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Summary

Progressive neuronal cell loss in a small subset of brainstem and mesencephalic nuclei and
widespread aggregation of the a-synuclein protein in the form of Lewy bodies and Lewy neurites
are neuropathological hallmarks of Parkinson’s disease. Most cases occur sporadically, but
mutations in several genes, including a-synuclein, are associated with disease development. The
mechanisms driving neurodegeneration remain unknown, hence limiting therapeutic strategies
aimed at blocking neuronal death. This review describes current evidence for a predominant role
of a-synuclein in the pathogenesis of PD, as well as some of the most promising a-synuclein-
based strategies currently in development for this incurable neurodegenerative disorder.

Keywords
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Introduction

Over the past two decades, a myriad of studies have suggested a significant pathogenic role
of a-synuclein (a-syn) in both familial and sporadic forms of Parkinson’s disease (PD). PD
belongs to the synucleinopathies, which includes dementia with Lewy bodies (DLB) and
multiple system atrophy (MSA). PD is the second most common neurodegenerative disorder
affecting 1 to 3% of the population over the age of 50 1 and over 5 million people
worldwide 2. Classical motor signs of PD include bradykinesia, rigidity, resting tremor and
gait disturbance with postural instability 3, primarily attributed to the dramatic loss of
dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNpc). In
addition to DA neuronal cell loss, another pathological hallmark of PD is the presence of
intraneuronal proteinaceous cytoplasmic inclusions, named Lewy bodies (LB), and
dystrophic Lewy neurites (LN) that also contain a-syn deposits. The mechanisms leading to
the formation and the pathogenic significance of these inclusions remain unknown.
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To date, there is no existing neuroprotective or neurorestorative therapy for treating this
chronic disorder. However, two key discoveries that occurred 17 years ago have dramatically
impacted PD research: i) the identification of mutations in the gene encoding for a-syn
(SNCA) in families with PD 4 ® and ii) the demonstration that a-syn is a major component
of Lewy pathology # °. Despite our increasing understanding of PD pathogenesis, the exact
mechanisms of the progressive DA cell loss in the SNpc remain to be unraveled. Here, we
review recent advances in understanding the pivotal role of a-syn in PD and stress the need
to focus therapeutic development on this target.

Implication of a-syn in the disease process

a-Synuclein and Parkinson’s disease—In 1912, F.J.H. Lewy first described the
intraneuronal proteinaceous cytoplasmic inclusions which became the histopathological
hallmark of PD 6. Several years after this discovery, K.N. Tretiakoff named them the “Lewy
Body”. In the early 90’s, a-syn was identified as the precursor of the non-amyloid
component (NAC) of Alzheimer’s disease (AD) amyloid plaques 9. The first link between
a-syn and PD appeared in 1997 with the identification of point mutations in the SNCA gene
in familial forms of PD (PARKI locus) 4. Polymeropoulos and colleagues identified the
SNCA gene coding for a-syn on chromosome 4g21-g23 and described A53T as the first
point mutation causing autosomal-dominant PD 4. Six missense mutations in SNCA are now
associated with autosomal dominant PD: p.A53T, p.A30P, p.E46K, p.H50Q, p.G51D,
p.A53E 4 10-15 (Figure 1). These mutations are extremely rare with only a few families
identified for each mutation. While the p.A30P mutation induces a clinical picture close to
sporadic disease, p.A53T, p.E46K, p.H50Q and the newly identified p.G51D and p.A53E
mutations are characterized by an earlier onset of parkinsonism with rapid disease
progression and additional clinical features such as hallucinations, dementia, pyramidal tract
impairment and autonomic failure 4 10-12.15 Neuropathological reports on autopsies of PD
patients with p.A53T, p.A30P, p.E46K and p.G51D mutations described dopaminergic cell
loss with extensive synucleinopathy in several brain regions 10:12.16.17 The sybsequent
identification of families with duplication or triplication of the SNCA gene (PARK4 locus)
strengthened the link between a-syn and PD, and indicated that increased levels of even the
wild-type protein alone can cause the disease 18 1. The clinical phenotype of patients with
SNCA triplication (i.e. early onset parkinsonism with dementia) is more severe than in those
with SNVCA duplication (i.e. close to idiopathic PD) suggesting a dose-dependent
relationship between disease severity and SNVCA gene dosage. The common genetic
variability at the SNCA locus is a robust risk factor for disease.

a-Synuclein structure and function—Although the physiological function of a-syn
remains to be fully elucidated, a-syn is implicated in modulating synaptic activity through
regulation of synaptic-vesicle release (recently reviewed in 20). a-Syn, a 14kDa protein
(other isoforms however exist), is a member of a small family of three proteins: a-, p- (B-
syn) and y-synuclein (y-syn) 2. Three different domains can be defined in the 14kDa
isoform of a-syn: i) an N-terminal domain (residues 1-60), ii) a central NAC domain
(residues 61-95), and iii) a C-terminal domain (residues 96-140) (Figure 1). The N-terminal
domain is characterized by repetitions of the four lysine-rich highly conserved motif
“KTK(E/Q)GV”, similar to lipid-binding motifs in amphipathic helical domains of

Lancet Neurol. Author manuscript; available in PMC 2017 January 06.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Dehay et al.

