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Viral infection is an exacerbating factor contributing to
chronic airway diseases, such as asthma, via mechanisms that
are still unclear. Polyinosine-polycytidylic acid (poly(I:C)), a
Toll-like receptor 3 (TLR3) agonist used as a mimetic to study
viral infection, has been shown to elicit inflammatory responses
in lungs and to exacerbate pulmonary allergic reactions in ani-
mal models. Previously, we have shown that poly(I:C) stimulates
lung fibroblasts to accumulate an extracellular matrix (ECM),
enriched in hyaluronan (HA) and its binding partner versican,
which promotes monocyte adhesion. In the current study, we
aimed to determine the in vivo role of versican in mediating
inflammatory responses in poly(I:C)-induced lung inflamma-
tion using a tamoxifen-inducible versican-deficient mouse
model (Vcan™'~ mice). In C57B1/6 mice, poly(I:C) instillation
significantly increased accumulation of versican and HA, espe-
cially in the perivascular and peribronchial regions, which were
enriched in infiltrating leukocytes. In contrast, versican-defi-
cient (Vcan™'~) lungs did not exhibit increases in versican or
HA in these regions and had strikingly reduced numbers of leu-
kocytes in the bronchoalveolar lavage fluid and lower expres-
sion of inflammatory chemokines and cytokines. Poly(I:C) stim-
ulation of lung fibroblasts isolated from control mice generated
HA-enriched cable structures in the ECM, providing a substrate
for monocytic cells in vitro, whereas lung fibroblasts from
Vcan™'~ mice did not. Moreover, increases in proinflammatory
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cytokine expression were also greatly attenuated in the Vcan™'~
lung fibroblasts. These findings provide strong evidence that
versican is a critical inflammatory mediator during poly(I:C)-
induced acute lung injury and, in association with HA, generates
an ECM that promotes leukocyte infiltration and adhesion.

Viral lung infection is one of the exacerbating factors con-
tributing to chronic lung diseases, such as asthma (1-6). Dur-
ing acute lung inflammation, extracellular matrix (ECM)®
around blood vessels and airways remodels to allow for infiltra-
tion of leukocytes. This “provisional” ECM involves accumula-
tion of the hygroscopic molecules hyaluronan (HA) and the
chondroitin sulfate (CS) proteoglycan (PG) versican, which
together create a loose and hydrated space necessary for leuko-
cyte ingress and additionally for migration and expansion of
resident stromal cells. Versican expression, which is high in
lungs during embryonic development (7-9) but low in adult
lungs, is reactivated in numerous lung diseases, including pul-
monary fibrosis, chronic obstructive pulmonary disease, acute
respiratory distress syndrome, and asthma (10—18). Our pub-
lished work has shown that versican and molecules that associ-
ate with versican, such as HA, are the principal ECM compo-
nents that accumulate in inflamed lungs at early times following
exposure to pathogens, such as LPS (19). The accumulation of a
versican-enriched ECM coincides with invasion and retention
of leukocytes within different compartments of the lung during
these early inflammatory responses. Previous studies have
shown that bronchial fibroblasts cultured from subjects with
asthma have elevated production of versican (14, 20, 21), and in
a recent study in a cockroach antigen-induced mouse model of
asthma, we showed that versican, produced by airway epithelial
cells, consistently accumulates in the subepithelial space and
precedes infiltration of leukocytes, suggesting a specific immu-

© The abbreviations used are: ECM, extracellular matrix; HA, hyaluronan; CS,
chondroitin sulfate; PG, proteoglycan; TLR, Toll-like receptor; poly(l:C),
polyinosine-polycytidylic acid; Vcan, versican; Vcan ™", versican-deficient;
Has, hyaluronan synthase; GAG, glycosaminoglycan; BALF, broncoalveolar
lavage fluid; BAC, bacterial artificial chromosome; ESC, embryonic stem
cell.

JOURNAL OF BIOLOGICAL CHEMISTRY 51


mailto:twight@benaroyaresearch.org
mailto:twight@benaroyaresearch.org
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.M116.753186&domain=pdf&date_stamp=2016-11-28

Role of Versican in Lung Inflammation

nomodulatory role for versican (22). Whether the acute lung
inflammation stimulated by viral infection worsens asthma by
altering the ECM microenvironment to facilitate leukocyte
infiltration and accumulation is not yet known. One of the
major inflammatory signaling pathways activated by virus is the
Toll-like receptor 3 (TLR3) pathway, which recognizes double-
stranded RNA, such as polyinosine-polycytidylic acid (poly(I:
C)), and thus is often used as a viral mimetic and a TLR3 ago-
nist. It has been shown to generate an HA-enriched ECM in
colon and in kidney, which promotes leukocyte accumulation
(23-27), and has also been shown to elicit acute lung inflamma-
tion in vivo and further to exacerbate pulmonary allergic reac-
tions (28, 29). A number of studies by our group have demon-
strated that lung fibroblasts synthesize and deposit HA- and
versican-enriched ECM in response to poly(I:C). This ECM is
strongly adhesive for monocytes and T lymphocytes and is hya-
luronidase-sensitive, indicating that HA is a necessary compo-
nent of this adhesive ECM (30-33). Interfering with versican
accumulation in this ECM also inhibits leukocyte adhesion in
vitro, suggesting that versican and HA may form an immuno-
modulatory complex in response to viral lung infection (32—
34). However, specific roles for versican in the regulation of
pulmonary inflammatory responses are not yet well defined due
to lack of versican knock-out animals, which are embryonically
lethal due to defective cardiac development (35). In this study,
we examine the formation of HA- and versican-enriched ECM
in lungs of conditionally versican-deficient mice, developed
recently in our laboratory, in response to poly(I:C) as a surro-
gate for viral infection. We report that global deficiency of ver-
sican perturbs both the accumulation of HA and the accumu-
lation and infiltration of leukocytes, demonstrating that
versican is a critical ECM component mediating HA-depen-
dent leukocyte accumulation in the lungs and a potential ther-
apeutic target.

