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Abstract

Accurate yet efficient computational models of solvent environment are central for most 

calculations that rely on atomistic modeling, such as prediction of protein-ligand binding affinities. 

In this study, we evaluate the accuracy of a recently developed generalized Born implicit solvent 

model, GBNSR6 (Aguilar et al. J. Chem. Theory Comput. 2010, 6, 3613–3639), in estimating the 

electrostatic solvation free energies (ΔGpol) and binding free energies (ΔΔGpol) for small protein-

ligand complexes. We also compare estimates based on three different explicit solvent models 

(TIP3P, TIP4PEw and OPC). The two main findings are as follows.

First, the deviation (RMSD=7.04 kcal/mol) of GBNSR6 binding affinities from commonly used 

TIP3P reference values is comparable to the deviations between explicit models themselves, e.g. 

TIP4PEw vs. TIP3P (RMSD=5.30 kcal/mol). A simple uniform adjustment of the atomic radii by 

a single scaling factor reduces the RMS deviation of GBNSR6 from TIP3P to within the above 

“error margin” – differences between ΔΔGpol estimated by different common explicit solvent 

models. The simple radii scaling virtually eliminates the systematic deviation (ΔΔGpol) between 

GBNSR6 and two out of the three explicit water models, and significantly reduces the deviation 

from the third explicit model.

Second, the differences between electrostatic binding energy estimates from different explicit 

models is disturbingly large; for example, the deviation between TIP4PEw and TIP3P estimates of 

ΔΔGpol values can be up to ~50% in relative error, or ~9 kcal/mol in absolute error, which is 

significantly larger than “chemical accuracy” goal of ~1 kcal/mol. The absolute ΔGpol calculated 

with different explicit models could differ by tens of kcal/mol. These discrepancies point to 

unacceptably high sensitivity of binding affinity estimates to the choice of common explicit water 

models. The absence of a clear “gold standard” among these models strengthens the case for the 

use of accurate implicit solvation models for binding energetics, which may be orders of 

magnitude faster.
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1 Introduction

An accurate yet efficient determination of the electrostatics in protein-ligand interactions is 

of profound importance in molecular design and drug discovery.1–6 The computational 

prediction of binding free energies is however complex and challeng-ing,7,8 and its 

outcomes can depend strongly on the molecular modeling technique used.9 In particular, 

accuracy of solvation and binding free energies calculations depends critically on the quality 

of the underlying solvent model.10–12

Extensive studies have been performed to evaluate the accuracy of solvent models in 

predicting solvation free energies for small molecular systems;10–13 in many cases the 

desirable “chemical accuracy” of 1 kcal/mol was reported ,10,11,14–16 at least on average. 

Yet, the high accuracy in predicting individual solvation free energies does not necessarily 

translate into high accuracy in atomistic binding free energy calculations.17–19 High 

accuracy and robustness of the force fields and solvent models in these calculations has 

proven difficult to achieve.20–25 Errors in even some of the highly accurate calculated 

binding energies can represent a significant percentage of the target binding free energies, 

sometimes as large as ~50% in relative error or ~7 kcal/mol in absolute error,26 in particular 

when the number of interactions in a protein-ligand complex increases.19 Even for small and 

relatively rigid host-guest systems, predicting binding affinities within typical chemical 

accuracy of ~1 kcal/mol remains elusive.22,23,27 Perhaps not surprisingly, binding free 

energies can be sensitive to the method parameters: the relatively small binding affinities are 

the difference between large free energy terms corresponding to the bound and unbound 

states.17 The interactions between proteins and ligands are short ranged and strong, which 

leads to the strong dependence of energy functions on the details of molecular 

conformation.22 Effects of systematic error cancellation can also be consequential in binding 

free energy calculations.17,18 Since long-range electrostatic interactions play a dominant role 

in biomolecular simulations, a careful treatment of electrostatic interactions is essential,28–34 

and merits especial attention: this is the focus of the current work.

Implicit solvent models are currently routinely employed for evaluation of electrostatic 

interactions in many scenarios of biomolecular modeling.35,36,36–52 By replacing discrete 

water models with a continuum medium using the average dielectric properties of water, 

implicit solvents provide significant decrease in the computational cost of simulations. 

Within the implicit solvent framework, the Generalized Born (GB) model43,53–75 provides a 

relatively simple, efficient and robust estimate to calculate the long-range electrostatic 

interactions in molecular simulations.43,76 Methods based on the implicit solvent framework, 
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such as MMPB(GB)/SA,77,78 are extensively used in estimates of solvation free energies and 

protein-ligand binding interactions.31,37,41,62,79

Recently, a new flavor of GB model, the so-called GBNSR6,80 was reported; unlike most of 

its predecessors, the model relies on the “R6”81–84 effective Born radius, which is calculated 

as a single r/|r|6 integral over the Lee-Richard molecular surface.80 A good agreement of the 

electrostatic component of the solvation free energies (ΔGpol) by the R6 flavor compared to 

the more fundamental Poisson-Boltzman (PB) model for small proteins and DNA was 

previously reported.84 It was also shown that GBNSR6 and the TIP3P explicit model are in 

close agreement for different conformations of alanine polypeptide.80 In a recent study, it 

was shown that GBNSR6 (with an appropriate non-polar contribution added) reproduces 

experimentally measured solvation free energies of small molecules with near “chemical” 

accuracy,13 on average.

