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Cytoplasmic localization of proline, glutamic acid, leucine-
rich protein 1 (PELP1) is observed in �40% of women with inva-
sive breast cancer. In mouse models, PELP1 overexpression in
the mammary gland leads to premalignant lesions and eventu-
ally mammary tumors. In preliminary clinical studies, cytoplas-
mic localization of PELP1 was seen in 36% of women at high risk
of developing breast cancer. Here, we investigated whether cyto-
plasmic PELP1 signaling promotes breast cancer initiation in
models of immortalized human mammary epithelial cells
(HMECs). Global gene expression analysis was performed on
HMEC lines expressing vector control, PELP1-wt, or mutant
PELP1 in which the nuclear localization sequence was altered,
resulting in cytoplasmic localization of PELP1 (PELP1-cyto).
Global gene expression analysis identified that PELP1-cyto
expression in HMECs induced NF-�B signaling pathways.
Western blotting analysis of PELP1-cyto HMECs showed
up-regulation of inhibitor of �B kinase � (IKK�) and increased
phosphorylation of the NF-�B subunit RelB. To determine
whether secreted factors produced by PELP1-cyto HMECs
promote macrophage activation, THP-1 macrophages were
treated with HMEC-conditioned medium (CM). PELP1-cyto
CM induced changes in THP-1 gene expression as compared
with control cell CM. Double conditioned medium (DCM) from
the activated THP-1 cells was then applied to HMECs to deter-
mine whether paracrine signaling from PELP1-cyto-activated
macrophages could in turn promote migration of HMECs.
PELP1-cyto DCM induced robust HMEC migration, which was
reduced in DCM from PELP1-cyto HMECs expressing IKK�
shRNA. Our findings suggest that cytoplasmic localization of
PELP1 up-regulates pro-tumorigenic IKK� and secreted

inflammatory signals, which through paracrine macrophage
activation regulates the migratory phenotype associated with
breast cancer initiation.

Approximately 1.6 million breast biopsies are performed
annually in the United States (1). Invasive breast cancer (IBC)2

is detected in 10 –20% of biopsies, and surgical removal with or
without chemotherapy and/or radiation is recommended for
patients with IBC. In many biopsies negative for IBC, there is
evidence of abnormal cells, including preinvasive lesions such
as ductal carcinoma in situ (DCIS) or benign premalignant
lesions such as atypical hyperplasia (AH). Both preinvasive and
benign lesions are associated with an increased risk of develop-
ing IBC. Approximately 61,000 cases of non-invasive DCIS are
diagnosed annually. Although only 20 –30% of DCIS cases will
progress to IBC, all patients are treated with surgery (with or
without radiation). Of the 1.6 million biopsies performed annu-
ally, more than 1 million are found to be benign, and women
with benign lesions such as hyperplasia and AH are classified as
having benign breast disease (BBD) (2). BBD is stratified by
histologic features and degree of cellular abnormality. BBD
containing AH is considered a high risk lesion, resulting in four
times the risk of developing IBC as compared with normal risk
individuals (3). Despite an urgent clinical need to identify which
women with DCIS or BBD will develop invasive disease, no
molecular biomarkers have been identified to stratify women
into those at high or low risk of developing IBC. Identification
of such predictive molecular biomarkers would not only spare
low risk women of unnecessary treatment but also lead to the
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development of novel targeted prevention strategies for high
risk women.

Proline, glutamic acid, leucine-rich protein 1 (PELP1) is an
emerging biomarker of breast cancer initiation and response to
chemoprevention therapies. PELP1 is a large multidomain pro-
tein that contains 10 LXXLL motifs and several other motifs
common to transcriptional regulators, but the overall protein
structure is not homologous to other known proteins. Although
PELP1 was first identified as an estrogen receptor (ER) co-activa-
tor (4), subsequent studies have found that PELP1 acts as a tran-
scriptional regulator for many transcription factors and is associ-
ated with chromatin remodeling complexes (5–9). PELP1 has
been shown to influence cancer cell biology through the regulation
of proliferation; apoptosis and autophagy; migration, invasion, and
metastasis; and endocrine resistance (5).

In addition to nuclear functions, PELP1 has been shown to
regulate cytoplasmic signaling. PELP1 subcellular localization
is primarily nuclear in normal breast tissue, but cytoplasmic
localization is observed in �40% of IBC (10). Mutant PELP1
with an altered nuclear localization sequence results in a pro-
tein that is predominately cytoplasmic (PELP1-cyto) and leads
to activation of cytoplasmic signaling in breast cancer cell line
models (10). In mammary-specific transgenic mouse models,
expression of wild-type PELP1 or PELP1-cyto induced mam-
mary gland hyperplasia that was associated with increased Akt
and Erk1/2 signaling (11, 12). Cytoplasmic PELP1 signaling has
primarily been studied in breast cancer cell line models and in
vivo mouse models (10, 11, 13). Recently, however, PELP1 local-
ization was found to be altered in 4 of 11 (36%) atypical breast
needle aspirate samples from women at high risk of developing
breast cancer (14). These preclinical and preliminary clinical
findings suggest that altered PELP1 localization may be an early
event in breast cancer initiation.