Results

Poly(I:C) Instillation in Lungs Significantly Increases HA
and Versican Accumulation Associated with Infiltrating
Leukocytes—The distribution of HA and versican was initially
examined in unchallenged and poly(l:C)-instilled lungs of
8-10-week-old C57Bl/6 mice. In the unchallenged animals,
moderate to strong HA staining was present in the stromal
connective tissues of airways but not in alveolar sacs. In the
pulmonary vasculature, moderate to strong HA staining was
present mostly in the adventitial and peri-adventitial regions
(Fig. 1, A—C). Versican levels were low throughout the lung with
weak staining in the epithelium of bronchi and bronchioles (Fig.
1 (G-I) and Table 1). HA and versican accumulation associated
with infiltrating leukocytes was prominent 48 h after the second
poly(I:C) instillation in the perivascular and peribroncheal
spaces as well as in the alveolar septa (Fig. 1 (D—H and J-L) and
Table 1). These in vivo observations support our previously
published in vitro findings that poly(l:C) treatment of lung
fibroblasts promotes the formation of an HA- and versican-rich
ECM, which enhances monocyte binding (30 -32). These find-
ings led us to hypothesize that versican plays an intergral role in
promoting leukocyte infiltration into lungs during poly(I:C)-
induced pulmonary inflammation. To test this hypothesis, and
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FIGURE 1. HA and versican staining in PBS- (A-C and G-I) and poly(l:C)-
(pIC) (D-F and J-L) instilled lungs. HA, which is present in areas surrounding
bronchi and vasculature (B) and generally absent in alveolar spaces of
unstimulated lungs (C), greatly increases in response to poly(l:C) stimulation
(D), especially in areas enriched in infiltrating leukocytes (E), including the
alveolar spaces (F). Versican, in contrast, is almost absent in PBS-treated lungs
(G-) but accumulates markedly in poly(l:C)-stimulated lungs (J), both in the
peribronchial area (K) and in alveoli (L).

because the homozygous hdf (heart defect) mouse that lacks
Vcan expression (35) is embryonic lethal, we developed a novel
mouse strain with conditional global versican deficiency, which
enabled us to study the contribution of versican to inflamma-
tion in adult animals.

Generation of Conditional Versican-deficient Mice—Condi-
tional versican-deficient (Vean '~) mice were successfully
generated by inserting LoxP sites flanking exon 4 of the Vcan
gene on the C57Bl/6 genetic background (Fig. 24). When these
B6.Vcan-e4"™ mice were crossed to Rosa26-Cre™8"? mice,
deletion of exon 4 was successfully achieved after treating the
mice with tamoxifen (Fig. 2B). Deletion of exon 4 results in the
generation of a stop codon in exon 5, preventing versican
expression.

Poly(I:C)-induced Increase in Expression and Accumulation
of Versican and HA Is Significantly Attenuated in Vcan '~
Mice—Vean " animals and littermate controls lacking Cre
were treated with poly(I:C) and observed after 48 h, when the
inflammatory response was at its peak. Distribution of HA and
versican accumulation in PBS-treated control and Vcan '~
animals were similar to our findings in wild type C57Bl/6 mice
(Fig. 3, A and B and E and F). Poly(I:C) induced the accumula-
tion of HA - and versican-enriched ECM in the perivascular and
peribronchial spaces in the inflamed lungs of control animals
(Fig. 3, C and G). This ECM accumulation was reduced in
Vcan~'~ mice. Both HA and versican accumulation were dra-
matically reduced in Vean ™'~ lungs (Fig. 3, D and H).
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TABLE 1

HA and versican staining in unchallenged and poly(l:C)-stimulated
lungs
0, no staining; +, ++, +++, ++++, level of staining intensity.

Control Poly(I:C)
HA  Versican HA Versican
Airways
Bronchi
Epithelium + + ++ ++
Stroma +++ 0/+ +++ +++
Bronchioles
Epithelium + + ++ ++
Stroma +++ 0 +++ +++
Respiratory bronchioles
Epithelium 0 + ++ ++
Stroma ++ 0 +++ +++
Alveoli
Alveolar ducts ++  0/+ +++ +++
Alveolar sacs (rims) + 0 ++ ++
Alveolar walls o/+ 0 ++ +++
Vessels
Pulmonary arteries (bronchi)
Endothelium 0 0 0 0/+
Media 0 0/+ 0/+ ++
Adventitia ++ 0 ++ +++
Peri-adventitial +++ 0 ++++ F++
Pulmonary arteries (bronchioles)
Endothelium 0 0 0 0/+
Media 0 0/+ 0/+ +++
Adventitia ++ 0 +++ +++
Peri-adventitial +++ 0 ++++ ++4+
Pulmonary veins
Endothelium 0 0 0 0
Media + 0 +++ +++
Adventitia ++ 0 +++ +++
Venules
Endothelium 0 0 0 0
Wall + 0 ++++ +++