Page 4

lipoproteins 21, All known clinical mutations are present in this region, emphasizing the
importance of this domain in the aggregation of a-syn. The NAC domain has a high content
in hydrophobic amino acids, responsible for the aggregation-prone properties, while the C-
terminal end is characterized by a high content in proline, aspartate and glutamate residues.
a- and B-syn have a high sequence identity (around 90%) in the amino-terminal domain,
while the NAC region of a-syn specifically contains a 12 amino acid motif (residues 71-82:
“VTGVTAVAQKTV?”) that is a key element in the a-syn aggregation process, in particular
its fibrillation (accumulation of p-sheet-rich aggregates) 2.

The native state of a-syn is extensively debated. While some reported that a.-syn purified
from human cells is a helically folded tetramer, others found that a-syn predominantly exist
as an unfolded monomer 8:23-26_ Taken together, these studies suggest that a.-syn exists
under various conformational shapes and oligomeric states in a dynamic equilibrium,
modulated by factors either accelerating or inhibiting fibrillation (Figure 2). Disease-related
mutations impact the aggregation dynamics 27-2%, The identification and characterization of
the toxic a-syn species remain incomplete. Two hypotheses have been proposed: toxic
species could be (i) amyloid-like insoluble fibrils, notably found in LB, or (ii) soluble,
prefibrillar intermediates, such as oligomers or protofibrils (Figure 2). Several groups have
sifted through the different states of a.-syn aggregation and thoroughly examined the
functional consequences of aggregate-associated toxicity. Winner and colleagues generated
mutants unable to form fibrils while keeping an oligomeric state, and showed enhanced
toxicity 7 vivo30. Increasing evidence from both in vitroand in vivo studies has
corroborated that oligomeric species are the most relevant 26: 29-32 and suggests that LB may
be protective and represent a form of aggresome 33, While the different oligomeric types
exist in a dynamic equilibrium and slowly convert into fibrils, Lashuel and coworkers
recently proposed that annular oligomers are not on the pathway leading to amyloid
formation and are therefore potentially toxic 2. This result, if confirmed, suggests that
stabilization of the amyloid pathway might be of therapeutic interest.

a-syn oligomeric species bind to lipids and increase mitochondrial, lysosomal and vesicular
membrane permeability, a common feature of aggregation-prone proteins 32 34-37,
Increasing membrane permeability leads to calcium influx, ion homeostasis disruption and
cell death through caspase-3 activation 32. Oligomers, but not monomers, can inhibit
synaptic vesicle docking 38,

Several post-translational modifications (PTMs) of a-syn were characterized and their
presence noted in LB pathology (for in-depth review see 21). First, phosphorylation is the
best-studied PTMs. Several studies characterized two sites of phosphorylation in a-syn,
Ser87 and especially Ser129, which is phosphorylated in brains from PD patients 39: 40 as
well as in several in vivoand /n vitro models of PD 41, It remains unclear whether
phosphorylation of a-syn impacts the fibrillation process 42. Among the different PTMs
identified, Ser129 phosphorylated (pS129) a-syn is thought to be the dominant form of a-
syn in LB 41, Consistent with these findings, a recent unbiased top down proteomics study
quantified various a-syn forms in the frontal cortex from PD cases and controls and
demonstrated the presence of pS129 a-syn only in SDS-insoluble (LB-enriched) fraction of
brain tissue 43. However, the total amount of pS129 a.-syn was quite variable between cases
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and represented a minor fraction of unphosphorylated a-syn, raising the question around the
validity of pS129 a-syn as a therapeutic target. Second, nitration of a-syn at residues Y39,
Y125 and Y133 has been characterized in brains from patients with synucleinopathies 4.
Third, oxidation of a-syn could occur by way of oxidized derivatives of DA leading to a
decrease in fibril formation and a subsequent increase in protofibril accumulation °. Both
nitration and oxidation decrease the propensity of a-syn to form fibrils and stabilize
oligomers, and might thus enhance toxicity 4647, Truncated a-syn species have also been
found in LB 4143, Truncation typically occurs in the disordered C-terminal third of the
protein, most frequently at or near position 121. Truncation is associated with an increased
propensity of a-syn to form fibrils /n vitro and with increased toxicity in overexpressing
flies and rats 48 49. However, no compelling data correlate truncated a.-syn levels and
clinicopathology 43. Additionally, we still lack direct /7 vivo evidence that inhibition of a-
syn-cleaving proteases decreases cell death. Indeed, the physiological or pathological
significance of a-syn cleavage remains equivocal. While most studies focus on the N-
terminal peptide (the longest one) produced by cleavage, future studies should also consider
the C-terminal peptide.

