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Abstract

Connectivity-based parcellation approaches present an innovative method to segregate the brain 

into functionally specialized regions. These approaches have significantly advanced our 

understanding of the human brain organization. However, parallel progress in animal research is 

sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have 

obtained robust functional parcellations of the rat brain. These functional parcellations reveal the 

regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high 

reproducibility across animals. Graph analysis of the whole-brain network constructed based on 

these functional parcels indicates that the rat brain has a topological organization similar to 

humans, characterized by both segregation and integration. Our study also provides compelling 

evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. 

Together, this study has characterized the rat brain specialization and integration, and has 

significantly advanced our understanding of the rat brain organization. In addition, it is valuable 

for studies of comparative functional neuroanatomy in mammalian brains.
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Introduction

Regional specialization and global integration are two major organizational principles of the 

brain. An optimal brain requires a suitable balance between local specialization and global 
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integration of brain activity (Tononi et al., 1998). Traditionally, regional specialization is 

investigated by first spatially partitioning the whole brain into a number of distinct units 

using anatomical landmarks and/or cytoarchitectural features (Tzourio-Mazoyer et al., 

2002). These units, or regions, are presumed to subserve specialized functions, and to be 

functionally homogeneous. Functional integration is then studied by elucidating the 

connectional architecture of the whole-brain network constructed using these brain units. 

While this approach is often successful, anatomy-based parcellation can be imprecise and 

insufficient to represent the true functional specialization of the brain as it does not consider 

the function of individual region, and it is not always the case that structure can predict 

function (Sporns, 2011).

An appealing alternative approach to study brain specialization and integration is to 

segregate functionally distinct brain regions according to their connectivity profiles 

(Cloutman and Lambon Ralph, 2012). This connectivity-derived parcellation is based on the 

premise that each functionally specialized brain region is characterized by a distinct 

connectivity profile. For instance, using resting-state functional magnetic resonance imaging 

(rsfMRI) technology (Biswal et al., 1995; Biswal et al., 2010; Fox and Raichle, 2007), 

researchers have obtained fine-grained functional parcellations of various brain structures 

such as the thalamus (Fan et al., 2015; Ji et al., 2016), striatum (Choi et al., 2012; Jung et al., 

2014), numerous cortical regions (Cauda et al., 2010; Goulas et al., 2012; Kahnt et al., 2012; 

Kim et al., 2010; Long et al., 2014; Nelson et al., 2010; Zhang and Li, 2012), and even 

parcellations of the whole brain (Blumensath et al., 2013; Craddock et al., 2012; Gordon et 

al., 2016; Shen et al., 2013; Wig et al., 2014; Yeo et al., 2011). Without the presence of overt 

tasks, rsfMRI measures resting-state functional connectivity (RSFC) between different brain 

regions based on temporal correlations of spontaneously fluctuating blood oxygenation 

level-dependent (BOLD) signals (Biswal et al., 2010; Fox and Raichle, 2007). Thus, 

rsfMRI-based parcellation approaches aim to partition the brain by identifying similarities 

and differences in RSFC profiles, often without any anatomical constraints. Therefore, brain 

parcels obtained using these methods can be taken as functional atlases of the brain (Liang et 

al., 2011).

The identification of brain parcels based on their RSFC fingerprint has significantly 

enhanced our understanding of the spatial specialization of the human brain. Indeed, 

connectivity-based parcellation has not only replicated regions identified by histology-based 

techniques (Bzdok et al., 2013), but has also discovered functionally specialized subregions 

that cannot be differentiated using cytoarchitectonic methods (Clos et al., 2013). In addition, 

quantifying RSFC between brain parcels enables the construction of whole-brain networks, 

and thus, helps reveal the functional integration of the human brain.

In contrast to the great success of rsfMRI studies in humans, we have little knowledge of 

RSFC-based brain parcellations in animals (Becerra et al., 2011; Gozzi and Schwarz, 2016; 

Liang et al., 2011, 2014; Lu et al., 2012; Schroeder et al., 2016; Zhang et al., 2010). This is 

partially because animal rsfMRI experiments usually rely on anesthesia to immobilize 

animals, while anesthesia is a significant confound in connectivity-based parcellation given 

its profound impact on RSFC. Lack of such knowledge highlights a fundamental poverty of 

insight into the regional specialization and global integration of the animal brain. In 
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addition, considering the potential value in studying comparative functional neuroanatomy 

and translational models of brain disorders, robust whole-brain RSFC-based parcellations in 

animals are of critical need.