Messenger RNA levels of all isoforms of versican in unchal-
lenged lungs were low in both control and Vcan ™'~ animals
and not significantly different between genotypes. In response
to poly(I:C) challenge, however, total versican mRNA levels sig-
nificantly increased in lungs of control animals but not in
Vean™'~ animals (Fig. 44). Specifically, levels of VO, V1, and V2
versican isoforms were significantly increased in poly(I:C)-
challenged lungs but showed no significant elevation in
Vcan™ '~ animals (Fig. 4A). Hyaluronan synthase 2 (Has2)
mRNA levels were also significantly increased in poly(l:C)-
challenged control animals but not in Vcan /" animals (Fig.
4B). Similarly, poly(I:C) challenge induced significant increase
in protein accumulation of versican in the lungs in control ani-
mals but not in Vean ™~ animals (Fig. 5, A and B). When nor-
malized to Vcan mRNA levels in PBS-treated control lungs,
Vcan mRNA levels in poly(I:C)-treated control lungs increased
to 310 + 43%, whereas PBS- and poly(I:C)-treated Vean '~
lungs were 20 = 4 and 64 = 13% of PBS-treated control lungs,
respectively (supplemental Fig. 1). This represents a nearly 80%
reduction in PBS- as well as poly(I:C)-induced gene expression
in Vecan~'~ lungs. Similarly, normalized Vcan protein levels in
poly(I:C)-treated control lungs increased to 365 = 57%,
whereas PBS- and poly(I:C)-treated Vcan '~ lungs were at
100 = 27 and 170 % 28% of PBS-treated control lungs, respec-
tively. This translates to no significant change in protein levels
in PBS-treated lungs but a 53.4% reduction in poly(I:C)-stimu-
lated Vcan protein in Vean '~ lungs. When calculated as a
percentage of induction above PBS-treated lungs, poly(I:C)-
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FIGURE 2. Generation of versican conditional knock-out mice. A, LoxP sites
were inserted in regions flanking versican exon 4 in C57BL6 background,
targeted to create an early stop codon after the Cre recombinase induced
frameshift. B, when tamoxifen was injected into these B6.Vcan-e4™" mice
(Cre™; control) or B6.Vcan-e4""/Rosa26-Cre®™ ™2 mice (Cre™*; Vcan™ "), Cre-de-
pendent exon 4 excision was detected, as shown by the size shift of the PCR
product across exon 4 (B).

treated Vcan™'~ lungs had 78.8% less mRNA and 73.6% less
protein than poly(I:C)-treated controls.

Poly(I:C)-induced Accumulation of Leukocytes in HA- and
Versican-enriched ECM Is Significantly Attenuated in Vcan™ "~
Mice—We observed that leukocyte accumulation associated
with a versican- and HA-enriched ECM in poly(L:C)-challenged
lungs was blunted in Vcan™'~ mice (Fig. 6A). To confirm this
finding, we examined whether the numbers of total cells in
broncoalveolar lavage fluid (BALF) from poly(I:C)-challenged
animals were affected by versican deficiency. Total cell counts
in BALF increased in response to poly(I:C) challenge in control
animals, which was significantly reduced in Vean '~ mice (Fig.
6B). These BALF cells were further subjected to flow cytometry
analysis to examine differential counts of leukocytes. The rela-
tive percentages of neutrophils, alveolar macrophages, den-
dritic cells, B and T lymphocytes, eosinophils, and interstitial
macrophages in the BALF were not significantly affected by
reduction in versican (supplemental Fig. 2, A-C).

Versican Deficiency Significantly Blunts Expression of Inflam-
matory Cytokines and Chemokines Stimulated by Poly(I:C)—
We further examined whether the presence of versican affects
the inflammatory cytokines and chemokines induced by
poly(I:C) challenge. In total lung lysates, poly(I:C) significantly
increased expression of inflammatory cytokines and chemo-
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kines, including TNFe, IL1B3, MIP2 (Cxcl2), IFNa, [FNYy, and
IL10, in control mice. This response was attenuated or absent in
Vean™'~ mice (Fig. 7). To determine whether there was a direct
relationship between versican expression and cytokine levels,
we performed linear regression analysis and found a significant
positive relationship between versican and levels of inflamma-
tory cytokines and chemokines (supplemental Fig. 3).

Poly(I:C)-induced Cytokine Expression Is Blunted in Cultured
Lung Fibroblasts from Vcan '~ Mice—We further examined
whether versican deficiency affected the expression of cyto-
kines and chemokines in lung stromal fibroblasts in vitro. Cul-
tured primary lung fibroblasts, isolated from control and
Vean™'~ mice, were treated with PBS or poly(I:C), and expres-
sion of cytokines and chemokines was measured. Poly(I:C)
stimulation induced a significant increase in transcript levels of
versican as well as IL18 expressed by control lung fibroblasts,
consistent with the changes shown in the poly(I:C)-instilled
lungs. In contrast, lung fibroblasts isolated from Vcan ™'~ mice
showed significantly reduced levels of IL18 as well as versican
(Fig. 8).

Versican Significantly Enhances Monocyte Chemotaxis—To
determine whether versican has an impact on leukocyte che-
motaxis, we tested chemotactic migration of monocytic U937
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cells toward CCL2 in the presence or absence of versican or CS
chains. The addition of purified exogenous versican to the bot-
tom chamber, along with CCL2, significantly enhanced migra-
tion of monocytic cells toward the chemokine (Fig. 9). Similarly,
the addition of CS enhanced chemotaxis in a dose-dependent
manner. In contrast, adding the purified versican to the mono-
cytic cells in the filter well on the top chamber abolished this
chemotactic migration, indicating that the interaction between
the chemokine and versican, potentially via CS side chains,
enhances leukocyte chemotaxis.

Poly(I:C)-induced HA Cable Formation and HA-dependent
Monocyte Adhesion was Significantly Reduced in Cultures of
Lung Fibroblasts from Vean™’~ Mice—Because we observed a
relationship between HA, versican, and leukocyte accumula-
tion in poly(I:C)-treated mouse lungs, we examined the forma-
tion of HA cables induced by poly(I:C) stimulation of lung
fibroblasts in vitro, which promote leukocyte adhesion, as we
have previously shown (30-32, 34). As anticipated, lung fibro-
blasts isolated from control animals generated HA cable struc-
tures in response to poly(I:C) (supplemental Fig. 44). On the
other hand, lung fibroblasts isolated from Vcan '~ animals did
not generate these HA cable structures (supplemental Fig. 4B),
suggesting that versican deficiency disrupts HA cable forma-
tion. We found that poly(I:C) treatment of control lung fibro-
blasts in cultures induces formation of HA cables, which allows
U937 monocytic cells to adhere (Fig. 10, A and B). In contrast,
fibroblasts from Vean '~ mice showed a reduction in HA cable
formation and associated adherent monocytes (Fig. 10, C and
D). Control lung fibroblasts exhibited HA-dependent mono-
cyte adhesion in response to poly(I:C), which was not present in
fibroblasts from Vcan ™'~ mice (Fig. 10E). These findings dem-
onstrate that versican deficiency blocks accumulation of HA
cable structures that facilitate leukocyte accumulation. Thus,
versican probably plays dual roles of both attracting and retain-
ing leukocytes at sites of inflammation.