a-Synuclein degradation—Increased levels of aggregated a-syn in PD suggest that
defective protein handling and clearance contribute to its pathogenesis. It is now established
that a-syn is degraded both by the ubiquitin-proteasome system (UPS) and by the
autophagy/lysosomal pathway (ALP) 20-52, a.-syn contains a chaperone-mediated autophagy
(CMA\) recognition motif %°VKKDQ?® (KFERQ like) allowing interaction with cytosolic-
hsc70 and translocation into the lysosome through the lysosome-associated membrane
receptor protein, LAMP2a 52, Interestingly, mutant (p.A30P and p.A53T) and DA-modified
a-syn, unlike wild-type a-syn, fail to be released within the lysosomal lumen after binding
to LAMP2a, hence clogging this autophagy translocation machinery and leading to the
accumulation of CMA-clients, at least in vitro 52 °3, Additionally, a-syn by itself may
compromise macroautophagy ># 5%, /n vivo evidence suggests that normal soluble a-syn is
primarily degraded by the UPS while more complex conformations, including aggregates are
disposed of by the ALP 6. Consistent with these observations, pathogenic depletion in
proteasome components and lysosomes (i.e. loss of catalytic activity and decrease in
lysosome number) has been observed in sporadic PD brains and in both toxic and genetic
rodent models supporting the idea that defects in protein quality-control mechanism
contribute to PD pathogenesis 57 58. A vicious cycle thus occurs in which protein
accumulation impairs clearance of the protein thus promoting further accumulation
ultimately leading to neurodegeneration.

The properties of mutant and post-translationally modified a.-syn species suggest that a-syn-
mediated toxicity could occur through several distinct pathways (Figure 3). Apart from its
localization at presynaptic terminals, a-syn accumulation has also been associated with
endoplasmic reticulum (ER) stress 9 and several organelle defects, e.g. mitochondrion or
lysosome. Localization at the mitochondria-associated ER membrane has been recently
reported 0. Both WT and mutant forms of a.-syn may impact mitochondrial morphology 0.
The aforementioned cellular defects could also be related to ageing, that remains the most
prominent risk factor for PD 1. Ageing itself leads to mitochondrial and lysosomal
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impairments, altered calcium metabolism and production of reactive oxygen species 62
Combination of ageing and PD alterations could lead to a cellular stress condition that
interferes with intracellular clearance pathways, favor a-syn aggregation and contribute to
the extracellular release of a-syn.

a-Synuclein spreading—In 2008, three independent studies reported that embryonic
mesencephalic neurons grafted into the striatum of three PD patients, out of 8 investigated,
develop LB-like structures (a-syn, ubiquitin and Thioflavin-S positive) in grafted neurons,
11, 14 and 16 years after brain surgery 2-64, This observation suggested a “host-to-the-
graft” transmission of LB pathology in the human brain and led to the speculation that cell-
to-cell transmission of abnormal a-syn species contribute to PD pathogenesis. Relevant to
this concept is the fact that PD patients exhibit a-syn-positive deposits in different brain
regions, which, in some instances, are interconnected 6%, A variety of evidence now suggests
that a-syn pathology initiates in the periphery (possibly gastro-intestinal system) with
subsequent spread to the central nervous system. However, whether such an anatomical
pattern reflects some sort of caudo-rostral transmission of abnormal a-syn species or merely
a caudo-rostral gradient of neuronal sensitivity thresholds for developing a-syn-positive
deposits remains to be established.

The exact mechanism underlying the initiation of a-syn misfolding and aggregation in a
recipient cell remains unknown. /n vivo studies have added a further piece to the puzzle with
the observation that intracerebral inoculation of a-syn-derived from purified LB taken from
the SNpc of PD patients 6 or /7 vitro recombinant pffs of a-syn 67 can promote LB-like
pathology in host neurons of recipient animals. Other reviews on a.-syn spreading are
available that cover more examples that we can here 8, but we will pinpoint the unsolved
questions that should be answered.