To bridge this gap, we have acquired and analyzed rsfMRI data in rats. To avoid any 

confounding effects of anesthesia on RSFC, all animals were scanned at the awake state 

using the awake animal imaging paradigm established in our lab (Liang et al., 2011, 2012a, 

b, 2014; Liang et al., 2013; Liang et al., 2015a; Liang et al., 2015b; Zhang et al., 2010). 

Using a novel, data-driven parcellation method, we have created robust functional 

parcellations of the rat brain with homogeneous within-parcel RSFC profiles. Using 

functional parcels obtained, the rat whole-brain network was constructed, and topological 

characteristics of this network were evaluated using graph theory analysis.

Materials and Methods

Animals

31 adult male Long–Evans rats (300–500 g) were used in the present study (the discovery 

sample). Data from 11 additional rats (the replication sample) used in previous publications 

(Liang et al., 2011, 2012b; Liang et al., 2013) were reanalyzed for the purpose of the present 

study. Animals were housed in Plexiglas cages and maintained on a 12 h light:12 h dark 

schedule at a temperature between 22 and 24 °C. They were provided with food and water 

ad libitum. All experiments were approved by the Pennsylvania State University Institutional 

Animal Care and Use Committee (IACUC).

MRI experiments

Rats were first acclimated to the MRI scanner environment and noise for seven days to 

minimize imaging-related motion and physiological changes. Detailed acclimation 

procedures were described in our previous publications (Liang et al., 2011, 2012a, b, 2014; 

Liang et al., 2013; Liang et al., 2015a; Liang et al., 2015b; Zhang et al., 2010). Before 

imaging, rats were briefly anesthetized using 2% isoflurane, then secured into a head 

restrainer with a built-in coil, and placed in a body tube. Isoflurane was discontinued after 

the setup was completed. rsfMRI data acquisition started at least 30 mins after the 

discontinuation of isoflurane. All rats were fully awake during all rsfMRI imaging sessions.

The MRI image acquisition of the discovery sample was conducted on a 7T magnet 

interfaced with a Bruker console. Anatomical images were acquired using a T1-weighted 

rapid imaging with refocused echoes (RARE) sequence with the following parameters: 

repetition time (TR) = 1500 ms; echo time (TE) = 8 ms; matrix size = 256 × 256; field of 

view (FOV) = 3.2 × 3.2 cm; slice number = 20; slice thickness = 1 mm; RARE factor = 8. 

T2*-weighted gradient-echo images covering the whole brain including the cerebrum were 

acquired using the echo planar imaging (EPI) sequence with the following parameters: TR = 

1000 ms; TE =15 ms; matrix size = 64 × 64; FOV = 3.2 × 3.2 cm; slice number = 20; flip 

angle = 60° and slice thickness= 1 mm. 600 volumes were acquired for each rsfMRI run, 

and two to four runs were obtained for each session.
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The MRI image acquisition of the replication sample was conducted on a Bruker 4.7 T 

magnet. Anatomical images were acquired using a T1-weighted RARE sequence with the 

following parameters: TR = 2125 ms; TE = 50 ms; matrix size = 256 × 256; FOV = 3.2 × 3.2 

cm; slice number = 18; slice thickness = 1 mm; and RARE factor = 8. T2*-weighted 

gradient-echo images were acquired using EPI sequence with the following parameters: TR 

= 1000 ms; TE = 30 ms; matrix size = 64 × 64; FOV = 3.2 × 3.2 cm; slice number = 18; and 

slice thickness= 1 mm. 600 volumes were acquired for each rsfMRI run, and six runs were 

obtained for each session.