Discussion

In this study, we developed an inducible versican-deficient
mouse strain and used this mouse model to demonstrate that
versican is a critical extracellular mediator of poly(I:C)-induced
acute lung and airway inflammation. In inflamed lungs, versi-
can and HA increased throughout, but particularly at sites of
leukocyte accumulation. Previous work has shown that HA
accumulation in the ECM at sites of inflammation is mediated
by HA-binding molecules, such as versican, inter-a-trypsin
inhibitor (Ial), and tumor necrosis factor a-stimulated gene 6
(TSG-6), which cross-links HA into cable-like structures that
provide a substrate for leukocyte adhesion (24, 31, 32, 36 -38).
Specifically, our in vitro work has demonstrated that HA-de-
pendent monocyte binding to poly(I:C)-stimulated lung fibro-
blasts can be abolished by blocking antibodies against the HA-
binding region of versican (32). In the present study, versican
deficiency resulted in reduced Has2 expression and HA accu-
mulation in lung tissue coupled with reduced total cell counts
in BALF and an overall dampened inflammatory cytokine
expression profile. These findings in an in vivo model of lung
inflammation confirm that versican is critical to generating a
specialized HA-enriched ECM that binds leukocytes.
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FIGURE 4. Gene expression levels of versican isoforms, hyaluronan synthases, and hyaluronidases in response to poly(l:C) (p/C) instillation in lungs of

control and Vcan™'~

control mice, is attenuated in Vcan™
is once again attenuated in Vcan™’
0.05; **, p < 0.01; **** p < 0.0001. Error bars, S.D.

/

The development of a conditionally versican-deficient
mouse strain has been pivotal to further study the role of versi-
can in inflammation in vivo. Total gene disruption preventing
versican production (35) or production of mutant versican
missing exon 3 (39) causes heart development defects that
result in embryonic or neonatal lethality in homozygous ani-
mals. Recently, a mouse strain with floxed versican exon 2
(Vean e2™™) was generated by Watanabe and colleagues who
used it to demonstrate the importance of versican in joint
development and TGF-B-dependent chondrocyte differentia-
tion (40) and, more recently, and in cancer progression (41). In
our study, we have taken advantage of the Rosa26 Cre"®'>
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mice. A, expression of total versican (Vcan) and isoforms 1 (V1) and 2 (V2), significantly elevated in response to poly(l:C) in the lungs of
~ mice. B, hyaluronan synthase 2 (Has2) expression is also elevated in lungs of control animals exposed to poly(l:C), which
~ mice. Gene expression levels of hyaluronidases are not affected by instillation of poly(l:C). n = 8-17 mice/group. *, p <

strain to drive deletion of all isoforms of versican in response to
tamoxifen treatment in all tissues of juvenile mice, thus bypass-
ing the indispensable need for versican during development but
allowing for investigation of versican in post-natal pathologies.
Additional tissue-specific Cre strains are being used to further
explore the role of versican in specific cell types during inflam-
mation, such as leukocytes and vascular smooth muscle cells.
Versican also increases in a number of human lung and air-
way diseases, such as pulmonary fibrosis, lymphangioleiomyo-
matosis, acute respiratory distress syndrome, and chronic
obstructive pulmonary disease (42—45). A significant increase
inversican accumulation occurs in the interstitial space of small
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FIGURE 6. Leukocyte infiltration into lungs in response to poly(l:C) (p/C)
instillation. A, instillation of poly(l:C)-induced leukocyte infiltration into
lungs associated with regions of Vcan accumulation in control mice, which
was diminished in Vcan™/~ mice. B, consistently, total leukocyte numbers in
BALF were significantly decreased in Vcan™'~ mice.n = 9-17 mice/group. **,
p < 0.01; *** p < 0.001. Error bars, S.D.

and large airways of patients with asthma (11-13, 15, 46) and in
animal models of asthma (17, 18). Cells isolated from diseased
lungs also exhibit altered versican production. For example,
bronchial fibroblasts cultured from human asthma patients
exhibited elevated versican production (20, 21). Furthermore,
in a study of induced sputum from patients with severe asthma,
we found elevated levels of versican and HA over a 16-week
period, which inversely correlated with lung forced expiratory
volume (47). These observations, along with the present find-
ings from our experimental animal model of airway inflamma-
tion induced by viral mimetics, suggest that versican may be an
active driver of the inflammatory process in a variety of human
lung diseases with disparate pathogeneses.

In the present study, poly(I:C) was used as a stimulant to elicit
lung inflammation. Induction of immune responses by respira-
tory viruses involves pattern recognition receptors, such as
TLRs (48). In particular, TLR3 recognizes dsRNA produced
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during viral infections as well as poly(I:C), a synthetic ligand
mimicking viral dsRNA. This recognition induces activation of
NEF-kB and the production of type 1 interferons that further
regulate inflammatory and antiviral mediator expression (49).
Previous in vitro studies demonstrated that stimulation of lung
fibroblasts with poly(I:C) or other NF-«B agonists induces syn-
thesis and accumulation of an HA-enriched ECM serving as a
substrate for leukocyte accumulation, including monocytes and
T lymphocytes (30, 32, 50-52). In in vivo studies, poly(l:C) has
been used to elicit acute lung inflammation and further exacer-
bate pulmonary allergic reactions (28, 29), which is probably
mediated by generating versican-enriched ECM attracting leu-
kocyte accumulation in the inflamed airways, as our data sug-
gest. Further studies are ongoing to elucidate roles of versican
in viral exacerbation of asthma.