Evidence piles up to strengthen the concept that a-syn may self-propagate, thereby
contributing to the progression and extension of PD. In this context, the existence of toxic
VS. non-toxic a-syn strains could underlie the differences in disease propagation between
individuals, cell types or synucleinopathies 6°. However, it has not been yet demonstrated
whether the pathological conversion of endogenous a-syn triggered by PD-derived material
or recombinant a-syn pffs may actually occur directly through a seeding prion process or
rather indirectly as a general response to cellular stress. In addition, besides any potential
pathogenic effect of intraneuronal a.-syn, extracellular pathological a-syn is able to activate
a deleterious microglial response that may also contribute to overall cell death and extension
of the PD pathological process 70. It also remains to determine what initiates the misfolding
of a-syn and a prion-like cascade. Potential causes include genetic mutations and
duplication/triplication (in rare instances), impaired clearance, or exposure to toxins or
infectious agents. The latter has attracted much interest, as olfactory filaments are the only
nerves directly exposed to the exterior environment. Terminals of the dorsal motor nucleus
of the vagus nerve reside in the gastric mucosa just microns from the lumen. As these
structures appear to be the first areas of the brain involved in the PD process in at least some
patients, it is easy to imagine that they could readily be exposed to toxic or infectious agents.
Finally, it is possible that misfolding of a-syn occurs randomly, and the initiation of a prion
cascade is a function of multiple factors that might contribute differentially in different
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individuals. Among several mechanisms, a-syn oligomers are thought to be the toxic species
and the cause of the neurodegenerative process. Further, these oligomers would spread
throughout the brain and induce a-syn pathology in interconnected structures. The toxicity
of these pathogenic forms of a-syn, which remains to be unequivocally demonstrated, could
be exerted through different intertwined mechanisms involving both cell autonomous (e.g.
ion homeostasis perturbation, disruption of the mitochondrial network and/or impaired
proteostasis) (Figure 3) and non-cell autonomous (e.g. neuro-inflammation) pathways. In
line with the latter, aggregated and oxidatively modified a-syn holds interesting
immunological features possibly involved in lethal neuro-immune interactions. In innate
immunity, the Toll-like Receptor 2 has been identified as a major microglial receptor for
neuron-released oligomeric a-syn and the ensuing inflammatory reaction 7°. Among the
mechanisms involved in the neurotoxic microglial-associated innate immune response, the
oxidative burst generated by these brain macrophages is central and most likely implicated
in the post-translational modification of a-syn through nitration of Y125 and Y133

residues /1. Interestingly, nitrated a-syn, unlike the native protein, can escape immune
tolerance and generate a deleterious T helper cell response directed toward dopaminergic
neurons as shown by immunization and passive transfer experiments in mice 72. Although
infiltrated T cell have been identified in the brain of PD patients, it remains to be proven that
this adaptive immune response is related to pathological a-syn antigens 3. Overall, it is
tempting to speculate that any approaches targeting a.-syn aggregation or propagation would
indirectly impact on these immune responses but other, more direct, immunotherapeutics
may also be considered.

Where do we come from and where are we going?

a-Syn-related publications have consistently grown since its relationship to PD was
discovered in 1997 to reach 446 articles published in 2013 (Figure 4A). Interestingly, 50%
of the articles were published in the last five years (Figure 4A). The increase in scientific
publications is associated with an increasing a-syn-related patent deposit rate (Figure 4A).
Since 1994, a total of 176 patent families have been filed, with an average of 20 patents per
year in the last 3 years (Figure 4A). The majority of early patents were for diagnosis
purposes and/or drug screening against a-syn. More recently, a-syn-related patents refer to
anti-aggregation compounds, gene-silencing approaches and clearance strategies (Table 1),
holding still a basic science status (Table 1). Conversely, a few have entered the pipeline but
have not yet moved to clinical trials, suggesting that a-syn will be one of the main foci for
biomarkers identification and disease-modifying strategies in the near future (Table 2). So
far, 13 active a-syn-focused clinical trials are ongoing funded mostly by academic or non-
industrial partners (Figure 4C and Table 3). Beside the increasing number of scientific
publications and patents dealing with a-syn, the increasing number of economic press
releases in large media underlines the rising interest for therapeutic strategies targeting a.-
syn (Figure 4B).

Strategies to combat a-synuclein toxicity

a-syn aggregation is now considered as a major pathogenic process in PD and offers several
targets for preventing a-syn toxicity ’4. While perhaps premature, several clinical trials
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focusing on a-syn in PD have been initiated (Table 3), and numerous additional approaches
- often reflecting collaboration between industry and academia - are moving forward.

Increasing protein clearance—Given the relationship between a.-syn burden and
pathology, the obvious first move would be to reduce its expression, through. two strategies:
(i) reducing the synthesis or (ii) increasing the clearance. Silencing of SNCA in adult
animals using small hairpin RNA leads to contrasting results: degeneration 7> 76 and
inflammation activation /7 have been reported in rodent models while no effects were
reported in squirrel monkey ’8. Several explanations could underlie the apparent
inconsistency, including the fact that experiments involved different animal species (rodent
vs. primates) and may be dependent upon the extent and/or duration of a-syn deficiency: i.e.
after partial and temporary a-syn reduction in adult RNAi-treated animals versus lifelong
ablation of a-syn in mutant mice. One another possibility is that toxic RNA silencing effects
might result from saturation of endogenous RNAIi machinery by high RNA. levels, leading
to interference of miRNA processing.