Image preprocessing

Animals' motion was first estimated using the frame-wise displacement (FD) of each EPI 

volume according to the method described in (Power et al., 2012) with the parameters 

adjusted for the rat brain size. Specifically, FD was calculated using the parameters of 

geometric transformations (translation: [xi yi zi]; rotation: [αi βi γi]) obtained by the image 

intensity-based geometric transformation function in MATLAB (`imregtform') as follows 

(Power et al., 2012):

where Δxi = |xi−1 − xi| and Δlαi = |(αi−1 − αi) · r|. Here, r = 5 mm, which is the approximate 

mean distance from the cortex to the center of the rat head. Volumes with FD > 0.2mm and 

their immediate neighboring volumes were discarded. The first 10 volumes of each rsfMRI 

run were also discarded to ensure the magnetization to reach steady state. Runs with more 

than 10% of the total number of volumes discarded were excluded from further analysis.

Each animal was aligned and co-registered, based on anatomical images, to a fully 

segmented rat brain atlas embedded in Medical Image Visualization and Analysis software 

(MIVA http://ccni.wpi.edu). Motion correction was then performed using SPM12 (http://

www.fil.ion.ucl.ac.uk/spm/), which corrects head motion using a rigid-body transformation 

model with three translational and three rotational parameters. These functional images were 

then spatially smoothed using a Gaussian kernel with an in-plane full-width-half-maximum 

(FWHM) of 0.75 mm. Six motion parameters estimated by SPM and signals from the white 

matter and ventricles were regressed out from the time series of each brain voxel. Band-pass 

filtering (0.01–0.1 Hz) was subsequently performed. To ensure the same degree of freedom 

for the calculation of RSFC (i.e. temporal Pearson correlation coefficient), 540 volumes 

were retained for each run after preprocessing.

Whole-brain RSFC-based parcellation

The RSFC profile of each individual gray matter voxel was obtained by seed-based 

correlational analysis. Specifically, the Pearson cross-correlation coefficients between the 

time course of the seed voxel and the time courses of all other gray matter voxels were 

respectively calculated. Correlation coefficients were transformed to Z values using Fisher's 

Z transformation. For each voxel, a group-level Z value map (i.e. RSFC profile) was 

obtained by one-sample t-test using a linear mixed-effect model with the random effect of 

rats and the fixed effect of z values. Subsequently, all RSFC profiles were clustered using the 
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k-means clustering approach, with the spatial dissimilarity between RSFC profiles as the 

distance. Consequently, this analysis generated a parcellation of the brain such that voxels 

with similar RSFC profiles are clustered together. The silhouette value was used to calculate 

the confidence value for each voxel within a parcel. Here, the silhouette value of a voxel 

measures how similar the RSFC profile of that voxel is to RSFC profiles of all other voxels 

in its own parcel, relative to voxels in different parcels. The clustering number (k) was 

within the range from 2 to 200. Results corresponding to two k values (k = 40 as an example 

of low-dimensionality clustering and k = 130 as an example of high-dimensionality 

clustering) were reported herein.

Parcel homogeneity

The homogeneity of individual parcels was evaluated using a method introduced in (Gordon 

et al., 2016). For each parcel, principal component analysis (PCA) was performed on 

normalized RSFC profiles (i.e. zero means and unit variance) of all voxels in the parcel, and 

parcel homogeneity (i.e. the homogeneity value) was computed as the percentage of the total 

variance explained by the first principal component (Gordon et al., 2016). The homogeneity 

of individual functional parcels was compared to that of a previously published anatomical 

atlas of the rat brain (Schwarz et al., 2006) derived from (Paxinos and Watson, 1998). The 

composite structures version of this atlas contained 48 parcels, in which two white matter 

parcels and a diminished gray matter parcel (raphe) due to downsampling to the EPI 

resolution were excluded from the analysis. The homogeneity value of each of the remaining 

45 gray matter parcels of this anatomical parcellation was computed. For the comparison 

purpose, the same number functional parcels (i.e. 45) with the same overall spatial coverage 

were obtained to avoid the effect of parcel size on the homogeneity value, considering that 

the parcel homogeneity has been found to be related to parcel size (Gordon et al., 2016).