Given the high promise of GBNSR6 method in predicting solvation free energies of some 

molecular systems, here we evaluate the accuracy of the model in predicting protein-ligand 

binding energies, crucial for rational drug design. To address this question, in this study we 

evaluate the binding free energies from GBNSR6 for a set of 15 small protein-ligand 

complexes, using explicit solvent free energies as reference.

While using explicit solvent as accuracy reference for an implicit solvent model is natural, 

the question arises which of the great many85 available explicit water models should be 

used. The question is non-trivial, as none of the current models can be considered as 

uncontested “gold standard”.86–88 Explicit water models are built to reproduce bulk 

properties, but being imperfect,86–88 improved performance in pure water properties does 

not necessarily translate into better performance in solvated systems. For example, TIP4PEw 

is more accurate than TIP3P in predicting water bulk properties,88 but less accurate in 

predicting hydration energies of small molecules;11 TIP5P is superior to both in reproducing 

details of water structure,89 but trails behind TIP4PEw in accuracy of predicted small 

molecule hydration energies.11 Besides, the transferability of the observed accuracy of these 

explicit models in predicting solvation free energies of small molecules (RMS errors slightly 

over 1 kcal/mol) to macromolecular systems is not guaranteed,19 nor is it certain whether the 

same level of accuracy is achievable in binding free energy calculations, which is of main 

interest to us here. The question would be moot, however, if commonly used water models 

showed consistent performance in these calculations, say within 1 kcal/mol of each other. 

Whether or not common (and some new) explicit water models are equivalent in this respect 

is the second main question we address in this work. For this purpose we compare ΔGpol and 

ΔΔGpol computed with two highly popular, fixed-charge, rigid explicit water models for 

which free energy calculation protocols are well-established and their computational 

expense is reasonable: TIP3P90 and TIP4PEw.91 We also make a comparison with a recently 

developed 4-point rigid explicit water model, OPC,92 which is arguably the first model of 

this class that predicts hydration free energies of small molecules with RMSD accuracy of 

less than 1 kcal/mol.92

The remainder of the paper is organized as follows. In Section 2 we present the specifics of 

the protein-ligand complexes used for the comparative studies. The details of implicit 
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solvent calculations and explicit solvent calculations using Thermodynamics Integration are 

provided in Section 2. The comparative studies are presented in Section 3. A summary of 

our findings is discussed in Section 4.

2 METHODS

2.1 Preparation of Complexes

A set of 15 protein-ligand complexes was selected (Table 1). One feature of the selected 

complexes is their small size (~1635–1995 atoms), essential to ensure convergence of the 

(lengthy) free energy perturbation (FEP) estimates. As a result of the limitation on the 

structure size, the diversity of the set is limited in terms of biological function of the 

complexes. However, the set is diverse with respect to values of electrostatic binding free 

energies: it covers a wide range of those (see Section 3), which is sufficient for our purpose. 

Another feature of the collected set is that ligands are neutral and proteins are either neutral 

or are forced to be neutral. The neutralization is performed to avoid various uncertainties and 

complications93 due to the use of Ewald summation and periodic boundary conditions in 

explicit solvent simulations. For each component that needed to be neutralized, the 

neutralization was performed as follows. First, its isoelectric point pI was computed. Then, 

protonation state and charge states of each titratable group was set according to its computed 

pK value at pH = pI, which forced over-all neutrality of the structure. The calculations of 

pK, pI, the titration curves, and the protonation state adjustments were performed using H++ 

server94 with the default settings; the server employs a continuum electrostatic approach to 

pK prediction. In principle, the explicit solvent box could alternatively be neutralized by 

adding counterions, however we did not follow this approach due to notably slow 

convergence of counterion distributions in MD simulations95 (tens of nanoseconds for 

monovalent ions), which would make our TI-based estimates of ΔGpol prohibitively 

expensive here.

For setting up the structures we used H++94 server that creates topology and coordinates 

files in Amber96 format. The ff99bsc0 parameters and the GAFF force field, both part of 

Amber12,97 were used for preparing the topology and coordinate files which includes partial 

charges. We performed 500 steps of minimization on the neutral complexes (without 

restraint) in vacuum to relax the structure. The minimization was performed in SANDER 

molecular dynamics module of Amber with a 12 cutoff distance. After minimization, the 

complex structures were broken down to the protein and ligand components to be used for 

the binding free energy calculations. The Amber format topology and coordinate files as 

well as the corresponding ΔGpol values are available in the Supporting Information.

2.2 Implicit Solvent Details

GBNSR6—GBNSR6 is an implementation of the Generalized Born (GB) model in which 

the effective Born radii are computed numerically, via the so-called “R6” integration,13,80 

over the Lee-Richards molecular surface.98 The polar component of the solvation energy, 

ΔGpol, is calculated by the ALPB model,99 which introduces physically correct dependence 

on dielectric constants into the original GB model of Still et al.,54 while maintaining the 

efficiency of the original:
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(1)

where εin and εout are the dielectric constants of the solute and the solvent respectively, β = 

εin/εout, α = 0.571412, and A is the electrostatic size of the molecule, which is essentially 

the overall size of the structure, that can be computed analytically. Here, qi is the partial 

charge of atom i. The most widely used functional form76 of 

 is employed, where Ri is the effective Born radius of 

atom i, and rij is the distance between atoms i and j. We set εin = 1 and εout = 80 in Eq. (1). 