Increasing a-syn degradation by enhancing proteasomal or lysosomal activity represents
another therapeutic possibility. Recently, 1-[1-(4-fluorophenyl)-2,5-dimethylpyrrol-3-yl]-2-
pyrrolidin-1-ylethanone, IU1 (a small molecule identified in a high-throughput screening)
was shown to enhance proteasomal function associated with increased clearance of tau 7.
This new molecular area should be considered in future studies for PD. As discussed above,
a-syn is degraded under pathological conditions by the ALP and relevant to PD, a-syn-
mediated impairment of CMA activates macroautophagy /7 vitro 8. Several studies have
reported successful neuroprotection with strategies aiming at increasing autophagy in in
vitro and in vivo models of PD 57:81-83 (Taple 4). For instance, overexpression of the
transcription factor EB 82, LAMP2a 83 or Beclin-1 81 were able to provide neuroprotection
in rat models based on the overexpression of human a-syn or in a transgenic mouse model
of PD 8183 Most of the /n vivowork is based, however, on viral-mediated overexpression
calling for further demonstration in complementary models (Box 1).

Small autophagy-activating molecules, such as rapamycin, hold promise for rapid translation
to patients. This compound is a FDA-approved macrolide that inhibits the activity of the
mammalian target of rapamycin (mTOR). It efficiently enhances autophagy /n vivo 57 84,
However, long-term use of rapamyecin is associated with off-target effects (such as interstitial
pneumonitis, high levels of triglycerides, reduced wound healing and anemia — some of them
are attributed to its immunosuppressant properties that might increase the risk for cancer),
which may preclude its chronic use for PD 8. The disaccharide trehalose is a mTOR-
independent activator of autophagy, which also attenuated neuropathology abnormalities in
several models of neurodegenerative disorders including PD 8688, The exact connection
between trehalose and autophagy as well as the mechanisms underlying its neuroprotective
effect remain unknown. Two conclusions can however be drawn from the studies with
autophagy-activating molecules 81-83, First, identification of specific and safe compounds
boosting specifically the ALP could be a successful strategy. Second, in light of the recent
success in terms of safety and tolerability with lentiviral- and AAV-based approaches 89 90,
gene therapy designed to enhance UPS and lysosomal function should be considered.
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Acting on a-syn post-translational modifications—Another strategy is to dampen
the PTMs associated with the pathological forms of a-syn. Selecting the most suitable PTM
remains challenging in light of the conflicting results obtained with the still popular a-syn
phosphorylation at S129. While hyperphosphorylation of a-syn is present in the brain of PD
patients, its levels are very low 43, Furthermore, overexpression of a kinase known to
phosphorylate at S129, polo-like kinase 2 (PLK2) or its yeast ortholog CDC35, is
neuroprotective in several in vitro, yeast, nematode and rat models of PD 91, At odds with
these studies, Lee and colleagues reported that pharmacological activation of phosphoprotein
phosphatase 2 (PP2A) dephosphorylates a.-syn and decreases the a.-syn burden in a mouse
transgenic model of PD 92, Moreover, overexpression of G-protein-coupled receptor kinase
6, another a-syn kinase, accelerates degeneration in a rat model of PD 93 and preventing
phosphorylation at S129 prevents neurotoxicity, while increasing the numbers of large
inclusion bodies in transgenic flies 9. Further studies are therefore needed to completely
unravel the pathological significance of S129-phosphorylation and to define its relevance for
therapeutic intervention. Regarding the truncated forms of a.-syn, recent results suggest that
the overexpression of a calpain-specific inhibitor reduces a-syn pathology in the p.A30P
mouse transgenic model 9. Surprisingly, the opposite, e.g. calpain activity enhancement, did
not worsen a-syn pathology %°. Again, additional studies on both postmortem tissues and
animal models are needed to elucidate the relevance of truncated a-syn in PD pathogenesis,
identify the relevant proteases, and thereby determine the validity of targeting a-syn
cleaving proteases for treatment of PD.