Reproducibility of functional parcels

Reproducibility of functional parcels was assessed by comparing the spatial maps of the 

corresponding parcels between two subgroups split from the discovery sample, or comparing 

the corresponding parcel maps between the discovery and replication samples. In the split-

group approach, the discovery sample was randomly divided into two subgroups (16 rats in 

subgroup 1 and 15 rats in subgroup 2), and whole-brain RSFC-based parcellation was 

performed for each subgroup. Given a brain parcel from subgroup 1, the matched brain 

parcel from subgroup 2 was identified with the maximal Dice's coefficient (DC). DC for 

measuring the similarity between two brain parcels is defined as

where |S1 ∩ S2| is the number of overlapped voxels of parcels 1 and 2, and |S1| is the number 

of voxels in parcel 1 and |S2| is the number of voxels in parcel 2. For the comparison 

between discovery and replication samples, the same matching method was applied.
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Construction of the whole-brain functional network in the awake rat

The rat whole-brain network was constructed based on the parcellation with 130 parcels 

obtained from the discovery sample. Regionally averaged time course of each brain parcel 

was generated by averaging the time courses of all voxels within that brain parcel. RSFC 

was quantified by Pearson cross-correlation coefficient between the time courses of each 

pair of parcels, which was then converted to Z scores using Fisher's Z transformation. A 

group-level 130×130 RSFC matrix was generated by one-sample t-test using linear mixed-

effect analysis with the random effect of rats and the fixed effect of z values. The whole-

brain network was constructed with individual parcels as nodes and significant RSFC 

between parcels as edges.

Graph analysis of the rat brain network

Global graph metrics including average clustering coefficient, modularity, characteristic path 

length, global efficiency, small-worldness, and assortativity coefficient were quantified as a 

function of density in the range between 0.12 and 0.99 with a step size of 0.01. For each 

connection density, the graph was first binarized. Average clustering coefficient, 

characteristic path length and global efficiency were normalized to a reference network 

generated by randomizing the connectivity between parcels of the constructed network while 

maintaining the density. The randomization process was repeated 1000 times.

Local topological metrics of each brain parcel including node degree, local clustering 

coefficient, node characteristic path length and betweenness centrality were calculated based 

on the network binarized by setting a statistical threshold at p<0.05 after FDR correction 

(Genovese et al., 2002). All these graph metrics were obtained using the Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/), and their definitions can be found in 

(Rubinov and Sporns, 2010).

The identification of brain hubs in the rat brain network was performed on the same 

binarized network using the scoring method for “hubness” introduced in (van den Heuvel et 

al., 2010). A hub score between 0 and 4 was assigned to each node based on the number of 

the following criteria that the node satisfied: (1) top 20% highest degree; (2) top 20% highest 

betweenness centrality; (3) lowest 20% characteristic path length; (4) lowest 20% local 

clustering coefficient. Brain regions satisfied at least three out of these four criteria were 

identified as hubs.

To quantify the rich-club phenomenon in the rat brain network, the binarized network was 

pruned to construct subgraphs from 1 to the maximum degree, in a way that only the nodes 

with a degree greater than k (N>k nodes) were included in that specific level of subgraphs, 

and the rich-club coefficient ∅(k) is defined as the ratio of remaining edges E>k in the kth 

subgraph over the maximum possible number of edges (N>k(N>k − 1)/2) in that subgraph 

(Colizza et al., 2006):
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∅(k) was normalized to the mean of rich-club coefficient from 1000 reference networks, 

each of which was generated by randomizing the constructed network while maintaining the 

density (van den Heuvel and Sporns, 2011):

where ∅random(k) is the mean of rich-club coefficients of reference networks. The rich-club 

organization is present in the network if ∅norm(k) > 1 for a continuous range of k (van den 

Heuvel and Sporns, 2011). A degree k' was identified for ∅norm(k′) = max(∅norm(k)), and 

the nodes with the degree ≥ k' were identified as rich-club nodes in the network (Grayson et 

al., 2014).

Results

rsfMRI data in 31 awake rats were acquired on a 7T scanner (i.e. the discovery dataset). The 

RSFC profile of each individual gray matter voxel was obtained using seed-based 

correlational analysis. RSFC profiles for all voxels were then clustered using k-means 

clustering, such that voxels with similar RSFC profiles are clustered together. As a result, the 

whole rat brain was partitioned into a specific number of parcels (i.e. the parcel number: k). 