Note that to mitigate uncertainties related to conformational sampling,23,100 and to facilitate 

direct comparison between implicit with explicit solvent model predictions, we eliminated 

structural fluctuations by keeping all of the structures fixed by strong coordinate restraints in 

all of the explicit solvent simulations performed in this study (see Section 2.3). As a result, 

there was no dielectric response from the protein. This scenario is consistent with a value of 

unity for the solute dielectric constant (εin = 1) in the corresponding implicit solvent 

modeling62,101 (Eq. (1)). The assignment of solute dielectric constant can, however, be 

different for a direct comparison to experiment.

The effective Born radii Ri are calculated via:

(2)

where ∂V represents the molecular surface of the molecule, dS is the infinitesimal surface 

element vector, ri is the position of atom i, and r represents the position of the infinitesimal 

surface element. In contrast to most GB practical models, GBNSR6 model is essentially 

parameter-free in the same sense as the numerical PB framework is. Thus, accuracy of 

GBNSR6 relative to the PB standard is unaffected by the choice of input atomic radii. Here 

we use the simple, standard Bondi102 radii set to determine the surface of the molecule. The 

solvent probe radius is equal to 1.4 Å. We use the same constant offset B = 0.028 Å−1 to the 

inverse radii as in Mongan et al.84

The GBNSR6 model exploits the Cartesian grid developed previously for PBSA module of 

Amber,103 to build a numerical discretization of the Lee–Richards molecular surface.98 The 

spacing between two neighboring grid points is uniformly set to h=0.3 Å, for the molecular 

surface resolution. The arc resolution (arcres), defined as the arc length between two 

neighboring solvent probe sites as the probe rolls over the atoms,103 is set to 0.1 Å. This 

implementation of GBNSR6 is currently available as a part of Amber Tools suit of programs 

in Amber15.104

PB model—The Adaptive Poisson-Boltzmann Solver (APBS) software package105 was 

used for evaluating the polar part of solvation energies. The solute dielectric constant was set 
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to 1 and the solvent dielectric constant was 80, which are consistent with the values chosen 

for GBNSR6. The grid spacing was set to 0.3 Å. To set the dimensions of the grids, we keep 

a distance equal to the size of the structure between the protein boundary and the grid 

boundary for the largest structure. Accordingly, the grid dimension size was set to 449 in x, 

y and z directions for all of the structures. The solvent probe radius is 1.4 Å. We use APBS 

default values for the remaining parameters, and assume no monovalent salt present, as in 

both the GB and the explicit solvent calculations.

2.3 Explicit Solvent Calculations

Electrostatic components ΔGpol of explicit solvation free energies are computed by using the 

Thermodynamic Integration (TI) method of the SANDER module in Amber12.97 Here we 

only compute the free energy transformations where the charges on protein-ligand 

complexes are removed: state 0 represents all solute atomic charges “on”, and state 1 

represents all solute atomic charges “off”. We have used 5 values of lambda for TI 

calculations, λ = 0.04691, 0.23076, 0.50000, 0.76923, 0.95308. The TI values were obtained 

from Gaussian integration over the λ values. TI calculations were performed in water 

(TIP3P, TIP4PEw, or OPC explicit model) and in vacuum. Then the corresponding free 

energy values were subtracted to cancel out the intrasolute charge interactions as well as the 

restraint energies.106 In all the simulations, the bonds to hydrogen atoms were constrained 

with the SHAKE algorithm using a geometrical tolerance of 0.000001 Å. The nonbonded 

interaction cutoff was 9 Å for simulations in water and 99 Å (effectively infinite) for 

simulations in vacuum. A time step of 2 fs is used (reduced to 1.8 fs if numerical instability 

was encountered). The following process is performed for each value of lambda: first, we 

run 1000 steps of minimization using steepest decent method. Then, we run 30 ps of NVT 

ensemble by gradually increasing the temperature from 0 K to 300 K. Then we run 1 ns of 

NPT ensemble at 300 K, for density equilibration. For the production we run 2 ns of NVT 

ensemble at 300 K. We run 200 ps MD simulation in vacuum. Protein-ligand complexes 

have many degrees of freedom that makes exploring all potentially relevant conformations 

computationally intractable.23,100 Thus, 200 kcal/mol/Å2 harmonic Cartesian coordinate 

restraints were imposed to all atoms, except during the minimization step for which 500 

kcal/mol/Å2 harmonic Cartesian coordinate restraints were applied to all atoms.

Robustness of the Protocol and Error Estimate—The standard deviation of 

computed ΔGpol values is smaller than ± 0.7 kcal/mol for complexes and protein 

components, and smaller than 0.14 kcal/mol for ligands components. The standard 

deviations are calculated by assuming a correlation time of 1 ps, which is a conservative 

assumption considering that it is usually smaller than 0.8 ps.107 The analysis is performed on 

the last 1.5 ns of 2 ns long simulation to ensure convergence. To test sensitivity to initial 

conditions we repeated the calculations for two complexes using different random seeds for 

the random number generator, and obtained differences less than the average standard 

deviation of computed ΔGpol values given above. To further test that the TI results have 

reached convergence, we extended the simulation time from 2 ns to 5 ns for two randomly 

selected complexes and noticed the resulting TI values differ by less than the standard 

deviation above.
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2.4 The Electrostatic Component of Binding Free Energies, ΔΔGpol

The electrostatic component of the binding free energies can be calculated using the 

thermodynamics cycle shown in Figure 1. The first step is to transfer the individual protein 

and ligand from the solvent into vaccum, with the energy costs of  and 

, respectively. The second step is to combine the protein and the ligand into a 

complex in vaccum. The energy cost would be the difference in Coulombic energies in 

vaccum ( ). Calculation of ΔECoulombic is the 

same for all models. The final step is to solvate the complex into the solvent, where the 

corresponding energy cost would be . Using this cycle, the electrostatic 

component of binding free energies (ΔΔGpol) can be computed as

(3)

The standard deviation of computed ΔΔGpol values from TI is smaller than ± 0.58 kcal/mol.