Targeting a-syn aggregation—Inhibiting a-syn aggregation remains an extremely
attractive target for drug development. Several groups have focused on the disaggregation
pathway, ad hoc for this purpose. In yeast, this pathway is composed of several molecular
chaperones, in particular heat-shock proteins (Hsp) 40 and 70. Hsp40 and 70 are found in
LB % and overexpression or pharmacological activation of Hsp70 protects from a.-syn
toxicity in in vitro and fly models of PD, notably through a decrease in oligomers 96-98,
Since oligomeric forms are the suspected toxic species, formation of stable fibrils might be
an interesting strategy to prevent cell death. An intense research effort is required to fully
understand the toxicity of a-syn oligomers. ldentifying aggregation inhibitors from
compound library screens should be moved to the forefront. Only few have been developed
so far and all were reported to efficiently provide neuroprotection; these include in vitro
agents, such as EGCG 99 and /n vivo agents, such as anle138b 190 (3-(1,3-benzodioxol-5-
yI)-5-(3- bromophenyl)-1-pyrazole), CLRO1 191 and a prolyl oligopeptidase inhibitor,
KYP2047 102,103 (Taple 4). Anle138b has shown neuroprotective properties in prion-
infected mice, in two neurotoxic PD models and one genetic model of PD 100. 104 The
combination of these models, sharing similarities with the various aspects of the human
condition, represents a singular validation plan that deserves further examination (Box 1).
These encouraging results stress the need for a better understanding of a.-syn aggregation
and represent a potentially fruitful series of targets for therapeutic development.

A currently “hot” strategy is the use of antibodies that target a.-syn, similar to what has been
tried during the last decade in the AD field. Several groups have reported neuroprotection
after passive (based on the use of antibodies against the protein) or active (vaccination-based
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approach using full-length protein or short peptides) immunization in transgenic mouse
models of PD 105-107 These reports have led pharmaceutical companies such as Roche to
start a phase I clinical trial based on the use of a monoclonal antibody directed against a-syn
(PRX002, initially developed by Elan Pharmaceuticals, patent#US7910333 — see Table 3 for
NCT number). Active immunization with Affitope PDO1 (Affiris, patent #W02009103105)
was found safe in a first pilot study in 32 PD patients (see Table 4 and http://www.affiris.at/
press_releases/PDO1A_MJFF_E.pdf). PD03, from Affitope, will soon be evaluated in
patients with PD within the European SYMPATH consortium (http://www.sympath-
project.eu/DL/sympath_factsheet EN.pdf). Both studies include several exploratory efficacy
outcome measures. Although passive and active immunization approaches are fascinating,
several key questions remain to be answered. First, most studies were performed in
transgenic mice in which human a-syn expression is restricted to the brain (PDGFR- and
Thy1-A30P-synuclein transgenic mice), while the majority of a-syn is found on the
membrane of red blood cells 108, It is therefore important to investigate in early clinical
studies how antibodies react with peripheral a-syn and whether unbound antibodies could
gain access to the brain compartment at sufficient levels. Second, a-syn is a cytosolic
protein and LB are intraneuronal inclusions. How antibodies would recognize the
intracellular protein and promote its intracellular degradation is unknown but the strategy
might halt transcellular a.-syn propagation. Surprisingly, passive immunization against a.-
syn activate autophagy 108. Antibodies might thus trigger non-selective autophagy, thus
leading to the clearance of a-syn through a non a.-syn-related mechanism. Indeed autophagy
might be unselectively activated as part of an innate immune response against pathogens,
here the presence of antibodies 199; thus leading to the clearance of a-syn through a non-a.-
syn-related mechanism. The use of intrabodies, that are gene-engineered antibodies
specifically built for acting intracellularly, might be more specific 119, Finally, the
development of conformational antibodies, i.e. antibodies recognizing the structure of the
peptide not simply the sequence, might be an interesting way to target specific oligomers. In
this regard, a recent study using the pffs-based model of PD demonstrated that
immunotherapy with antibodies specifically targeting misfolded a-syn is blocking the
entrance and propagation of a-syn in neurons, and prevents the development of
neuropathological abnormalities in the brain 111, Altogether strategies aiming at decreasing
a-syn aggregation either by disaggregation, stabilizing the amyloid pathway or
immunization might be of therapeutic interest for PD. However, one must consider that the
precise a-syn species to target remains unclear and that there is a theoretical concern that
some a-syn species might be protective and that their removal could accelerate the disease
process.

Additional strategies—In light of recent data suggesting spreading properties of a-syn, a
better knowledge of the underlying mechanisms might provide therapeutic opportunities.
First, as discussed above, nucleation appears to be a critical step in a-syn aggregate
formation and therefore the identification of the structure of these “seeds” would be a huge
asset. The two key components of spreading are secretion and uptake. Several pathways
seem to be involved in a-syn transfer from cell to cell, including endocytosis, direct
membrane penetration, trans-synaptic dissemination, exosome-mediated transfer and
receptor-dependent uptake (reviewed elsewhere 2).
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Lessons learned from clinical trials in AD—Two humanised monoclonal anti-
amyloid B (AP) plaque antibodies were ineffective in halting cognitive decline after 72
weeks (bapineuzumab) and 78 weeks (solanezumab) of treatment.114 and 115 Although these
clinical trials did not reach their primary endpoints, a decrease in Ap plaques was identified
by PET.116 An explanation might be that therapeutic strategies for Alzheimer"s disease
should take into account both tau and AP deposits because the density of cortical tau
aggregates correlates with cognitive decline.11” A second explanation might be that patients
had Alzheimer"s disease that was too advanced to hope for recovery, underlining the
importance of testing neuroprotective strategies at an early stage. Roughly 25% of clinically
diagnosed patients enrolled in the two trials were amyloid negative, as established by PET
imaging or CSF AP levels. This finding underscores the need for an objective diagnostic
biomarker for selection of patients with Parkinson"s disease: a tracer for a.-synuclein
pathology will be crucial to further drug development. This finding also raises a major
conceptual question: can we ultimately reverse a-synuclein lesions in Parkinson"s disease?
At least one study18 has provided positive results. Although no overt neurodegeneration
was reported in the mouse model of dementia with Lewy bodies used in this study,
suppression of a-synuclein expression decreased the already established synucleinopathy.118
This strategy should be now tested in a model that leads to frank neurodegeneration (panel).