Brain parcellations with k = 40 (an example of a low-dimensionality parcellation) and k = 

130 (an example of a high-dimensionality parcellation) are reported herein. A schematic 

summary of the data analysis procedure is shown in Figure 1.

Specialization of functional parcels in the awake rat brain

The rat brain specialization was revealed by RSFC-based parcellations. The spatial maps of 

individual functional parcels of the awake rat brain are shown in Figure 2 (40 parcels) and 

Figure 3 (130 parcels). All parcels were numbered based on their centroid locations 

(increasing in the caudal-rostral direction). Figures S1 (40 parcels) and S2 (130 parcels) 

revealed the global parcellation pattern by showing all parcels together. The majority of 

parcels were bilateral (36 out of 40 in the 40-parcel scheme; and 78 out of 130 in the 130-

parcel scheme). The numbers of left and right unilateral parcels were approximately the 

same (40-parcel scheme: 2 right parcels and 2 left parcels; 130-parcel scheme: 27 right 

parcels and 25 left parcels).

Our data demonstrate that the connectivity-based parcellation was in general consistent with 

the histology-based anatomical atlas (Swanson, 2004). Each parcel was specifically located 

in a well-defined anatomical region/system, reflecting a convergence between anatomical 

and functional parcellations at a large scale. Given the consistency of the functional 

parcellation and anatomically defined brain regions, we grouped all parcels according to the 

anatomical system they belong to, including the brainstem, midbrain, thalamus/

hypothalamus, amygdala, striatum, hippocampus/retrohippocampus, as well as cortical 

regions including visual, auditory, olfactory, somatosensory, motor, cingulate and prefrontal 

cortices. Detailed anatomical coverage of each individual parcel for the 40-parcel functional 
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atlas is listed in Table 1. Detailed anatomical coverage of each individual parcel for the 130-

parcel functional atlas is listed in Table 2.

Despite the anatomy-function convergence at a large scale, the RSFC-based parcellations 

provided a more fine-grained segregation for individual brain structures that cannot be 

readily differentiated from anatomical images. For instance, the striatum appears to be a 

uniform structure in anatomical images. However, this system was divided into two 

subdivisions (Parcels 29 and 33) in a low-dimensionality functional parcellation (the 40-

parcel scheme), including a dorsal (Parcel 29) and a ventral (Parcel 33) component. This 

separation well agrees with distinct functional roles that ventral and dorsal striatum play 

(Ferre et al., 2010; Taylor et al., 2013; Yager et al., 2015). An even finer parcellation of the 

striatum was observed in the 130-parcel atlas, with Parcel 74 located at the bilateral 

ventrocaudal caudoputament (CPu), Parcel 93 at the left dorsal CPu, Parcel 94 at the right 

dorsal CPu, Parcel 96 at the bilateral mediodorsal CPu, Parcel 98 at the bilateral 

medioventral CPu, nucleus accumbens and lateral septal nucleus, Parcel 106 at the bilateral 

dorso-rostral CPu and 112 at the bilateral ventrorostral CPu and nucleus accumbens.

We further compared the within-cluster homogeneity between the RSFC-based and 

anatomical parcellations. The anatomical parcellation was selected based on an established 

atlas with 45 regions previously reported in an independent study (Schwarz et al., 2006). A 

functional parcellation with the same parcel number (i.e. 45) and spatial coverage was 

generated. For each parcel, PCA was performed on normalized RSFC profiles of all voxels 

in the parcel, and the within-parcel homogeneity was computed as the percentage of total 

variance explained by the first principal component (i.e. homogeneity value) (Gordon et al., 

2016). Figure 4 shows that in general, functional parcels displayed higher homogeneity 

values than anatomical parcels (Figs. 4A and 4B). In addition, the anatomical parcellation 

had a large variation in parcel sizes, and its large-size parcels such as the somatosensory, 

visual and motor cortices as well as CPu had low homogeneity values. In contrast, the 

functional parcellation had a relatively small variation in parcel sizes, with high 

homogeneity values even for large-size parcels. More importantly, for the most majority of 

parcel sizes, the homogeneity value of the functional parcellation was above that of the 

anatomical parcellation, reflected by their Lowess fit curves (Fig. 4C). Taken together, these 

data suggest that RSFC-based parcellations can reveal functionally more specialized clusters 

than anatomical parcellations, and these functional parcels provide insight into our 

understanding of the regional specificity of the awake rat brain.