The binding of chemokines to GAGs is critical for chemot-
actic activities (42, 43), first for the generation of solid phase
gradients of chemokines in the ECM and, second, for the regu-
lation of chemokine activity achieved by interacting with GAGs
on cell surface receptors. Our findings demonstrate that versi-
can interacts with chemokine CCL2, probably via its CS chains,
generating a chemotactic gradient that promotes monocyte
migration, whereas versican allowed to interact with mono-
cytes before chemokine exposure appears to compete for CCL2
binding to cell surface receptors. Recent studies showed that
mutant CCL2 with high affinity for GAG binding interferes
with wild type CCL2 binding to CCR2, acting as a potent decoy
against the CCL2-CCR2 chemokine axis (44, 45). These find-
ings and our data suggest that versican as a CS PG may provide
a fine tuned control mechanism for chemotactic migration of
leukocytes.

Interestingly, versican-deficient lung fibroblasts exhibited
attenuated expression of IL183 induced by poly(I:C) in vitro.
This suggests that versican is critical not only in generating a
HA-enriched ECM that attracts leukocyte accumulation in
response to inflammatory stimuli, but also in activating signal-
ing pathways involved in IL13 expression. IL13 gene expres-
sion downstream of NF-«B and TLR signaling is a critical prim-
ing step in NLRP3 (NACHT, LRR, and PYD domain-containing
protein 3) inflammasome-mediated IL1f3 activation and secre-
tion (53). Because other ECM molecules, such as biglycan, have
been shown to regulate NLRP3 inflammasome activation (54),
we questioned whether versican was able to regulate this path-
way in our poly(L:C)-induced lung inflammation model as well.
However, levels of secreted IL18 were below detectable limits
in the BALF as well as the conditioned media from primary lung
fibroblasts stimulated with poly(I:C). Furthermore, no mRNA
for either NLRP3 or the inflammasome adaptor protein ASC
was detected in the poly(I:C)-stimulated whole lung tissue,
which strongly suggests that NLRP3 inflammasome activation
was not elicited under the conditions used in our experiments.
This is in contrast to findings by Allen et al. (55), who detected
low amounts (~10 pg/ml) of secreted IL18 using another
model of poly(I:C)- and influenza virus-induced lung inflam-
mation in mice. This is probably due to methodological differ-
ences in our respective approaches. More work is needed to
resolve this interesting question.
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FIGURE 7. Expression of inflammatory cytokines and chemokines in response to poly(l:C) (p/C) instillation in lungs. PIC instillation induced increases in
inflammatory cytokines and chemokines, such as TNFaq, IL18, Cxcl2, IFNg, IFNvy, and IL10, in whole lungs of control mice, which were attenuated in Vcan™/~
mice.n = 8-17 mice/group. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,p < 0.0001. Error bars, S.D.
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FIGURE 8. Gene expression of versican, inflammatory cytokines, and chemokines in cultured lung fibroblasts in response to poly(1:C) (p/C). PIC
treatmentinduced increases in total versican as well as IL18 in primary cultured lung fibroblasts from control mice, which was significantly reduced in Vcan™/~
fibroblasts. *, p < 0.05; **, p < 0.01. Results are mean values from each independent experiment run in triplicate each time. n = 5 independent experiments

from lung fibroblasts established from 5 mice/group. Error bars, S.E.

Several studies indicate that versican is a DAMP (danger-
associated molecular pattern) molecule that interacts with
TLRs, such as TLR2, to promote production of inflammatory
cytokines, such as TNFa (56 — 64). Similarly, other CS PG ECM
molecules, such as biglycan, activate TLR2 and TLR4 via CS
chains and core protein, exacerbating acute kidney injury (54,
65, 66). Whether CS chains or versican core proteins are
involved in directly activating TLR3 or indirectly via binding to
TLR2 or other molecules associating with TLR, such as CD14, is
not yet clear.

Whether versican induces cytokine expression by stimulat-
ing Has2-dependent HA production in response to poly(I:C) is
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not yet clear. Previously, our studies have demonstrated that
removing CS-bearing versican, by expressing V3 (the isoform of
versican that naturally lacks CS chains), prevents formation of
HA-enriched ECM by blocking activation of EGFR and down-
stream NF-kB (34). Versican signals directly through TLRs to
stimulate the NF-«B-dependent expression of inflammatory
cytokines (56—64). VO/V1 versican, via CS chains, can also
directly interact with CD44 (67), which can form a signaling
complex with EGFR2 as well as ezrin and phosphoinositide
3-kinase (PI3K) to up-regulate HA synthesis (68 -72). More-
over, HA synthases have NF-kB binding regions in their pro-
moters and are up-regulated by NF-«B agonists (50-52, 73).
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FIGURE 9. Chemotactic migration of monocytic cells in vitro. The addition
of purified chondroitin sulfate chains or purified versican protein to the
chemokine Ccl2 in the bottom chamber significantly enhanced chemotactic
migration of monocytic cells, whereas adding versican to the upper chamber
significantly reduced the migration. *, p < 0.05. Results are representative of
two independent experiments. Error bars, S.D.

Overall, these findings suggest that versican may activate TLR-
NEF-kB and/or CD44-EGER signaling, increasing HA produc-
tion via Has2, which promotes leukocyte accumulation and
helps sustain the inflammatory state. Because HA is also capa-
ble of triggering TLR- and CD44- signaling pathways, it is likely
that the HA-versican complex may potentiate the binding of
the molecules to the cell surface receptors in a synergistic way.
Further investigation is currently ongoing in our laboratory to
elucidate the impact of the HA-versican complex on down-
stream signaling pathways involved in immunomodulation.