How to translate preclinical findings to clinical trials in PD patients?—Primary
outcomes of previous disease-modification or neuroprotection trials in PD were based on
clinical measures. Owing to the slow rate of progression of motor symptoms in PD,
observed differences between treatment groups were small and a matter of considerable
debate despite innovative concepts such as the "delayed-start" design 1. Therefore, efforts to
improve study design including the development of objective surrogate markers will be
critical for future success.

It was recently suggested that MSA and idiopathic REM sleep behavioral disorder (iRBD)
may be good models for proof-of-concept studies with compounds targeting a.-syn 117.
MSA is a rapidly progressing disorder leading to severe motor disability within a few

years 118, The fast deterioration of MSA clinical outcomes increases the sensitivity to
change over time and should allow detecting disease-modifying effects more rapidly than in
PD. Clinical trial duration should therefore be shorter in MSA than in PD, and this is a
strong advantage when developing a drug, especially in the early stage. Crucial milestones
have been reached for successfully conducting clinical intervention trials in MSA patients
and survival may be used as primary outcome 117, Thirty percent of patients with iRBD
develop a defined synucleinopathy at 3 years, rising to 66% at 7.5 years. Stratification with
prodromal markers of PD (e.g. deficits in olfaction, color vision and cognition, as well as
autonomic dysfunction and subtle motor impairment) further increases the risk of conversion
up to 65% at 3 years. Thus, the conversion to defined synucleinopathy may be used in
stratified cohorts of iRBD patients for testing compounds very early in the
neurodegenerative process.
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Concluding remarks

a-syn bears an unquestionable role in PD pathogenesis. Experimental research supports
several therapeutic strategies to combat a.-syn toxicity with promising preclinical results.
However, an understanding of clinicopathologic relationship of various a-syn forms in PD
patients is just emerging and needs to be strengthened further. Additionally, we need to
establish biomarkers (imaging, biochemical, genomic) of a-syn pathology in live patients
and their progression over time in order to conduct biomarker-aided clinical trials of novel
therapeutics. The current pipeline of interventions targeting a-syn appears to be wide-
ranging but with the usual amount of risk associated with novel approaches. In conclusion,
we believe that targeting a-syn for treating PD seems to be a suitable direction to adopt but
further preclinical studies are needed to de-risk therapeutic targets and trials.
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Textbox 1

Clinically driven experimental designs for target validation and drug
development

Currently, there are many a-syn-based models of PD developed from simple to more
complex organisms. They contributed to a better understanding of the function of a-syn,
etiology and pathogenesis of PD. While none of them reproduce the full pathology, all
share some similarities with the disease. In this regard, the use of a set of complementary
models seems mandatory to fully validate a new therapeutic target.

As illustrated in Table 4, most preclinical studies use an experimental design in which the
therapeutic compound is administered either prophylactically or concomitantly with the
induction of pathology. This raises the question of the relevance regarding the progressive
nature of PD. Patients can be treated only after the onset of symptoms and diagnosis
(usually around 30%-50% of dopaminergic cell loss). Hence, there is a crucial need for
clinically driven experiments to validate drug candidates. Ideally, these experiments
should fulfill four criteria 119120, First, the chosen model should represent the
progressive nature of PD, thus avoiding the use of acute toxic models. One cannot ignore
the progressive nature of the disease, as some drugs, such as minocycline, were
deleterious only in chronic models. Second, the therapeutic compound should be
administered after symptom onset and once degeneration has started. Third, the
therapeutic compound should be tested in complementary animal models (pathogenic and
etiologic). Fourth, final proof of efficacy should be obtained in the non-human primate
model of PD, as neuronal physiology is knowingly different between primate and
rodents. Although it is impossible to remove all doubts before testing a drug in early
phases in patients, our ethical obligation is to use the most relevant preclinical validation
method. Hence, to increase the chance of successful clinical trials, we must use a
combination of relevant models associated with a clinically driven experimental design to
test neuroprotective compounds in preclinical investigations.
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Figure 1. Primary structure of human a-synuclein (UniProtKB/Swiss-Prot: P37840)
Clinical Mutations (A53T, A30P, E46K, H50Q, G51D, A53E) are indicated in red.