Robustness of RSFC-based parcellations

Regardless of the parcellation number, the spatial patterns of functional parcellations were 

highly robust, reflected by high reproducibility between separate groups of rats scanned in 

the same scanner, and even between rats scanned in different scanners with different 

magnetic field strengths. To evaluate the reproducibility of individual parcels, we randomly 

split rsfMRI data from 31 rats into two subgroups (n=16 for subgroup1 and n = 15 for 

subgroup 2). Figure 5 shows the spatial maps of individual parcels obtained from each 

subgroup (40 parcels). 34 out of all 40 parcels exhibited highly consistent spatial patterns 

between the two subgroups. Mean (±SD) DC of all matched parcel pairs was 0.56 (±0.13). 
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Furthermore, we applied the same parcellation method to a dataset collected on a different 

scanner (4.7 T, the replication dataset). Remarkably, very similar parcel maps were also 

produced in 30 out of 40 parcels (Figure 6) (mean (±SD) DC = 0.49 (±0.08)).

High reproducibility of the RSFC-based parcellation was found regardless of the parcel 

number chosen, as very similar results were obtained for a high-dimensionality parcellation 

(130 parcels, shown in Figure S3 for the split-group comparison and in Figure S4 for the 

cross-scanner comparison). For the split-group comparison, 120 out of 130 parcels displayed 

reproducible spatial patterns (mean (± SD) DC of all matched parcel pairs = 0.53 (±0.15). 

For the cross-scanner comparison, 99 parcels were reproducible (mean (± SD) DC of all 

matched parcel pairs = 0.47 (±0.14)). Taken together, these results suggest that RSFC-based 

parcellations in the awake rat brain were highly robust.

Intrinsic organization of the awake rat brain network

After obtaining a robust whole-brain parcellation with high functional specialization, we 

further investigated the intrinsic organization of the brain network constructed with 

individual parcels as nodes and RSFC between parcels as edge. This network was assessed 

using graph theory analysis. Figure 7 shows the whole-brain network constructed based on 

the 130-parcel scheme. Separate anatomical systems are color coded including the 

brainstem, midbrain, thalamus/hypothalamus, amygdala, striatum, hippocampus/

retrohippocampus and cortical regions including visual, auditory, olfactory, somatosensory, 

motor, cingulate and prefrontal cortices. Figure 8 summarizes several fundamental global 

topological measures of the rat brain network as a function of connection density. 

Specifically, topological matrices of average clustering coefficient and modularity were used 

to characterize brain network segregation; characteristic path length and global efficiency 

were used to characterize the network integration; small-worldness was used to assess the 

balance between the brain segregation and integration; and assortativity coefficient was used 

to analyze the network resilience.

The graph analysis indicates that the awake rat brain network organization demonstrated 

balanced regional segregation and global integration when the brain connectivity is relatively 

sparse. Specifically, when the connection density was smaller than 0.5, the brain network 

exhibited a level of clustering higher than random network (normalized clustering coefficient 

> 1). In addition, modularity, which gauges the degree to which the network can be divided 

into separate communities (Newman, 2004), also had a relatively high value. In terms of 

network integration measures, the rat brain network was characterized by a high level of 

information exchange efficiency, reflected by global efficiency similar to random networks 

(i.e. normalized global efficiency = ~1), and low characteristic path length (i.e. normalized 

characteristic path length = ~1) at virtually all densities. These results collectively imply a 

small-world organization of the rat brain network, characterized by balanced regional 

segregation and global integration. Indeed, after being normalized to random networks with 

the same density, the measure of small-worldness was larger than 1 at densities < 0.5. 

Furthermore, the rat brain network had positive values of assortativity at low densities, 

which suggests that the network exhibited high resilience. However, when the brain 

connectivity is not sparse (connection density higher than 0.5), the brain network showed 
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diminished segregation (low modularity and normalized clustering coefficient = ~1), loss of 

small-world organization (small-worldness = ~1) and disassortative behavior (assortativity = 

~0).