In the present study, we examined whether signaling path-
ways, induced by cytoplasmic PELP1, promote breast cancer
initiation in models of immortalized human mammary epithe-
lial cells (HMECs). We found that PELP1-cyto expression in
HMECs induced chemokine and cytokine gene expression and
up-regulation of IKK�. In addition, PELP1-cyto-expressing
HMECs activated macrophages, which then promoted mam-
mary epithelial cell migration via paracrine signaling mecha-
nisms. Macrophage activation was mediated in part through
up-regulation of IKK�. These findings suggest that altered
localization of PELP1 to the cytoplasm induces a cascade of
pro-tumorigenic signaling that drives a migratory phenotype
associated with breast cancer initiation.

Results

Cytoplasmic PELP1 Promotes Migration and Abnormal Acini
Formation—We previously demonstrated that altered localiza-
tion of PELP1 promotes HMEC survival in response to tamox-
ifen (14). To determine whether cytoplasmic PELP1 (PELP1-
cyto) contributes to phenotypes associated with oncogenic
signaling and breast cancer initiation, we first developed an
additional HMEC model in MCF-10A cells to compare with
our previously published HMEC-hTERT cell line model (14).
These cell lines were chosen as models of spontaneously
immortalized and hTERT-immortalized HMECs, respectively,

that are susceptible to oncogene-induced transformation.
Additionally, the MCF-10A model is useful for three-dimen-
sional acini formation assays. As previously published for the
HMEC-hTERT model (14), we established stable MCF-10A cell
lines that express LXSN control or PELP1-cyto. Cells were
selected for stable integration of PELP1 with G418. Clonal cell
populations were screened for PELP1 localization by immuno-
fluorescence (data not shown) and Western blotting of cyto-
plasmic and nuclear fractions. Clonal cell lines expressing
PELP1-cyto (lanes C) showed increased PELP1 in the cyto-
plasm as compared with vector control (lanes V) cell lines (Fig.
1A). Western blotting for HDAC2 and MEK1 was performed as
controls for protein loading and nuclear/cytoplasmic fraction-
ation (Fig. 1A).

PELP1 has previously been shown to enhance the migratory
potential of breast cancer cell lines (15–17). To determine the
effect of altered PELP1 localization on epidermal growth factor
(EGF)-induced migration of MCF10A and HMEC-hTERT, we
tested MCF10A cells in scratch wound assays and HMEC-
hTERT cells in Transwell migration assays (because the
HMEC-hTERT cells do not form a compact sheet of cells com-
patible for the scratch wound assay). In the scratch wound
assay, MCF-10A cells (LXSN and PELP1-cyto) grown to con-
fluent monolayers were scratched, washed with PBS, and incu-
bated in RPMI with or without 20 ng/ml EGF. Images were
taken immediately after scratching and then again after a 16-h
incubation. PELP1-cyto expression promoted a statistically sig-
nificant 2-fold increase in EGF-induced migration of MCF-10A
cells (p � 0.04; Fig. 1B). Of note, we consistently observed an
increase in basal migration of MCF-10A PELP1-cyto cells inde-
pendent of EGF. In the Transwell migration assay, serum-free
RPMI supplemented with 20 ng/ml EGF was used as a che-
moattractant in the bottom chamber; HMEC-hTERT cells
(LXSN or PELP1-cyto) resuspended in RPMI were added to the
upper chamber and incubated for 16 h. The cells that migrated
through the Transwell were counted. PELP1-cyto expression
enhanced EGF-induced migration of HMEC-hTERT cells
almost 9-fold over control cells (p � 0.001; Fig. 1B).

Three-dimensional culture of MCF-10A cells on recombi-
nant basement membrane results in formation of polarized
acini structures that share features with the normal ductal
structure of human breast tissue. This model and assay have
been useful in examining the effects of oncogenes on the dis-
ruption of the epithelial architecture during breast cancer ini-
tiation (18). To determine whether altered localization of
PELP1 disrupts MCF-10A three-dimensional acini formation,
LXSN and PELP1-cyto cells were plated on recombinant base-
ment membrane as previously described (18). After 2 weeks in
culture, we found that the majority (over 80%) of PELP1-cyto
three-dimensional structures displayed an abnormal multiaci-
nar phenotype without a hollow lumen, whereas greater than
90% of the LXSN control cells generated spherical acini struc-
tures with a hollow lumen (Fig. 1, C and D).

PELP1-cyto Induces Changes in Global Gene Expression—To
further elucidate the genes and pathways altered by PELP1-cyto
expression in the HMEC-hTERT model, we performed global
gene expression (GGE) analysis using Illumina bead chips.
Hierarchical clustering of differentially expressed genes (�2-
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fold in any comparison with an adjusted p value of �1 � 10�11)
showed that cells expressing PELP1-cyto had substantially
altered gene programs, compared with HMECs expressing
PELP1-wt or LXSN control (Fig. 2A). HMECs expressing
PELP1-cyto had 58 genes up-regulated (�2-fold) as compared
with control cells (Table 1). In contrast, HMECs expressing

PELP1-wt had only three genes up-regulated as compared
with control cells. In addition, HMECs expressing PELP1-
cyto had 20 genes significantly down-regulated (�2-fold) as
compared with control cells (Table 1), whereas HMECs
expressing PELP1-wt had no genes significantly down-regu-
lated (�2-fold).