Amphipathic N-terminal region contains six imperfect lysine-rich highly conserved motif
repeats (KTKEGV), which involve in binding of lipids, marked in grey. Central hydrophobic
region contains non-amyloid beta component (NAC) sequence from residue 61 to 95 is
underlined. Two major phosphorylation sites (Ser87 and Ser129) are colored in yellow.
CMA recognition sites are marked in green. Nitration sites (Y39, Y125, Y133, Y136) are
colored in blue.
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Figure 2. Schematic summary of a-synuclein aggregation pathway
The panel shows that a.-syn exists under various conformational shapes. a-Syn exists as at

least two structural isoforms: a natively unfolded monomer and a helix-rich membrane-
bound form. Both isoforms may undergo dramatic structural changes resulting in the
formation of B-sheet rich assemblies. From in vitro studies, it is clear that a.-syn behaves in a
dynamic equilibrium where monomer can aggregate first into several types of small
oligomeric species that can be stabilized by B-sheet interactions and then into higher
molecular weight insoluble protofibrils and may polymerize into amyloidogenic fibrils
resembly those found in Lewy Body (LB). However, the mechanism governing the
fundamental conformational change of normal monomeric a-syn to a pathological, disease-
associated form, remains unknown. Photomicrograph illustrates one synuclein stained-
mesencephalic LB (in red) in a neuromelanin-positive neuron from sporadic PD patient
indicated by the white arrow. Scale bar: 5pm.
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Figure 3. Schematic summary of established interactions between a-synuclein and cellular
components

The figure highlights six different intracellular pathways affected by a-synuclein (a-syn).
The protein a-syn is enriched at the pre-synaptic terminals of almost all types of neurons in
the brain, where it participates in the vesicle recycling, thereby modulating synaptic
function. a-syn can be degraded by the ubiquitin-proteasome system (UPS) and inside the
lysosomes. a-syn interacts strongly with membranes, such as plasma membrane and
mitochondrion. If misfolded, a-syn forms distinct structures that are prone to aggregation,
first into oligomers, then into larger structures. It is now believed that a-syn oligomers are
the toxic form that may impair basic neuronal processes, such as ER-Golgi trafficking,
lysosome and UPS functions, reduced mitochondrial activity and alter the plasma membrane
through the pore/perforations that can dysregulate calcium and cation homeostasis.
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Figure 4. Analysis of a-synuclein-related publications, patents and press releases per year
(A) The emergence of the a-syn research field as measured by the number of scientific

articles per year (in red) is accompanied by patents deposition (in blue). No gap between the
two curves is observed. The patent (blue) line stops in 2011 since we used the priority date,
which is closely equivalent to the deposition date (the patent will only become public 18
months after deposit). Literature search was conducted in PubMed, as well in Scopus®
(Elsevier) and Web of Science® (Thomson Reuters) databases with MeSH terms and/or
keywords in title, and abstract fields. Between 2127 and 5026 documents were retrieved on
the subject depending on the database and the type of documents (article, review, notes,
proceedings...) from 1997 to 2013. The patent analysis was run in the world wide collection
of INPADOC family patents using Orbit® (Questel) patent research platform through a
boolean search combining keywords in different topic field (title, abstract & claims) and
International Patent sub-class Code (IPC) A61P-025/16 for antiparkinsonian drugs. All
subsequent analyses were performed on patent family, i.e. a set of patent applications with
the same priority date in different countries related to the same invention. Since 1997, and
up to December 31th, 2013, we identified 176 patent families filed worldwide (in blue). (B)
Press release in large media per year. The curve tendency fits with scientific publications and
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patent deposits. For the analysis, we used a collection of 3576 documents retrieved from
Scopus for which we extracted citations count and compared to trends of press releases in
large media by searching Factiva® (Dow Jones) database. Two peaks emerge, a first in 2005
with the post-genomic revolution and the interference RNA technology breakthrough, and a
second one in 2010 with the support of the Michael J. Fox Foundation (MJFF) for candidate
compounds and the launch of clinical trials (e.g. Affiris). (C) Of 1313 studies in the field of
PD, only 13 open studies are associated with the “synuclein” keyword and 8 are actually
biomarker studies. We divided clinical trials in two categories, observational or for diagnosis
purpose (n=8) and disease modifying or neuroprotective strategies (n=5). Data were
collected from the Food and Drug Administration’s clinical trials database
(clinicaltrials.gov). Clinical trials, which were terminated, completed or of which the status
was unknown were excluded. Abbreviations: NIH: national institute of health; a-syn: a-
synuclein.
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