted the numbers to start at 

1.
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Figure 13. 
Hydrophobic hotspots are shown as yellow enveloped surfaces in holo-Bcl-xL/peptide and 

holo-Mcl-1/peptide. Analyses are based on 16 ns cosolvent simulations of the (B) holo-Bcl-

xL/Bim and (C) holo-Bcl-xL/Bad and those of the (E) holo-Mcl-1/Bim and (F) holo-Mcl-1/

mNoxaB from the crystal structures. Probe molecules include 20% isopropanol and 10% 

phenol v/v. The reference structures used in the surface representation are the crystal 

structures of Bcl-xL/peptide and Mcl-1/peptide. Key Bim residues are shown in green stick 

models in A and B. Important hydrophobic binding sites are labelled as h1–h4 and a single 

polar site as p1. Green arrows highlight important differences in the hotspot maps. This is 

Figure 4 of reference 56.
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Figure 14. 
Overview of methodology used by GSK and Bahar; this is Figure 1 in reference 59. (A) The 

druggability simulation box is prepared by immersing the target protein in a box of water 

and probe molecules. (B) After the superposition of frames onto the X-ray structure using 

Cα atom positions, a grid representation is used to measure the probe density (ni). (C) A 

protein-free system is simulated to calculate the expected probe density (no) used in equation 

1. (D) The binding free energy for each voxel is calculated using equation 1. Note that only 

the outer layer (weaker) interactions are visible in the map. (E) Interaction spots (small 

spheres) are identified by removing the voxels that overlap with the lower energy voxels. 

The energy scale in this panel holds for panels D and F as well. (F) Proximal spots are 

merged to predict maximal affinity. Interaction spots that are in a druggable site are shown 

as larger spheres color-coded by the corresponding interaction energies with the target.
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Table 1

Cosolvent MD techniques that have been used to identify hotspots and binding sites on protein surfaces 

(protein abbreviations defined in the text).

Developer (Method) Highlights, Needed Improvements, Published Cosolvents & Proteins

Barril (MDmix) 33–36 Highlights: This was the first method of this type, and it laid the foundation for using occupancy grids and 
calculating free energies from cosolvent populations. MDmix focuses on water-miscible cosolvents.
Needed Improvements: MDmix produces many “extra” hotspots that may be misleading in prospective 
applications.
Cosolvents: Isopropanol, ethanol, acetonitrile, methanol, acetamide
Proteins: Thermolysin, p53, elastase, MDM2, LFA-1/ICAM-1, PTP1B, p38 MAPK, AR, HEWL, Hsp90, 
HIVp

MacKerell (SILCS) 37–48 Highlights: This method has the most extensive development with significant progress in translating 
occupancy grids into pharmacophore models and scoring schemes.
Needed Improvements: It uses high concentrations of cosolvent with artificial repulsion terms to prevent 
aggregation. This may unnaturally perturb any cooperative behavior between the cosolvent and create artifacts 
in the maps. SILCS also produces many extra hotspots that may be misleading in prospective applications.
Cosolvents: Benzene, propane, water (as a hydrogen-bonding probe), acetonitrile, methanol, formamide, 
acetaldehyde, methylammonium, acetate, imidazole
Proteins: BCL-6, trypsin, α-thrombin, HIVp, FKBP, FXa, NadD, RNase A, IL-2, p38 MAPK, DHFR, FGFr1 
kinase, adenosine deaminase, ERα, AmpC β-lactamase, T4-L99A, AR, PPARγ, mGluR5, β2AR

Carlson (MixMD) 49–53 Highlights: Very careful development has lead to clean maps with a significantly reduced number of extra 
hotspots. MixMD focuses on very low concentrations of miscible solvents to avoid artificial repulsion terms.
Needed Improvements: At this point, MixMD is qualitative in its identification of hotspots, and a quantitative 
scoring scheme is needed.
Cosolvents: Acetonitrile, isopropanol, pyrimidine, imidazole, N-methylacetamide, acetate, methylammonium
Proteins: HEWL, elastase, p53, RNase A, thermolysin, HIVp, ABL kinase, AR, CHK1 kinase, glucokinase, 
PDK1 kinase, PTP1B, farnesyl pyrophosphate synthase

Yang and Wang 54–58 Highlights: The authors have used more rigorous free energy calculations to estimate binding affinities. Other 
applications have focused on qualitatively identifying differences in PPI that might help provide specificity for 
designed ligands.
Needed Improvements: More development is needed.
Cosolvents: Isopropanol, phenol, trimethylamine N-oxide
Proteins: Thermolysin, Bcl-xL, Mcl-1, IL-1R1

GlaxoSmithKline and 
Bahar 59

Highlights: The method is specifically developed for assessing druggability of individual binding sites. They 
use their grids in a slightly different way, and they have very interesting rules for combining hotspots into 
druggability estimates.
Needed Improvements: More development is needed.
Cosolvents: Isopropanol, isopropylamine, acetic acid, acetamide
Proteins: MDM2, PTP1B, LFA-1, kinesin Eg5, p38 MAPK

Caflisch 60,61 Highlights: This method estimates kinetic on/off rates and binding affinities of the cosolvents based on the 
MD, but only a few applications are published.
Cosolvents: Dimethylsulfoxide, methanol, ethanol Proteins: FKBP, BAZ2B, CREBBP

Tan and Abell 62–64 Highlights: This method proposes low concentrations of hyrdrophobic cosolvents to reduce aggregation, but 
only a few applications are published.
Cosolvents: Benzene, chlorobenzene
Proteins: Polo-box domain of polo-like kinase 1, MDM2, MDMX, IL-2, Mcl-1, Bcl-xL, Aurora-A, RAD51, 
ERα, ERβ

Fersht 65 Highlights: The application focuses on cryptic binding sites, and more work is needed.
Cosolvent: Isopropanol Protein: p53-Y220C

Gorfe (pMD) 66,67 Highlights: This method is also developed to map proteins embedded in membranes, but more applications are 
needed.
Cosolvent: Isopropanol Protein: K-ras
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