We explored the importance of differentially regulated genes
in HMECs expressing PELP1-cyto and vector control using
Ingenuity Pathway Analysis (IPA). Pathways significantly regu-
lated in PELP1-cyto cells (as compared with LXSN control
cells) were cancer, cellular movement, tumor morphology,
immune cell trafficking, and inflammatory response, among
others (Fig. 2B). IPA “upstream analysis” also identified NF-�B
and NF-�B-inducing cytokines as up-regulated in PELP1-cyto
cells. We also employed Gene Set Enrichment Analysis (GSEA)
to identify significantly regulated gene sets in PELP1-cyto cells
as compared with control cells. Three gene set collections from
the Molecular Signatures Database (MSigDB) were tested for
enrichment: hallmark (H), curated (C2), and gene ontology
(C5) (19, 20). We found multiple NF-�B transcription factor
activation and inflammatory response gene sets significantly
associated with PELP1-cyto cells, as well as expected oncogenic
gene sets (supplemental Table S1). Representative GSEA plots
for NF-�B and inflammation enriched gene sets are shown in
Fig. 2C. We have validated a number of known NF-�B regulated
genes that were identified from our GGE studies in both the
HMEC-hTERT and MCF-10A models (Table 1). IL-8, CXCL1,
and IL-1�—all known NF-�B-regulated genes involved in
inflammation—are shown in Fig. 2D.

Up-regulation of IKK� in PELP1-cyto HMECs—Next we
determined which components of the NF-�B signaling pathway
were up-regulated or activated in PELP1-cyto HMECs. West-
ern blotting of whole cell extracts (WCEs) and cytoplasmic or
nuclear extracts from HMEC-hTERT and MCF-10A cells for
NF-�B and IKK family members was performed. Of all the IKK
and NF-�B family members tested, IKK� was the only family
member significantly regulated by PELP1-cyto expression (Fig.
3). IKK� expression was increased in WCE collected from the
PELP1-cyto-expressing HMEC-hTERT and MCF10A cells as
compared with controls (Fig. 3A). Additionally, IKK� expres-
sion was increased in the cytoplasmic and nuclear extracts col-
lected from the PELP1-cyto-expressing HMEC-hTERT and
MCF10A cells as compared with control cells (Fig. 3B). More-
over, phosphorylation of RelB (p-RelB) at serine 522 was higher
in cytoplasmic extracts from PELP1-cyto-expressing cells than
from LXSN control cells (Fig. 3, A and B). Of note, modest
increases in nuclear RelB and RelA/p65 and phosphorylation of
RelA/p65 at serine 536 were observed in PELP1-cyto cells as
compared with control cells (data not shown).

IKK� amplification and overexpression and associated
inflammatory gene expression in breast cancer has been
described by others (21–26). Amplification of IKK� is associ-
ated with luminal breast cancer, whereas overexpression has
been found in a subset of triple-negative breast cancer (21).
Query of The Cancer Genome Atlas provisional breast tumor
data set demonstrated that IKK� is significantly up-regulated in
breast tumors as compared with normal breast tissue (Fig. 3C).
Additionally, we found that there was a statistically significant
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FIGURE 1. Cytoplasmic PELP1 alters migratory and three-dimensional
growth phenotypes in mammary epithelial cell lines. A, MCF-10A and
HMEC-hTERT lines expressing LXSN control (lanes V) or PELP1-cyto (lanes C)
were examined by Western blotting of nuclear (NE) and cytoplasmic (CE) frac-
tions to determine PELP1 localization. HDAC2 and MEK1 were used as nuclear
and cytoplasmic fractionation and loading controls, respectively. B, scratch
wound and Transwell migration assays for MCF-10A and HMEC-hTERT cells,
respectively, in response to 20 ng/ml EGF. Each condition was performed in
triplicate. The bars represent the means of triplicates with standard deviation.
Student’s t test was performed to determine the statistical significance
between LXSN � EGF and PELP1-cyto � EGF conditions. C, immunofluores-
cent MCF-10A LXSN and PELP1-cyto three-dimensional cultures stained with
DAPI. D, quantitation of multiacinar phenotype observed in MCF-10A cells
expressing PELP1-cyto compared with MCF-10A LXSN control cells. The total
numbers of structures (normal and abnormal) were counted from three ran-
dom fields from three separate wells. The data are represented as the per-
centages of structures with an abnormal phenotype.
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(p � 0.032) tendency toward co-occurrent gene alterations for
IKK� and PELP1 in this data set.