2.5 Computational Expense

A general performance comparison of the different methods used here to compute the 

electrostatic solvation free energies of the protein-ligand complexes is given in Table 2. The 

computations of GBNSR6 and PB are performed on a commodity PC with Intel(R) 

Core(TM) i7–3770 CPU 3.40GHz processor and 16 GB of RAM memory. All of the explicit 

solvent free energy TI calculations were performed on Virginia Tech’s HokieSpeed 

supercomputing cluster (http://www.arc.vt.edu) on a single node that has 12 processors. 

Expectedly, GB-NSR6 is significantly faster than the PB and explicit models studied here. 

Our studies show that the computational time required for grid-based calculation of the 

molecular surface needed by GB-NSR6 is similar to that of MSMS-based calculations; a 

detailed and exhaustive performance analysis of GBNSR6 based on MSMS molecular 

surface108 is presented in Ref.13

3 Results and Discussion

At the moment, comparison with explicit solvent predictions is a natural way to evaluate 

accuracy of implicit solvent models such as the GB. Among the most commonly used 

explicit water models, TIP3P is known to give better accuracy in hydration free energy 

calculations than many other water models tested previously;11 TIP3P has been commonly 

used for benchmarking implicit solvent models. However, recent developments in building 

explicit water models yielded a model (OPC water model92) that shows better agreement 

with experiment in hydration free energy calculations of small molecules. To be consistent 

with earlier works, we first compare deviation of the implicit models relative to TIP3P as 

reference, although we do not imply that TIP3P is any better or worse than the other explicit 

models studied here. We also benchmark computed electrostatic solvation free energy ΔGpol 

and electrostatic binding free energy ΔΔGpol values against free energy estimates performed 

in OPC water. Below, we give a brief summary of the agreement of GBNSR6 compared with 
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the explicit solvent and also the numerical PB model. The correlation of ΔGpol and ΔΔGpol 

values relative to TIP3P and OPC are presented in Figure 2 and Figure 4, respectively. The 

statistics of ΔGpol and ΔΔGpol values relative to TIP3P are given in Table 3 and Table 4, and 

relative to OPC are given in Table 6 and Table 7, respectively.

3.1 Implicit models

ΔGpol Deviations from TIP3P—The computed values of ΔGpol for the protein-ligand 

complexes and their components obtained from GBNSR6 are compared with the 

corresponding TIP3P (TI) values. Figure 2(a) and (b) show that among different implicit and 

explicit models,  and  values from GBNSR6 agree best with TIP3P 

ΔGpol values, with RMSD value of 10.76 and 10.53 kcal/mol, respectively (Table 3). 

Deviation of  values computed using GBNSR6 from TIP3P is comparable to that of 

OPC from TIP3P (Figure 2(c)). The next model to best reproduce TIP3P’s  and 

 values is the PB model, although it shows the lowest agreement with TIP3P for 

, among all the solvent models studied here. At the same time, the better agreement 

of GBNSR6 with TIP3P values holds for the ligands as well.

ΔΔGpol Deviations from TIP3P—The RMSD error of PB’s ΔΔGpol relative to TIP3P is 

5.14 kcal/mol, which is slightly lower than the deviation of TIP4PEw from TIP3P (RMSD = 

5.30 kcal/mol) (Table 4). The RMSD error of GBNSR6 based on Bondi radii relative to 

TIP3P (7.04 kcal/mol) is higher than that of the PB (5.14 kcal/mol). However, the difference 

between the RMSD errors of GBNSR6 and PB is within the differences in ΔΔGpol between 

the explicit water model calculations; e. g. the deviation of TIP4PEw or OPC from TIP3P. 

As can be seen in Table 4, the average error in ΔΔGpol values of GBNSR6 is relatively large 

(−4.37 kcal/mol) which indicates a systematic error19 relative to TIP3P. The systematic 

deviation reflects the uncertainties associated with the “best” definition of the dielectric 

boundary needed by the GB and PB models.109 To confirm the boundary definition origin of 

the systematic component of the deviation between GBNSR6 and TIP3P electrostatic 

binding energies, we show that the average error can be virtually eliminated (−0.36 kcal/

mol) by a uniform scaling (multiplication) of the Bondi radii101,109 with a single coefficient 

of 0.968 (Table 4 and Figure 2). The resulting RMSD error of GBNSR6 based on scaled 

Bondi radii relative to TIP3P is reduced to 5.31 kcal/mol, and becomes comparable to the 

RMS deviations of TIP4PEw and PB models relative to TIP3P (5.3 kcal/mol). We stress that 

uniform radii scaling by a single multiplicative factor101,109 is not tantamount to full 

reoptimization110,111 of the radii intended for best fit against a specific explicit solvent 

reference. The same scaling of Bondi radii by 0.968 also virtually eliminates the systematic 

deviation between ΔΔGpol from GBNSR6 and a very different explicit solvent model (OPC) 

(as we shall see later), and nearly halves the deviation between GBNSR6 and TIP4PEw 

(from −8.66 kcal/mol to −4.65 kcal/mol).