In conclusion, our study demonstrates that loss of versican
has a direct impact on airway inflammation by reducing leu-
kocyte accumulation associated with HA-enriched ECM
and by attenuating proinflammatory cytokine expression
induced by TLR activation. Our findings demonstrate that
versican is a critical player in lung inflammation and may
be a novel therapeutic target for treating acute lung
inflammation.

Experimental Procedures

B6.Vean e4" Construction—A mouse versican bacterial
artificial chromosome (BAC) clone AC134397 was obtained
from the Whitehead Institute/MIT Center for Genome
Research. Vector 4600C2,6, with cassettes for pgaDTA,
HSVTK, and svNEO flanked by frt sites and a LoxP site at the 5’
end, was provided by Dr. Richard Palmiter (University of Wash-
ington). The 3’ arm was cloned by PCR from the AC134397
BAC, producing a 4.269-kb fragment encoding bp 40,242—
44,511 with added 5" XhoI and 3’ AflII sites. This fragment was
cloned into TOPOXL and sequenced. After restriction digests
with XhoI and AflI], the 3" arm was ligated into compatible sites
of the vector 4600C2,6.

The 5" arm was generated by PCR amplification of the region
encoding bp 35,611-40,261 of AC134397 with added 5" Mfel
and 3’ Sall sites, which was then cloned into TOPOXL and
sequenced. A unique PpuMI site 1147 bp from the start of exon
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FIGURE 10. HA-dependent monocyte adhesion to cultured lung fibro-
blasts in response to poly(l:C) (p/C) treatment. In both control (Ctrl) (A) and
Vcan™'~ (C) lung fibroblasts treated with PBS, immunohistochemistry shows
little HA cable formation (HABP; green) with minimal monocyte (CD68; red)
binding. Images are representative of two independent experiments. In con-
trast, panel B shows monocytes (CD68; red) accumulated along HA cables
(HABP; green) induced by plIC in Ctrl lung fibroblasts (nuclei; DAPI; blue),
whereas monocyte accumulation along HA cables was diminished in plC-
stimulated Vcan ™/~ lung fibroblasts (D), as quantified by a monocyte adhe-
sion assay, which measures HA-dependent adhesion (E). **, p < 0.01. Error
bars, S.E.

4 was used to insert a matching LoxP site. The clone was rese-
quenced and ligated into the vector 4600C2,6, which was
digested with Sall and Mfel. This vector was then linearized and
used for electroporation of C57/Bl6 embryonic stem cells
(ESCs), which was performed by the University of Washington
Transgenic Resources Program. ESC clones were screened by
PCR, and recombination was identified by Southern blot anal-
ysis. ESCs were injected into Bl6 mouse blastocysts, and chime-
ras were obtained. Germ line transmission of intact mutation
was confirmed by Southern blot analysis.

Generation of a Mouse Strain with a Tamoxifen-inducible
Ubiquitous Deletion of Versican—We bred a mouse strain
with floxed versican exon 4 (B6.Vcan e4™™), which generates
versican null alleles upon Cre recombinase-mediated dele-
tion of exon 4, with a strain with tamoxifen-inducible
Rosa26-driven Cre-recombinase expression (B6.129-Gt(ROSA)
26Sortm1(cre/ERT2)Tyj/], strain 008463; Jackson Laborato-
ries) to create mice with an inducible global versican
deficiency in the C57BL/6 background (B6.Vcan e4™™:
Rosa26-CreERT?2).
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Tamoxifen Injections—0.1 g of tamoxifen-free base (Sigma-
Aldrich, catalog no. T5648) was dissolved in 0.5 ml of 100%
ethanol, and 9.5 ml of sterile corn oil was added. The mixture
was vortexed and then sonicated until completely dissolved and
stored in aliquots at —20 °C. 0.1 ml of this solution (1 mg of
tamoxifen) was injected intraperitoneally into mice at 6-7
weeks of age, each day for 5 days. For controls, B6.Vcan e4™"
mice lacking Rosa26-Cre™ "> were used. To provide time for
adequate versican turnover and ensure versican deficiency in
lung tissues, experiments were conducted at 10—12 weeks of
age.

Monitoring Vcan Exon 4 Floxing—The efficacy of Vcan
floxed allele deletion was monitored in liver and lung tissue
samples 4 weeks after the tamoxifen injections in control mice
homozygous for floxed versican alleles and in experimental
mice either hemizygous or homozygous for the Cre-recombi-
nase. Briefly, genomic DNA was isolated using the REDExtract-
N-Amp tissue PCR kit (Sigma-Aldrich), and regions around the
Vean exon 4 were amplified by PCR (forward, CAGCCTGA-
GCAACAGGGCACCG; reverse, CCCTCTCGGGGAGCCCG-
TATG), using the KAPA2G HotStart ReadyMix PCR kit
(KAPA Biosystems).

Preparation of Poly(I:C)—Poly(I:C), purchased from Invivo-
gen, was prepared as directed by the manufacturer. Briefly,
endotoxin-free water provided by the manufacturer was added
to poly(I:C) at a final concentration of 1 mg/ml, incubated in a
hot water bath (65-70 °C) for 10 min, and allowed to cool slowly
to room temperature to ensure proper annealing. Poly(I:C)
solution was then aliquoted and stored at —20 °C until use.
Before use, poly(I:C) solution was vortexed and triturated to
ensure thorough mixing.