IKK� Knockdown Reduces Cytokine and Chemokine Gene
Expression—To determine whether PELP1-cyto-induced IKK�
expression is important for inflammatory gene expression, we

knocked down IKK� in MCF-10A cells expressing LXSN con-
trol and PELP1-cyto as described under “Experimental Proce-
dures.” Of the 5 shRNA constructs tested, only one resulted in
significant down-regulation of IKK� levels. This pooled popu-
lation was used for subsequent experiments. WCE, as well as
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FIGURE 2. Cytoplasmic PELP1 signaling induces NF-�B and inflammatory signaling in mammary epithelial cell lines. A, heat map showing normalized
expression values for differentially expressed transcripts (fold change �2 in at least one sample). RNA was isolated from biological duplicate cultures of
HMEC-hTERT cell lines expressing LXSN, PELP1-wt, or PELP1-cyto (Cyto). Genes up-regulated or down-regulated are shown in red or blue, respectively. B, results
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plots from the MSigDB curated (C2) collection for two gene sets identified as up-regulated in PELP1-cyto cells as compared with LXSN indicating enrichment
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cytoplasmic and nuclear extracts, were isolated from LXSN and
PELP1-cyto MCF-10A cells expressing shGFP (control) or
shIKK�. Western blotting revealed a loss of PELP1-cyto-in-
duced p-RelB in shIKK� WCE and cytoplasmic extracts (Fig.
4A).

Next, we examined PELP1-cyto-induced gene expression in
shGFP and shIKK� MCF-10A cell lines by qRT-PCR. We found
that a number of inflammatory cytokines and chemokines up-
regulated in PELP1-cyto MCF-10A cells were down-regulated
by IKK� shRNA (Table 1). Shown in Fig. 4B are three genes
identified in our GGE studies (CXCL1, CCL20, and CSF3).
Additionally, qRT-PCR revealed slightly higher IKK� RNA lev-
els in PELP1-cyto-expressing cells than in LXSN-shGFP con-
trols; IKK� RNA levels were knocked down by IKK� shRNA in
both the LXSN and PELP1-cyto MCF-10A cells (Fig. 3B). Not
all genes up-regulated in PELP1-cyto-expressing cells were de-
pendent on IKK� up-regulation. One example, IL-1�, is shown
in Fig. 4B, which was consistently up-regulated in PELP1-cyto
HMECs (both HMEC-hTERT and MCF10A) but never modu-
lated by IKK� shRNA. We also treated cells with CYT387, a
kinase inhibitor previously shown to inhibit IKK�-induced
inflammatory gene expression (21). Treatment of HMEC-
hTERT PELP1-cyto cells with 5 �M of CYT387 for 18 h resulted
in statistically significant reduction in expression of IL-8 and
CXCL1 as compared with HMEC-hTERT PELP1-cyto cells
treated with DMSO control (Fig. 4C). Of note, CYT387 treat-
ment did not have an effect on IL-8 or CXCL1 expression in
HMEC-hTERT LXSN cells. These experiments suggest that
increased expression of IKK� downstream of PELP1 facilitates
inflammatory gene expression.

To determine whether other IKK family members are
involved in PELP1-cyto-induced inflammatory gene regula-
tion, we first examined IKK�, IKK�, and TBK1 protein levels an
localization by Western blotting cytoplasmic and nuclear
extracts prepared from MCF-10A and HMEC-hTERT cells
expressing either LXSN control or PELP1-cyto. As shown in
Fig. 5A, no differences in the cytoplasmic or nuclear levels of
IKK�, IKK�, or TBK1 were observed in PELP1-cyto cells com-
pared with LXSN control cells. To confirm that these IKK fam-
ily members were not essential for IKK�-dependent regulation
of inflammatory gene expression in PELP1-cyto expressing
cells, we expressed shRNA to each of these genes in MCF-10A
cells and then performed qRT-PCR for CXCL1, CCL20, and
CSF3. In contrast to IKK� shRNA, shRNA to IKK�, IKK�, and
TBK1 did not inhibit PELP1-cyto-induced inflammatory
gene expression in MCF10A cells. In fact, knockdown of

TABLE 1
Summary of genes found in GGE analysis
All 58 genes up-regulated and 20 down-regulated in HMEC-hTERT PELP1-cyto
cells as compared with LXSN. Under IPA association, “I” indicates inflammatory/
immune association, and “CM” indicates cellular movement. “qRT-PCR validated”
refers to genes validated in HMEC-hTERT and MCF-10A PELP1-cyto cell lines.
“IKK� regulated” refers to genes that were found downregulated in MCF-10A
PELP1-cyto shIKK� cells as compared with PELP1-cyto shGFP cells. “ND” indicates
not determined.