3.2 Explicit models

ΔGpol Deviations from TIP3P—The absolute ΔGpol values calculated using explicit 

water models differ significantly between themselves, Figure 2 and Table 3. Surprisingly, 
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TIP4PEw and OPC show the lowest agreement with TIP3P in  and 

values compared to implicit models. As seen from Figure 2, ΔGpol values from TIP4PEw 

and OPC deviate systematically from the TIP3P values, with over-all average errors of 

−43.96 and −44.45 kcal/mol, and RMSD errors of 52.89 and 53.96 kcal/mol, respectively. 

Significant discrepancies between the values from OPC and TIP4PEw relative to TIP3P is 

likely due to stronger electrostatic interactions in OPC and TIP4PEw compared to TIP3P. 

For instance, while the dipole moment for TIP3P and TIP4PEw are close to each other 

(2.35D vs 2.32D, respectively) (Table 5), TIP4PEw’s square quadrupole is significantly 

larger than that of TIP3P (2.16DÅ vs 1.72DÅ) (Table 5). OPC’s dipole and square 

quadrupole moments are both larger (and closer to Quantum Mechanical predictions, Table 

5) than those of TIP3P and TIP4PEw (Table 5). As a result of the differences in the strength 

of electrostatic interactions,30 the numbers of hydrogen bonds formed by the three explicit 

water models differ (Figure 3). Specifically, the average number of hydrogen bonds formed 

between the solute and the solvent for our molecular systems in TIP4PEw is higher than that 

in TIP3P, and it is the highest for OPC (Figure 3). Solvation free energies increase almost 

linearly with the average number of hydrogen bonds, Figure 3. As a result, OPC yields the 

largest ΔGpol values, followed by TIP4PEw and TIP3P. We did not find a correlation 

between the value of the static dielectric constant and electrostatic solvation free energies for 

the explicit solvent models studied here.

ΔΔGpol Deviations from TIP3P—The RMSD error in ΔΔGpol calculated with OPC and 

TIP4PEw water models relative to the TIP3P reference are 2.47 and 5.3 kcal/mol, 

respectively. The RMSD of “worst” (largest deviation) 20% of TIP4PEw’s ΔΔGpol values 

relative to TIP3P is as large as 8.36 kcal/mol. The deviations of ΔΔGpol from explicit models 

appear much smaller than the deviations in ΔGpol; however, ΔΔGpol values are relatively 

much smaller (tens of kcal/mol) than ΔGpol (thousands of kcal/mol), see Figure 2 and Figure 

4, which results in large relative errors in ΔΔGpol. For instance, deviation of TIP4PEw from 

TIP3P can be up to 50% in relative error of ΔΔGpol values. Note that, expectedly, the 

correlation between ΔΔGpol estimated by solvent models of the same class (e.g. TIP4PEw vs 

TIP3P) is considerably better than that between very different solvent models such as the 

GB and TIP3P (Table 4). At the same time, the average deviations between ΔΔGpol 

computed by explicit models (e.g., TIP4PEw vs TIP3P) is still large, essentially comparable 

to the deviations between implicit and explicit models. The high correlation between the 

explicit solvent estimates suggests that the deviations between them may be systematic. This 

observation is further strengthened by the fact that the systematic error between the implicit 

and explicit solvent ΔΔGpol can be virtually eliminated by a one-parameter adjustment of the 

dielectric boundary used in the implicit estimates, as discussed earlier.

Another interesting observation is that the ability of one explicit model to emulate estimates 

of ΔGpol by another model can be independent of its ability to emulate ΔΔGpol; for instance, 

among all implicit and explicit models studied here, OPC shows closest agreement with 

TIP3P in ΔΔGpol while its ΔGpol is furthest from TIP3P.
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3.3 ΔGpol and ΔΔGpol Deviations from OPC

Here we investigate deviation of computed electrostatic solvation free energy ΔGpol and 

electrostatic binding free energy ΔΔGpol values from the values estimated with a recently 

developed explicit water model, OPC. The GBNSR6’s ΔGpol values based on Bondi radii 

are systematically shifted from the OPC reference values (Figure 4 (a), (b) and (c)). Yet, 

deviation of GBNSR6’s ΔΔGpol values from OPC is comparable to that of TIP4PEw from 

OPC. The same simple uniform scaling (multiplication) of all the radii in the Bondi set by 

0.968 introduced earlier also virtually eliminates the systematic deviation between GBNSR6 

and OPC in ΔGpol and ΔΔGpol values simultaneously (Figure 4 and Table 6). Interestingly, 

the radii rescaling, which amounts to the dielectric boundary adjustment, makes the 

deviation of GBNSR6’s ΔΔGpol from OPC even smaller than that of TIP4PEw from OPC 

(average error 0.2 kcal/mol vs 4.86 kcal/mol).

Optimizing atomic radii, including uniform scaling, was used earlier101,109–111,115–117 to 

better reproduce solvation free energies from explicit solvent models. Here the scaling is 

used mainly to show that the apparent systematic deviation between the GB and explicit 

solvent is a consequence of a (radii-specific) definition of the dielectric boundary, which can 

be removed by a uniform “shift” of the latter. Still, achieving a good agreement with 3 

different explicit water models simultaneously by a single-parameter uniform scaling of the 

Bondi radii, one of the smallest and simplest radii sets available in literature, seems 

noteworthy. Obviously, transferability of the scaled Bondi radii set optimized for the limited 

set protein-ligand complexes is not guaranteed, which motivates future studies.