Oropharyngeal Instillation of Poly(I:C) into Mice—Mice
were anesthetized using inhaled isoflurane, and 50 ug of
poly(I:C) was administered into the back of the throat using
a sterile pipette while the tongue was immobilized with pad-
ded forceps to prevent swallowing and ensure inhalation.
Mice were given poly(I:C) on day 0 and day 1 and were sac-
rificed at day 3.

Bronchoalveolar Lavage Collection—Animals deeply anes-
thetized by i.p. injection of tribromoethanol (500 mg/kg) were
sacrificed by cardiac exsanguination. Bronchoalveolar lavage
was carried out by administering 4 X 1 ml of PBS via the trachea
into both lungs until fully inflated and then collecting the fluid
(BALF). The first fraction of BALF was saved separately from
the additional three fractions. BALF yields from this first
fraction varied by treatment, with PBS-treated lungs achiev-
ing 750 ul, whereas poly(I:C) administration reduced the
yield to 650 ul. No difference was observed between geno-
types. After collecting BALF, the lungs were snap-frozen in
liquid nitrogen for DNA, RNA, and protein purification. The
BALF was spun at 250 X g for 5 min at 4 °C, and the super-
natants from the first fraction of BALF were stored at —80 °C
until analysis. The pelleted cells from the first fraction were
pooled with the cells from the rest of the BALF and incu-
bated in red blood cell lysis buffer (Roche Applied Science)
for 1 min, followed by neutralization with an equal volume of
RPMI medium. The cells were washed and divided into two
aliquots; the first was used for flow cytometry analysis, and
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the second was used for counting total cell numbers using a
hemocytometer.

Flow Cytometry Analysis of BALF Cells—Single cell suspen-
sions for determination of differential cell counts in the BALF
were prepared as follows. To prevent nonspecific binding of
antibodies, cells were incubated with Fc blocker (1:100; anti-
mouse CD16/32 (clone 2.4G2), Pharmingen/BD Biosciences),
in PBS plus 0.5% BSA for 15 min at room temperature. Cell
surface antigens were detected by incubating with antibodies
against CD45(Ly5) (FITC (1:200), eBioscience), Ly6G/GR1
(PerCP.Cy5 or Pacific Blue (1:400), eBioscience), CD3e (BV605
(1:400), Biolegend), CD19 (BV655 (1:400), Biolegend), CD11b
(FITC (1:200) or APC (1:400), eBioscience), MHC II (Alexa
Fluor 700 (1:400), eBioscience), Siglec F (PE (1:400), BD Biosci-
ence), CD11c (PE.Cy7 (1:400), eBioscience), and F4/80 (APC or
PerCPCy5.5 (1:400), Biolegend) at 4 °C in the dark for 20 min.
Cells were then washed in PBS plus 0.5% BSA and fixed in 10%
formalin at 4 °C for 10 min, washed in PBS plus 0.5% BSA again,
and stored overnight until analysis. Analysis was performed
using an LSRII (BD Biosciences) flow cytometer. Gating was
performed as described previously (74). Because >99% of live
cells were CD45-positive in initial experiments, that antibody
was omitted in later analyses.

Lung Tissue Processing for Histology—Lungs from animals
used for histology and immunostaining analysis were inflation-
fixed by intratracheally administering 1 ml of 10% formalin to
fully inflate the lungs before removal from the chest cavity.
Tissues were then fixed overnight in additional formalin. For-
malin-fixed lung tissues were embedded in paraffin such that
each section contained regions from all four lobes of the right
lung. Lung tissue sections were stained with hematoxylin and
eosin and versican antibody (8-GAG region of versican; EMD
Millipore) and HA-binding protein. For versican immuno-
staining, tissue sections were pretreated with 0.2 units/ml
chondroitinase ABC (Sigma) in buffer at pH 8.0 containing 18
mM Tris, 1 mm sodium acetate, and 1 mg/ml BSA for 1 h at
37 °C. After digestion, the sections were incubated for 1 h with
2.5 pug/ml rabbit anti-mouse versican B-GAG domain (Milli-
pore) in Bond antibody diluent, and detection was performed
using the Bond polymer Refine Detection Kit containing a per-
oxidase block, a ready-to-use secondary goat anti-rabbit conju-
gated to polymeric HRP, DAB chromagen, and hematoxylin
counterstain (Leica Microsystems). Stained tissue sections
were imaged by a Leica DMR microscope and Diagnostic
Instruments Pursuit 4.0-megapixel CCD camera and Spot
software.

RNA Isolation and Quantitative PCR—Lung tissues were
homogenized in TRIzol (1 ml) in tubes prefilled with 1.5-mm
zirconium beads for 1 min in a BeadBug microtube homoge-
nizer (Benchmark Scientific), followed by the addition of chlo-
roform (0.2 ml) and vigorous mixing by hand. For lung fibro-
blasts, cells were lysed in 0.5 ml of TRIzol, followed by the
addition of 0.1 ml of chloroform and vigorous mixing. The solu-
tion was incubated at room temperature for 5 min and spun at
14,000 rpm for 10 min at 4 °C. The aqueous phase was collected,
mixed with an equal volume of 70% ethanol, and purified using
EconoSpin™ columns (Epoch Life Science). cDNA was pre-
pared from the isolated RNA with a high capacity cDNA reverse
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transcription kit (Life Technologies) according to the manufa-
cturer’s instructions. Real-time PCR was carried out with SYBR
Select Master Mix or TagMan® Gene Expression Master Mix
(Life Technologies), as directed by the manufacturer, on an
Applied Biosystems 7900HT fast real-time PCR system. For
each sample, assays were run as technical duplicates. cDNA
levels were then expressed as estimated copy numbers of
mRNA using the master-template approach (75). Tagman
probes (Life Technologies) were pan-Vcan (Mm01283063_m1),
V1 (Mmo00490173_ml), V3 (Rn01493763_m1l), Hasl
(MmO00468496_m1), Has2 (MmO00515089 ml), Has3
(Mm00515092_m1), TNFa (Mm00443258 m1), and 18S
rRNA (4319413E-1403063). Gene-specific SYBR primer
sequences are listed in supplemental Table 1.