Brain integration in the awake rat was further investigated by examining hub regions in the 

rat brain network (Figure 9). The identification of brain hubs was performed using the 

scoring method for “hubness” introduced in (van den Heuvel and Sporns, 2011) based on 

four criteria: (1) top 20% highest degree; (2) top 20% highest betweenness centrality; (3) 

lowest 20% characteristic path length; (4) lowest 20% local clustering coefficient. Brain 

regions satisfy at least three out of these four criteria were identified as functional hubs. 

According to these criteria, we found a list of hub regions in the awake rat brain, including 

bilateral temporal association cortex, bilateral ectorhinal and perirhinal cortices, lateral area 

of right secondary visual cortex, right primary somatosensory cortex, right auditory cortex, 

right secondary somatosensory cortex, bilateral insular cortex, bilateral cingulate cortex, 

bilateral piriform cortex, right dorsal CPu, thalamus, and lateral hypothalamus. Due to their 

relatively high connectivity, these hub regions are likely to play central roles in brain 

information integration.

Figure S5 shows the spatial distribution of rich club regions in the rat brain. The rich-club 

phenomenon of a network is characterized by a greater connectedness among the highest-

degree nodes relative to with lower-degree nodes, and therefore, these highest-degree nodes 

form a thickly interconnected `club' within the network (Colizza et al., 2006). Fig. S5a 

shows the measured (∅) and normalized (∅norm) rich-club coefficient as a function of 

degree for the rat brain network. Normalized rich-club coefficient clearly shows the presence 

of rich-club organization in the awake rat brain, with ∅norm(k) > 1 for a continuous range of 

node degree. Rich-club regions in the rat brain include the right temporal association cortex, 

right ectorhinal and perirhinal cortices, lateral area of right secondary visual cortex, right 

dorsolateral entorhinal cortex, bilateral auditory cortex, bilateral insular cortex, bilateral 

cingulate cortex, bilateral piriform cortex, right dorsal CPu and thalamus (Fig. S5). Taken 

together, these results suggest the awake rat brain network was highly integrated with 

distributed hub and rich-club regions.

Discussion

In the present study, we investigated both the specialization and integration of the awake rat 

brain. The brain specialization was studied by parcellating the whole brain into a number of 

functionally homogeneous parcels, using the criterion that brain voxels' RSFC profiles were 

similar within each parcel but dissimilar between parcels (Figs. 2 and 3). We have shown 

that this connectivity-based parcellation was in general consistent with the anatomical 

parcellation at a large scale, albeit it provided more fine-grained specialization and better 

within-parcel homogeneity than anatomically defined regions. In addition, regardless of the 

parcel number and scanner, functional parcellations obtained were highly robust. The brain 

integration was further investigated by constructing a whole-brain functional network based 

on functional parcels. Using a graph-theory approach, the topological organization of the 

whole-brain network was elucidated, functional hubs were identified (Figure 9), and a rich-

club organization was observed (Figure S5).
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Robust functional atlas revealed by RSFC-based parcellation in the awake rat brain

Since Brodmann segregated the cortex into cytoarchitectonically defined regions, the 

specialization of brain regions has largely been inferred from anatomical definitions. Since 

such definitions rarely take the functional aspects of brain regions into account, they can 

obfuscate differences in specialization amongst subregions.

RSFC-based parcellation has emerged as a powerful tool to parcellate a region of interest 

(ROI) in the human brain into functionally more homogeneous subdivisions. This approach 

has been used to elucidate functional subdivisions of the thalamus (Fan et al., 2015; Zhang 

et al., 2008), striatum (Choi et al., 2012; Jung et al., 2014), Broca's area (Kelly et al., 2010), 

orbitofrontal cortex (Kahnt et al., 2012), lateral frontal cortex (Goulas et al., 2012), medial 

frontal cortex (Kim et al., 2010), lateral parietal cortex (Nelson et al., 2010), sensorimotor 

cortex (Long et al., 2014), precuneus (Zhang and Li, 2012), and posteromedial cortex 

(Cauda et al., 2010). Using similar methods, whole-brain parcellations have also been 

achieved in the human (Blumensath et al., 2013; Craddock et al., 2012; Gordon et al., 2016; 

Shen et al., 2013; Wig et al., 2014; Yeo et al., 2011). These studies have provided great value 

for understanding the specialization at both the local and global scales of the human brain 

(Eickhoff et al., 2015).