To further illustrate the sensitivity of electrostatic binding free energies to the choice of 

explicit water model, we have also compared the TIP4PEw to the OPC-based estimates, 

(Figure 4, Table 6 and Table 7). In this comparison, TIP4PEw and OPC water models are 

more similar to each other than to TIP3P: both are 4-point models parametrized for use in 

long-range electrostatics interactions, and the polarization correction is included in 

calculations of heat of vaporization in the parametrization pro-cedure.88,91,92 It is evident 

from Figure 4 (a), (b) and (c) that ΔGpol values estimated with TIP4PEw and OPC are highly 

correlated, and the RMSD error of ΔGpol calculations using TIP4PEw relative to OPC is 

relatively small. Yet, ΔΔGpol values from TIP4PEw substantially deviate from that of OPC 

(RMSD= 5.92 kcal/mol). Despite the much smaller absolute ΔΔGpol values compared to 

ΔGpol values, the RMS deviation of TIP4PEw from OPC in ΔΔGpol values is even larger 

than that in ΔGpol (5.92 kcal/mol for ΔΔGpol vs 5.62 kcal/mol for ). The deviation 

of TIP4PEw from OPC is even larger than the one between TIP4PEw and TIP3P – water 

models that are parametrized quite differently (Table 3). Surprisingly, the RMSD error of 

TIP4PEw relative to OPC is similar to the RMSD error of implicit models (GBNSR6 based 

on scaled Bondi radii and PB) relative to TIP3P.

4 Conclusion

An accurate representation of the solvent is crucial for realistic and physically rigorous 

calculations of solvation and protein-ligand binding free energies. In this work, we have 

evaluated the accuracy of a recently developed generalized Born model, GB-NSR6, in 

Izadi et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicting the electrostatic binding free energies ΔΔGpol and electrostatic solvation free 

energies ΔGpol of small protein-ligand complexes and their components. The estimates from 

GBNSR6 (and also the standard numerical PB) were compared to the estimates based on 

three explicit solvent models: RMS deviations of GBNSR6 and the PB from the explicit 

models were found to be comparable. It was shown that RMS deviation from TIP3P of 

GBNSR6 (Bondi radii) is comparable to the “error margin” of the explicit models 

themselves – the differences between the ΔΔGpol values obtained from the explicit models 

(e.g. TIP4PEw vs TIP3P). Expectedly, the r2 correlation between either of the implicit 

models and the explicit solvent is lower than between different explicit solvent models. 

GBNSR6’s ΔΔGpol is closer to estimates based on OPC – a new 4-point rigid water model 

shown to give higher accuracy in estimation of solvation free energies of small molecules 

compared to TIP3P.92 A simple uniform scaling of Bondi radii set was shown to bring 

GBNSR6 RMS deviation essentially within the “error margin” of the three explicit models. 

The same simple scaling of Bondi radii was shown to virtually eliminate the systematic 

deviation of GBNSR6 from two out of the three explicit models and reduce the deviation 

from the third one by about fifty percent. Although the scaled Bondi radii set presented here 

is not guaranteed to be transferable to protein-ligand systems other than the ones studied 

here, the fact that a single-parameter uniform scaling of radii significantly improves the 

agreement of implicit solvent GBNSR6 with all three explicit models simultaneously is 

noteworthy.

A perhaps unexpected finding is that computed binding and solvation free energies using 

explicit water models can deviate significantly from each other. Also counterintuitively, 

lowest RMS deviation from TIP3P’s ΔGpol is achieved by GBNSR6, rather than by the 

solvent models of the same class such as TIP4PEw and OPC, with RMS errors being up to 

tens of kcal/mol smaller. The results show that RMS deviations of ΔΔGpol values obtained 

from different explicit models can be larger than that of ΔGpol, although ΔΔGpol is often 

orders of magnitude smaller than ΔGpol in absolute values. The discrepancies between 

results from explicit models indicate the high sensitivity of electrostatic solvation and 

protein-ligand binding free energy calculations to the choice of explicit water models. Other 

studies have previously reported that Poisson-Boltzamn based approaches that are accurate 

in calculating ΔGpol may not be equally successful at predicting ΔΔGpol.17 The high 

sensitivity of ΔΔGpol values to the choice of explicit water models observed in this work 

suggests that the sensitivity is not necessarily inherent to implicit solvent models.

In the absence of a “gold standard” explicit solvent model, the large discrepancy in free 

energy estimates from explicit water models is of paramount concern as it is unclear which 

of these models is most accurate in these calculations. Some of the water models most 

commonly used for solvation free energy calculations (e. g. TIP3P) can misrepresent key 

bulk properties by as much as 250 percent off the experimental values, suggesting the 

presence of serious physical flaws in these models. At the same time, these explicit models 

are often treated as accuracy “gold standard” for implicit solvents such as the GB, justified 

by the idea that implicit solvent models are designed to mimic the effects of explicit models 

as their higher level predecessors in the hierarchy of approximations leading to these 

models. In fact, the approach of fitting GB models to explicit solvent models seems 

reasonable because going directly from GB models to experimental observations with 
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multiple levels of approximation can lead to over-fitting of the GB model parameters. Yet, 

given the significantly improved accuracy of most recently developed GB models, the 

strategy is called into question by the large discrepancies between free energy estimates 

obtained from commonly used explicit models. Efforts to develop more accurate explicit 

models,92,118,119 or identifying the best among the existing ones, will ultimately help 

improve accuracy of implicit solvent models as well. In the meantime, adjusting implicit 

solvent theory to provide best match with several explicit models simultaneously might be 

the best practical strategy.