IPA
association

qRT-PCR
validated

IKK�
regulated

Array genes up-regulated >2-fold
(PELP1-cyto versus vector)

KRT81
MYADM
PI3
TGM2 I, CM
C20orf100
EPDR1
IL13RA2 CM
KYNU
LCP1 I, CM
HSD17B2
CTSH I
TAGLN CM
SLPI I, CM
IGF2BP3
IL1B I, CM YES NO
L1TD1
SAA1 I, CM YES YES
TOX2
CPNE1
BAD I YES
ACTG2
B3GALNT1
CYGB
CXCL1 I, CM YES YES
CPNE1
MYADM
MLPH
ARMCX1
FAM129A
S100A9 I, CM YES YES
PPARG I, CM
C9orf169
CSF3 I, CM YES YES
FOXQ1
FBN2
IL8 CM YES YES
C1orf85
GCA
KRT34
C1orf24
ADA I
CDC42EP5
FUCA1
PLD5
CLIC3
PTGS2 I, CM YES ND
CES1
TRPC4AP
G0S2
SNCG CM
IL1A I, CM YES ND
MGMT
PTGES I, CM
BCL2L1 I
C20orf24
MAP1B CM
EDEM2
ZGPAT

Array genes downregulated >2-fold
(cytoplasm versus vector)

KRT15
CXXC5
GJB2 I, CM
DOCK11
ASNS
LGALS7 YES ND
C14orf78
MGC102966
F12 I

TABLE 1—continued

IPA
association

qRT-PCR
validated

IKK�
regulated

LOC400578
TCTEX1D2
NDRG1 I, CM
FGFR3
PRSS3
LGALS7B
LOC100134134
IGFL3
AUTS2
LEPREL1
SYT7
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IKK� and TBK1 actually increased expression of CXCL1,
CCL20, and CSF3 (Fig. 5B). Thus, IKK� appears to be the
predominate IKK required for PELP-cyto-induced inflam-
matory gene expression.

Cytoplasmic PELP1 Promotes Macrophage Activation via
IKK�—PELP1-cyto expression stimulated an increase in HMEC
migration and three-dimensional acini formation (Fig. 1, B–D).
We next tested whether IKK� expression is important for cyto-
plasmic PELP1-induced effects on cell migration and three-
dimensional acini formation. Interestingly, IKK� shRNA did
not significantly attenuate PELP1-cyto-induced EGF migration
or abnormal acini formation (data not shown). However,
because we found a significant increase in inflammatory
chemokines and cytokines specifically in PELP1-cyto HMECs
(Fig. 2D) and the known role of macrophages in breast tumor
initiation and progression, we sought to determine whether
paracrine signaling between PELP1-cyto HMECs and macro-
phages is a potential mechanism of PELP1-cyto-induced biol-
ogy (27–30). We examined the effects of conditioned media
(CM) from HMEC-hTERT and MCF-10A cells (LXSN and
PELP1-cyto) on macrophage activation. The monocytic acute
myeloid leukemia cell line, THP-1, was differentiated into
macrophages with phorbol 12-myristate 13-acetate (PMA).
THP-1 macrophages were then treated for 4 h with CM col-
lected from HMECs expressing LXSN control or PELP1-cyto.
CM from LXSN and PELP1-cyto cells induced expression of
CCL20, IL-8, and IL-1� in differentiated THP-1 cells, but
PELP1-cyto CM induced a more robust, statistically significant
increase in expression of these genes (Fig. 6, A and B); this
finding suggests HMECs expressing PELP1-cyto secrete para-
crine factors (i.e. cytokines or chemokines) that promote
macrophage activation.

Macrophage activation influences the microenvironment to
promote breast cancer initiation and progression through para-

crine signaling. This includes stimulating new blood vessel
growth, recruiting lymphocytes, and inducing migration of epi-
thelial cells (31). Thus, we examined the effect of macrophage
activation on HMEC migration. Differentiated THP-1 macro-
phages were incubated overnight in CM collected from HMECs
expressing either LXSN or PELP1-cyto. This double condi-
tioned media (DCM), first from LXSN or PELP1-cyto HMECs
and then from THP-1 cells, was removed from THP-1 cells and
used as the chemoattractant for HMEC-hTERT or MCF-10A
cells in Transwell migration assays. DCM from PELP1-cyto
cells induced a robust migratory effect as compared with LXSN
DCM (Fig. 6, C and D). LXSN, PELP1-cyto, and THP-1 CM
were used as controls, and very little migration was observed
under these conditions.

Next, we determined whether the enhanced expression of
IKK� in PELP1-cyto cells contributed to the migratory pheno-
type observed in response to PELP1-cyto DCM. DCM was gen-
erated from THP-1 cells incubated with CM from MCF-10A
cells (LXSN or PELP1-cyto) expressing either shGFP or
shIKK�. As expected, DCM from PELP-cyto/shGFP cells
induced robust migration of MCF-10A cells as compared with
DCM from LXSN/shGFP cells (p � 0.01). In contrast, MCF-
10A cells exhibited a significant reduction in migration when
exposed to DCM from PELP1-cyto/shIKK� cells as compared
with DCM from PELP1-cyto/shGFP cells (Fig. 6E). Thus,
increased expression of IKK� in PELP1-cyto HMECs contrib-
utes to macrophage activation that subsequently stimulates
migration of HMECs through a loop of paracrine signaling.
Interestingly, DCM from LXSN/shIKK� cells also displayed
reduced migration as compared with LXSN/shGFP DCM, sug-
gesting that IKK� expression is important for the migratory
phenotype resulting from HMEC and macrophage paracrine
cross-talk.
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Discussion

Our study demonstrates a novel connection between cyto-
plasmic PELP1 signaling and breast cancer initiation pheno-
types. We found that cytoplasmic PELP1 signaling in HMECs
increased expression of inflammatory chemokines and cyto-
kines via up-regulation of IKK�, leading to activation of
macrophages. Interestingly, macrophage activation resulted
in enhanced migration of HMECs. Thus, our data suggest that

PELP1-cyto induced effects on the microenvironment may be
an important mechanism of breast cancer initiation.