Western Blotting—Protein homogenates were prepared by
extracting finely minced tissues with 4 M GuHCI buffer (4 m
guanidine HCI, 100 mM sodium sulfate, 100 mm Tris base, 2.5
mwm Na,EDTA, 0.5% Triton X-100, pH 7.0) with protease inhib-
itors (5 mm benzamidine hydrochloride, 100 mM 6-amino-
hexanoic acid, 1 mm phenylmethylsulfonyl fluoride) overnight
at 4 °C. Tissue extracts were then dialyzed against 8 M urea
buffer (8 M urea, 2 mm EDTA, 50 mm Tris base, 0.5% Triton
X-100, pH 7.5) to remove the guanidine. Protein concentration
was determined by using a Coomassie protein assay kit (Pierce).
For Western blotting, equal amounts of protein were isolated
by DEAE-Sephacel chromatography (76). Equal volumes of iso-
lated proteoglycans were ethanol-precipitated, digested with
chondroitin ABC lyase, and electrophoresed on 4-12% gradi-
ent SDS-polyacrylamide gels with 3.5% stacking gel. Proteins
were transferred to nitrocellulose, probed with antibody
against the B-GAG region of versican (0.25 pg/ml; Millipore).
Results were visualized using a LI-COR Odyssey® scanner and
software (LI-COR Biotechnology). Densitometry was per-
formed using Image] 1.47t (National Institutes of Health) and
included all bands >250 kDa to capture VO and V1 isoforms as
well as their large degradation products.

Lung Fibroblast Isolation from Mice—Tamoxifen-injected
control (B6:Vean-e4™) or Vean™'~ (B6:Vean-e4Y%:Rosa26-
Cre®™®2) mice at 1012 weeks of age were deeply anesthetized
with i.p. injection of tribromoethanol (500 mg/kg) and sacri-
ficed by cardiac exsanguination. Lung fibroblasts were
explanted from the minced lung tissues dissected from the ani-
mals in DMEM culture medium supplemented with 20% FBS,
GlutaMAX, sodium pyruvate, penicillin/streptomycin, and
antibiotic/antimycotic (Gibco, ThermoFisher Scientific). All
cells were used up to passage 4.

Poly(I:C) Stimulation of Lung Fibroblasts—Isolated lung
fibroblasts from control or Vean ™/~ mice were plated on tissue
culture plates at 2.0 X 10*/cm? density for 24 h, growth-ar-
rested in low serum culture medium supplemented with 0.1%
FBS for 48 h, and treated with or without 40 ug/ml poly(L:C) in
culture medium containing 10% FBS for 24 h.

Immunofluorescence Staining of Lung Fibroblasts—Control
or Vean™'~ lung fibroblasts were stimulated with 20 ug/ml
poly(I:C) and cultured with or without monocytic cells as
described above. These cells were fixed with 10% formalin, 70%
ethanol, and 5% acetic acid for 10 min at room temperature,
washed with PBS, and incubated in blocking buffer (2% BSA, 2%
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normal donkey serum in PBS), before staining for the monocyte
marker CD68 (1:100 dilution, mouse monoclonal KP-1 anti-
body against human CD68, Abcam) and biotinylated HA-bind-
ing protein (2.5 pug/ml) followed by donkey anti-mouse Alexa
Fluor 546 and streptavidin Alexa Fluor 488 in PBS containing
1% BSA. Nuclei were stained with DAPI. Images were acquired
and merged on a Leica DMIRB inverted microscope equipped
with fluorescent epi-illumination, using a Diagnostic Instru-
ments Pursuit 4.0-megapixel chilled color CCD camera and
Spot software, version 4.5.9.1.

Monocyte Adhesion Assay—Quantification of monocyte
adhesion to control and Vean '~ lung fibroblasts was per-
formed as described previously (24, 32) with some modifica-
tions. Lung fibroblasts were stimulated with poly(l:C) as
described above. Some cells were treated with Streptomyces
hyaluronidase (1 unit/ml; Seikagaku) at 37 °C for 30 min before
adding monocytes, to determine the role of HA in monocyte
binding. The human monocytic cells, U937 (ATCC), labeled
with 5 pug/ml Calcein AM (Invitrogen), were added to lung
fibroblasts and allowed to bind for 90 min at 4 °C. Non-bound
monocytic cells were removed by washing with cold RPMI
medium. Monocyte binding was measured by exciting the fluo-
rophore at 485 nm and reading absorbance at 530 nm using a
Fusion series universal microplate analyzer (Packard Biosci-
ence Co.) (32).

Monocyte Chemotaxis Assay—As adapted from Masuda et al.
(77), the bottom wells of a 24-well transwell assay system (8-um
pore size; Greiner Bio-One) were coated overnight with 200 ul
of PBS alone or containing various concentrations of CS (Sig-
ma; CSA, C8529), purified bovine versican, or HA. In some
experiments, the upper membrane surface of the transwell
insert was also coated with versican. The following day, the
wells were rinsed with PBS and incubated with CCL2 (Invitro-
gen; 50 ng/ml in RPMI) for 2 h. U937 cells (3 X 10° cells in
RPM]I, no serum) were added to the upper well and incubated at
37 °Cfor 2 h. Cells were fixed with 10% neutral buffered forma-
lin, stained with crystal violet (0.5% in water). Cells were wiped
off of the upper membrane surface with a cotton swab, and the
migrated cells on the underside or in the pores were counted.

Statistical Analyses—All data are expressed as the average =
S.E., unless otherwise specified. Differences were identified by
one-way analysis of variance followed by Tukey’s post hoc tests
for the comparison of three or more groups and were regarded
as significant if p < 0.05.
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