A direct comparison with experiment is needed for a decisive accuracy evaluation of explicit 

models in protein-ligand interactions. However, these comparisons are not straightforward. 

Protein-ligand complexes are very flexible and have many degrees of freedom introducing 

large uncertainties in calculations of entropy that make a direct comparison with experiment 

often difficult. An appealing alternative is to compare the computed binding enthalpies with 

experimental enthalpies for small host-guest systems.100,120 Many fewer degrees of freedom 

and relative rigidity of host-guest systems compared to protein-ligand systems make these 

calculations computationally more straightforward and robust, albeit being still time 

consuming.23,100
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Figure 1. 
Illustration of the thermodynamic cycle for the decomposition of the electrostatic component 

of the binding free energies. The surrounding dielectric medium is shaded for water and is 

white for vaccum.
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Figure 2. 
Correlation between ΔGpol and ΔΔGpol computed by GBNSR6, PB, TIP4PEw and OPC 

solvent models relative to TIP3P for 15 small protein-ligand complexes specified in Table 1, 

a) ΔGpol of protein-ligand complexes b) ΔGpol of protein components, c) ΔGpol of ligand 

components, d) Electrostatic binding free energies, ΔΔGpol
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Figure 3. 
Correlation between the electrostatic sol-vation free energies ΔGpol and the number of 

hydrogen bonds formed between the complexes and the explicit solvent models (TIP3P, 

TIP4PEw and OPC). The ΔGpol values shown for each model are averages over complexes, 

and the number of hydrogen bonds represents averages over MD trajectory and over 

complexes. The hydrogen bond is considered to be formed if the distance between the 

acceptor (A) and the donor (D) atoms is smaller than 3Å, and angle D-H-A is greater than 

135°.114 Connecting lines are shown to guide the eye.
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Figure 4. 
Correlation between ΔGpol and ΔΔGpol computed by GBNSR6, PB, TIP4PEw and TIP3P 

solvent models relative to OPC for 15 small protein-ligand complexes specified in Table 1, 

a) ΔGpol of protein-ligand complexes b) ΔGpol of protein components, c) ΔGpol of ligand 

components, d) Electrostatic binding free energies, ΔΔGpol
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Table 1

Specifics of protein and ligand components for the set of 15 small complexes studied here

PDB ID Protein name Number of atoms
in protein Ligand name Number of atoms

in ligand

1b11 FELINE IMMUNODEFICIENCY VIRUS
PROTEASE 1824 TL- 3–093 66

1bkf FK506 BINDING PROTEIN FKBP
MUTANT R42K/H87V 1659 FK506 128

1f40 FKBP12 1662 GPI-1046 54

1fb7 HIV-1 PROTEASE MUTANT 1566 SAQUINAVIR 99

1fkb HUMAN IMMUNOPHILIN FKBP-12 1662 RAPAMYCIN 144

1fkf IMMUNOPHILIN FKBP 1662 FK506 126

1fkg FKBP 1662 SB3 68

1fkh FKBP 1662 SBX 74

1fkj FKBP12 1662 FK506 128

1fkl FKBP12 1661 RAPAYMYCIN 146

1pbk FKBP25 1851 RAP 144

1zp8 HIV PROTEASE 1566 INHIBITOR AB-2 88

2fke FK-506-BINDING PROTEIN 1662 8-DEETHYL-8-[BUT-3-
ENYL]-ASCOMYCIN 126

3kfp HIV PROTEASE 1569 INHIBITOR TL-3 66

2hah FIV/HIV chimeric protease 1800 broad-based inhibitor, TL 3 66
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Table 2

Average computational time for calculating ΔGpol per complex

Method Computational time

explicit solvent TI ≈ 12 hours

PB ≈ 15 minutes

GBNSR6 ≈ 6 seconds

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Izadi et al. Page 23

Ta
b

le
 3

D
ev

ia
tio

n 
of

 (
Δ

G
po

l) 
va

lu
es

 (
kc

al
/m

ol
) 

fr
om

 th
os

e 
co

m
pu

te
d 

w
ith

 T
IP

3P
 e

xp
lic

it 
so

lv
en

t m
od

el
. A

to
m

ic
 r

ad
ii 

se
ts

 u
se

d 
in

 im
pl

ic
it 

so
lv

en
t e

st
im

at
es

 a
re

 

gi
ve

n 
in

 p
ar

en
th

es
is

.

R
M

SD
T

IP
4P

E
w

O
P

C
P

B
(B

on
di

)
G

B
N

SR
6(

B
on

di
)

G
B

N
SR

6(
B

on
di

 s
ca

le
d)

63
.9

67
.3

30
.2

10
.8

65
.8

65
.6

64
.8

24
.3

10
.5

59
.8

2.
9

2.
2

5.
9

2.
8

5.
6

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Izadi et al. Page 24

Ta
b

le
 4

D
ev

ia
tio

n 
of

 (
Δ

Δ
G

po
l) 

va
lu

es
 (

kc
al

/m
ol

) 
fr

om
 th

os
e 

co
m

pu
te

d 
w

ith
 T

IP
3P

 e
xp

lic
it 

so
lv

en
t m

od
el

. A
to

m
ic

 r
ad

ii 
se

ts
 u

se
d 

in
 im

pl
ic

it 
so

lv
en

t e
st

im
at

es
 a

re
 

gi
ve

n 
in

 p
ar

en
th

es
is

.