PELP1 Signaling and NF-�B Activation—IKK/NF-�B signal-
ing is complex and context-dependent. Simplistically, canoni-
cal NF-�B activation involves cytokine-induced activation of
the IKK complex containing IKK�/�/�, phosphorylation and
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degradation of I�B proteins, and subsequent translocation
of NF-�B homo- and heterodimers to the nucleus. Non-canon-
ical NF-�B activation involves activation of IKK�, TBK1, IKK�,
or NF-�B-inducing kinase and translocation of RelB/p52 or p50
heterodimers to the nucleus (32). Canonical and non-canonical
NF-�B activation has a significant impact on cancer progres-
sion in a number of tumor types, including breast (21, 32–35).
One prior report examined cytoplasmic PELP1 signaling on
NF-�B activation and found that PELP1-cyto expression inhib-
ited TNF-induced canonical NF-�B activation (13). We exam-
ined TNF-induced NF-�B activation and did not observe sig-
nificant differences in I�B� or RelA/p65 phosphorylation in
HMECs expressing PELP1-cyto as compared with control cells
(data not shown), but these differences could be due to the use
of the MCF-7 breast cancer cell line in the previous report and
immortalized HMEC models in the present report. Interest-
ingly, instead of canonical NF-�B activation, we observed up-
regulation of the non-canonical IKK, IKK�. In our HMEC mod-

els, IKK� expression was required for expression of many, but
not all, of the inflammatory cytokines and chemokines up-reg-
ulated by PELP1-cyto expression. IL-1� and other cytokines
have been shown to induce IKK� expression (36), and co-ex-
pression of IL-1� and IKK� has been observed in immune-ac-
tivated triple-negative breast cancer (21). Interestingly, IL-1�
expression is increased 4 – 8-fold over control cells in our
HMEC models. Knockdown of IKK� does not have an effect on
IL-1� gene expression, suggesting that PELP1-cyto-induced
expression of IL-1� may promote autocrine signaling that pro-
motes IKK� expression, which then promotes expression of
inflammatory cytokines and chemokines through activation
of IKK�, NF-�B RelB, and/or RelA/p65 subunits. Of note,
although we did observe modest increases in IKK� mRNA (Fig.
4B), increased IKK� protein expression is much greater than
the relative increase in mRNA. This suggests that PELP1-cyto-
induced IKK� up-regulation likely involves both transcriptional
and post-transcriptional mechanisms.
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Chronic NF-�B activation and its subsequent support of
inflammatory signaling are known to promote tumor forma-
tion and aid in progression. Initially, NF-�B activation is neces-
sary for immune system activation and destruction of trans-
formed cells. However, this mechanism of clearance is typically
not specific and potent enough to clear every malignant cell,
which allows for subsequent adaptation and immune escape
(37). This mechanism of tumor initiation may be exploited by
cytoplasmic PELP1 signaling that drives sustained, non-canon-
ical activation of NF-�B. Prior work from our lab demonstrat-
ing cytoplasmic PELP1 localization in asymptomatic, high risk
women supports the idea that this may be an early event and
driver of breast cancer initiation (14).

PELP1 Signaling, Breast Cancer Initiation, and Inflammatory
Gene Expression—PELP1 dysregulation has been implicated in
cellular transformation and tumorigenesis in breast cancer.
Nuclear and cytoplasmic PELP1 signaling complexes have been
shown to enhance cancer phenotypes both in vitro and in vivo.
For example, in the nucleus PELP1 associates with chromatin
remodeling complexes and regulates expression of genes
involved in migration, invasion, and metastasis (17, 38, 39). In
the cytoplasm PELP1 is associated with growth factor signaling
pathways, such as the EGF receptor and promotes activation of
Erk and Akt signaling pathways, which lead to tamoxifen resis-
tance (10, 11). Fewer studies have been performed on the sig-
naling functions of PELP1 in HMEC models, but Rajhans et al.
(16) showed that PELP1 protein levels increased with increas-
ing tumorigenicity in the MCF-10A model. Herein, we show
that PELP1-cyto expression induces a multiacinar phenotype
that is most similar to what has been observed with ErbB2
expression in MCF-10A cells (40). In a mouse model, mammary
gland-specific PELP1 overexpression promotes hyperplasia
and tumor formation of ER-positive carcinoma (12). A PELP1-
cyto mammary gland specific mouse model has also been
shown to induce hyperplasia and increase activation of Erk and
Akt signaling (11). On the basis of the data presented here and
our previously published work (14), we hypothesize that cyto-
plasmic PELP1 signaling is an oncogenic event. However,
altered cellular localization cannot be tested using gene expres-
sion and alteration data available through cBioPortal or other
genomic databases. Although PELP1-induced effects on prolif-
eration are suspected to be the driving factor for hyperplasia
and tumor formation in these models, effects on the tumor
microenvironment have not been tested. Substantial work has
demonstrated a strong link between chronic inflammation and
carcinogenesis (41). PELP1 has recently been shown to induce
expression of inflammatory genes in the brain that are critical
for ER-mediated neuroprotection (42). Similarly, our work
shows that cytoplasmic PELP1 drives inflammatory gene
expression in HMECs. However, the inflammatory genes iden-
tified as regulated by PELP1 in the brain do not have significant
overlap with the genes we have identified in HMECs; this is
likely because the tissues and models are different (breast can-
cer initiation versus neuroprotection from global cerebral
ischemia). Despite these differences in gene expression, our
work and that of others indicates that PELP1 has the potential
to regulate inflammatory processes in numerous tissues.

Macrophage Activation during Breast Cancer Initiation—
During the last decade it has become increasingly appreciated
that the tumor microenvironment plays an integral role in
tumor initiation, progression, and metastasis (43). The tumor
microenvironment contains adipocytes and immune, vascular,
lymphatic, and fibroblast cells, as well as extracellular matrix.
Tumor-associated macrophages (TAMs) have been found to
promote breast cancer progression and metastasis in mouse
models through paracrine signaling mechanisms (44 – 47), and
the presence of TAMs in IBC is a poor prognostic indicator (29,
48). Importantly, TAMs have also been found associated with
premalignant lesions (28) and the promotion of breast cancer
initiation in mouse models (30). Macrophages have been char-
acterized as M1 and M2, corresponding to pro- and anti-in-
flammatory functions within the wound healing environment,
respectively. However, it has become increasingly clear that
TAMs in the tumor microenvironment reside in a heterogene-
ous state between these two extreme phenotypes. For example,
both pro-inflammatory cytokines (IL-1� and IL-6), which are
considered M1, and anti-inflammatory cytokines (TGF� and
IL-10), which are considered M2, are pro-tumorigenic depend-
ing on the stage of tumor formation and progression. Herein,
we show that conditioned media from PELP1-cyto HMECs can
induce expression of CCL20, IL8, and IL-1� in THP-1 differen-
tiated macrophages. Interestingly, chemokine (C-C motif)
receptor 6, the receptor for CCL20, was recently shown to be
important for mouse mammary tumor virus-polyoma middle
T-induced tumor formation and the recruitment of pro-tumor-
igenic macrophages. CCL20 has also been shown to enhance
migration and proliferation of breast epithelial cells (49, 50).
The pro-inflammatory cytokine IL-1� has also been shown to
play a role in breast cancer initiation and expression and has
been linked to breast epithelial cell migration (51, 52). IL-8 is
also known to enhance breast cancer cell survival and migration
(53, 54). Thus, macrophage production of one or a combination
of these cytokines/chemokines could be enhancing the HMEC
migration we observed.

PELP1 or Inflammatory Markers as Biomarkers of Breast
Cancer Initiation—In conclusion, the work presented here sup-
ports a model (Fig. 6F) in which altered localization of PELP1 to
the cytoplasm results in expression of inflammatory cytokines,
which promotes macrophage activation. Macrophage activa-
tion then results in production of paracrine factors that pro-
mote HMEC migration. Future studies are aimed at obtaining
patient samples that contain BBD and examining PELP1 local-
ization, IKK� expression, and inflammatory markers (such as
the presence of macrophages or expression of CCL20, IL1�, or
IL-8) to determine whether these markers could be developed
as biomarkers of breast cancer initiation. These studies have the
potential to directly impact clinical management of high risk
women or women that have had breast biopsies positive for
premalignant lesions, because these biomarkers could help
guide early treatment decisions, such as surgical intervention
and chemoprevention.

Experimental Procedures

Cell Lines and Reagents—MCF-10A and THP-1 cells were
obtained from the American Type Culture Collection. HMEC-
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hTERT mammary epithelial cells were obtained from Lonza as
primary cells and immortalized as previously described (55).
MCF-10A cells were cultured as previously described (18).
THP-1 cells were cultured in RPM1 1640 (Corning) supple-
mented with 10% fetal bovine serum and 0.05 mM 2-mercapto-
ethanol. HMEC-hTERT cells were cultured in HuMEC ready
medium (1�) (Thermo Fisher Scientific).

Generation of PELP1 and IKK� Cell Lines—Retrovirus encod-
ing an empty vector pLXSN or PELP1-cyto was generated as
previously described (14). MCF-10A cells were transduced with
control pLXSN or retrovirus encoding PELP1-cyto and were
selected in 500 �g/ml of G418. Selected cells were plated as
single cells to create clonal cell lines. Generation of HMEC-
hTERT cell lines expressing PELP1 was described in Ref. 14.
PELP1 expression and localization was confirmed using immu-
nofluorescence and Western blotting.

We obtained five pLKO.1 shRNA constructs targeting IKK�
from the RNAi Consortium. Lentivirus for all five shRNA was
generated and tested in MCF-10A cells. Upon infection, the
cells were selected in puromycin to generate a pooled popu-
lation stably expressing the shRNA. IKK� mRNA transcript
levels were measured by qRT-PCR to select the top knock-
down construct. The target sequence achieving the greatest
knockdown was 5	-GAGCATTGGAGTGACCTTGTA-3	.
The results were verified by Western blotting for IKK� pro-
tein expression.