T
IP

4P
E

w
O

P
C

P
B

(B
on

di
)

G
B

N
SR

6(
B

on
di

)
G

B
N

SR
6(

B
on

di
 s

ca
le

d)

R
M

SD
5.

30
2.

47
5.

14
7.

04
5.

31

av
g

4.
29

−
0.

57
−

0.
99

−
4.

37
−

0.
36

co
rr

. c
oe

f.
 (

r2 )
0.

81
0.

91
0.

52
0.

47
0.

50

R
M

S 
of

 w
or

st
 2

0%
8.

36
4.

41
9.

2
12

.5
6

9.
57

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Izadi et al. Page 25

Ta
b

le
 5

T
hr

ee
 lo

w
es

t o
rd

er
 m

ul
tip

ol
e 

m
om

en
ts

 o
f 

th
e 

w
at

er
 m

ol
ec

ul
e;

 th
e 

va
lu

es
 f

ou
nd

 in
 e

xp
lic

it 
w

at
er

 m
od

el
s 

ar
e 

co
m

pa
re

d 
to

 e
xp

er
im

en
t (

E
X

P)
 w

he
re

 

av
ai

la
bl

e,
 a

nd
 li

qu
id

 p
ha

se
 q

ua
nt

um
 c

al
cu

la
tio

ns
 (

Q
M

).
 M

om
en

ts
 a

re
 c

om
pu

te
d 

re
la

tiv
e 

to
 o

xy
ge

n 
ce

nt
er

: d
ip

ol
e 

(µ
),

 li
ne

ar
 (

Q
0)

 a
nd

 s
qu

ar
e 

(Q
T
) 

qu
ad

ru
po

le
, l

in
ea

r 
(Ω

0)
 a

nd
 s

qu
ar

e 
(Ω

T
) 

oc
tu

po
le

.

M
od

el
µ [D

]
Q

0
[D

Å
]

Q
T

[D
Å

]
Ω

0

[D
Å

2 ]
Ω

T

[D
Å

2 ]

E
X

P11
2

2.
5–

3
N

A
N

A
N

A
N

A

Q
M

11
3

2.
55

0.
20

2.
81

−
1.

52
2.

05

T
IP

3P
90

2.
35

0.
23

1.
72

−
1.

21
1.

68

T
IP

4P
E

w
91

2.
32

0.
21

2.
16

−
1.

53
2.

11

O
PC

92
2.

48
0.

20
2.

3
−

1.
48

4
2.

06
8

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Izadi et al. Page 26

Ta
b

le
 6

D
ev

ia
tio

n 
of

 (
Δ

G
po

l) 
va

lu
es

 (
kc

al
/m

ol
) 

fr
om

 th
os

e 
co

m
pu

te
d 

w
ith

 O
PC

 e
xp

lic
it 

so
lv

en
t m

od
el

. A
to

m
ic

 r
ad

ii 
se

ts
 u

se
d 

in
 im

pl
ic

it 
so

lv
en

t e
st

im
at

es
 a

re
 

gi
ve

n 
in

 p
ar

en
th

es
is

.

R
M

SD
T

IP
3P

T
IP

4P
E

w
P

B
(B

on
di

)
G

B
N

SR
6(

B
on

di
)

G
B

N
SR

6(
B

on
di

 s
ca

le
d)

67
.3

5.
62

39
.3

8
62

.1
4

8.
92

64
.8

2.
49

44
.0

0
66

.8
2

11
.9

9

2.
2

0.
83

4.
08

2.
26

3.
98

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Izadi et al. Page 27

Ta
b

le
 7

D
ev

ia
tio

n 
of

 (
Δ

Δ
G

po
l) 

va
lu

es
 (

kc
al

/m
ol

) 
fr

om
 th

os
e 

co
m

pu
te

d 
w

ith
 O

PC
 e

xp
lic

it 
so

lv
en

t m
od

el
. A

to
m

ic
 r

ad
ii 

se
ts

 u
se

d 
in

 im
pl

ic
it 

so
lv

en
t e

st
im

at
es

 a
re

 

gi
ve

n 
in

 p
ar

en
th

es
is

.

T
IP

3P
T

IP
4P

E
w

P
B

(B
on

di
)

G
B

N
SR

6(
B

on
di

)
G

B
N

SR
6(

B
on

di
 s

ca
le

d)

R
M

SD
2.

47
5.

92
5.

00
6.

80
5.

38

av
g

−
0.

57
4.

86
−

0.
42

−
3.

80
0.

20

co
rr

. c
oe

f.
 (

r2 )
0.

91
0.

80
0.

44
0.

37
0.

41

R
M

S 
of

 w
or

st
 2

0%
4.

41
10

.5
6

8.
5

11
.2

0
8.

86

J Chem Theory Comput. Author manuscript; available in PMC 2017 January 05.


	Abstract
	Graphical Abstract
	1 Introduction
	2 METHODS
	2.1 Preparation of Complexes
	2.2 Implicit Solvent Details
	GBNSR6
	PB model

	2.3 Explicit Solvent Calculations
	Robustness of the Protocol and Error Estimate

	2.4 The Electrostatic Component of Binding Free Energies, ΔΔGpol
	2.5 Computational Expense

	3 Results and Discussion
	3.1 Implicit models
	ΔGpol Deviations from TIP3P
	ΔΔGpol Deviations from TIP3P

	3.2 Explicit models
	ΔGpol Deviations from TIP3P
	ΔΔGpol Deviations from TIP3P

	3.3 ΔGpol and ΔΔGpol Deviations from OPC

	4 Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