Western Blots—WCE were collected using supplemented
RIPA buffer as previously described (14). Nuclear and cytoplas-
mic fractions were collected using the NE-PER nuclear protein
extraction kit (Thermo Scientific). Lysates were quantitated,
prepared, and resolved on an SDS-PAGE gel; transferred to
polyvinylidene difluoride membrane; and processed for West-
ern blotting as described in Ref. 14. The following antibodies
were used: PELP1 (A300-180A-2; Bethyl Laboratories, Inc.),
HDAC2, and p-RelB (sc-7899, lot no. E3014 and sc-101792, lot
no. B2213; Santa Cruz Biotechnology, Inc.), MEK1 (07-641, lot
no. 27102; EMD Millipore), and IKK� (D20G4, lot no. 2; Cell
Signaling Technology).

Transwell Migration—HMEC-hTERT or MCF-10A cells in
growth medium were trypsinized, washed once with PBS,
resuspended in starvation medium, and counted. 750 �l of
experimental medium was placed into the lower chamber of
a 24-well plate. 5 � 104 cells in 350 �l were plated into the
top of each 8-�m Transwell (Falcon) and placed into an
incubator for 18 h. After 18 h, the top chamber was cleared of
cells with a cotton-tipped applicator, washed in PBS, fixed in
4% paraformaldehyde, and stained with hematoxylin. Tran-
swells were imaged at 10�, and four fields of migrated
cells were counted/well. Each condition was performed in
triplicate.

Scratch Wound Assay—In triplicate for each condition, 3 �
105 MCF-10A cells were plated into each well of a 12-well plate
to achieve confluency the next day. At confluency, the cells
were scratched with a pipette tip, rinsed with PBS to remove cell
debris, placed into their experimental conditions, and imaged
immediately (time � 0). The cells were returned to the incuba-
tor and imaged in the same location at 18 h. ImageJ was used to

determine the percentage of scratch wound closure after 18 h
had elapsed.

Three-dimensional Culture—MCF-10A cells expressing
LXSN control or PELP1-cyto were grown in three-dimensional
cultures as previously described by others (18). The medium
was changed three times per week, and after 14 days the struc-
tures were fixed with 4% paraformaldehyde and stained with
DAPI. Four fields/well and three wells/condition were imaged,
and those that were not spherical and without a hollow lumen
were considered abnormal.

Whole Genome Expression Analysis—RNA from hTERT-
HMEC cells expressing control pLXSN or overexpression of
PELP1-wt or PELP1-cyto was extracted in duplicate, indepen-
dently processed, and hybridized to an Illumina bead chip
HT-12v4 according to the manufacturer’s protocols. Raw
expression values were exported from BeadStudio software
(Illumina) and imported into R software using the lumi package
(56), in which values were log2-transformed and quantile-nor-
malized. 27,382 probes (58%) were detected, and multiple
probes that target the same gene were collapsed into a single
value using the MaxMean algorithm in the R package gene fil-
ter. Differentially expressed genes were analyzed using the
limma package using empirical Bayes. Group comparisons
were reported with log2 fold change and the Benjamini and
Hochberg (57) adjusted p value. Unsupervised hierarchical
clustering of genes (scaled) was carried out using Euclidean
distance and average linkage via the heat map function in the R
package NMF (58).

IPA (Qiagen) was run with transformed and normalized
expression data. IPA core analysis was completed with default
settings, and a comparison analysis was completed with a fold
change of �2.0, where p values were adjusted using the Benja-
mini and Hochberg method.

GSEA was performed with transformed and normalized
expression data, and gene sets were derived from the MSigDB,
version 5.1. Default settings were used, except genes were
ranked by Diff_of_Classes and permutation type was gene_set.
Enriched gene sets were considered significant with FDR �
0.05. GGE data has been submitted to the Gene Expression
Omnibus (accession number GSE81447).

RNA Isolation, cDNA Synthesis, and qRT-PCR—RNA isola-
tion was carried out using TriPure isolation reagent (Roche).
cDNA synthesis and qRT-PCR were performed as previously
described (14). Briefly, 2 � 105 cells were plated into 6-well
plates and harvested after 24 h. In subsequent qRT-PCR, target
gene expression was normalized over the expression of a house-
keeping gene 18S, TBP-2, or �-actin. Primer sequences are
included in supplemental Table S2.

Generation of Conditioned Media—Generation of CM and
DCM was completed as follows. On day 1, THP-1 cells were
plated at a density of 5 � 106 cells in growth medium with 20
ng/ml of PMA. HMECs were plated at 2 � 106 cells in a
100-mm dish. On day 2, the cells were starved in serum-free
RPMI 1640. On day 3, CM was collected from the HMECs and
THP-1 cell lines and centrifuged clarify the medium. CM was
added to the dishes of THP-1 cells to generate DCM. On day 4,
the DCM was collected from dishes of THP-1 cells and clarified
by centrifugation.
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