Nevertheless, connectivity-based parcellation in the rodent brain is sparse (Gozzi and 

Schwarz, 2016; Liang et al., 2011; Schroeder et al., 2016). A lack of reliable functional 

parcellations has significantly hindered the advancement of rsfMRI studies in animal 

models, since the selection of ROIs directly from a histology-based atlas may not be optimal 

for either seed-based or graph analyses of rsfMRI data (Smith et al., 2011; Wang et al., 

2009). In the present study, by clustering voxelwise RSFC profiles, we obtained low- and 

high-dimensional functional atlases with similar RSFC profiles for the voxels within each 

parcel. This voxelwise parcellation approach is completely data driven, as it utilized the 

information of rsfMRI data without any prior assumptions of ROIs before parcellation. 

Notably, we also avoided the confounding effects of anesthesia by using awake rats in our 

rsfMRI data acquisition (Liang et al., 2012b).

We found that all functional parcels obtained were located in anatomically well-defined 

regions, suggesting that functional parcellations provided brain segregations in general 

consistent with anatomical definitions. However, functional parcellations can further 

differentiate separate subdivisions of anatomically homogeneous brain structures. For 

instance, even in a low-dimensionality parcellation (e.g. 40 parcels), the ventral and dorsal 

striatum were well separated, despite the uniform contrast of the structure in anatomical 

MRI images. Functionally, it is well known that ventral and dorsal striatum play distinct 

roles. The ventral striatum, in particular the nucleus accumbens, primarily mediates reward, 

reinforcement and motivational salience behaviors, whereas the dorsal striatum mainly 

mediates cognition involving motor and executive functions, as well as stimulus-response 

learning (Ferre et al., 2010; Taylor et al., 2013; Yager et al., 2015). Taken together, these 

results indicate that the RSFC-based parcellation approach is sensitive to functional 

specificity and offers a great tool to investigate the brain specialization in the animal.
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Importantly, functional parcels of the rat brain obtained were highly robust, reflected by high 

reproducibility across data acquired in the same scanner, or even across different MRI 

scanners. This robustness is essential for establishing a standard functional atlas of the 

awake rodent brain. In addition, a robust parcellation is critically important for studying the 

brain network organization as unstable parcellations will have significant influences on 

measuring network topological properties (Wang et al., 2009). Furthermore, the same 

parcellation approach can be readily extended to analyzing rsfMRI data in other species.

Topological characteristics of the awake rat brain network

By constructing the whole-brain network of the awake rat based on functional parcels 

obtained, we further investigated the rat brain organization in terms of network segregation, 

global integration and resilience. Since all network topological matrices are sensitive to the 

network connection density, we assessed these topological measures in a large range of 

density.

Our data (Fig. 8) indicate that at relatively low densities (density < 0.5), the rat brain 

network exhibited high levels of segregation while maintained high efficiency in information 

integration (i.e. high integration), reflected by high clustering coefficient and modularity but 

comparable global efficiency and characteristic path length relative to random networks with 

the same densities. These characteristics together demonstrate small-worldness, a 

characterizing feature of human brain networks (Sporns and Honey, 2006). At similar 

densities, the network also displayed a positive assortativity, which suggests the presence of 

a resilient core of interconnected hubs that are against targeted attacks. By contrast, the rat 

brain network showed distinct characteristics that were indistinguishable from random 

networks at density > 0.5. This observation was consistent with a recent study that reported a 

heavily connected network (density = 0.66) in the macaque brain, which does not show a 

small-world organization (Markov et al., 2013; Markov et al., 2014). In addition, at high 

densities the rat brain network had zero to negative assortativity, which suggests that a hub 

tends to be connected to non-hubs, and thus the network is vulnerable to targeted attacks 

(Rubinov and Sporns, 2010).

Global integration of the awake rat brain network

To further investigate functional integration of the awake rat brain network, we examined 

functional hubs and rich club regions of the network. Functional hubs are arguably the most 

important nodes in a brain network, considering the integrative role that hub nodes play. A 

functional hub is central in the network for efficient information transfer and integration in 

the brain (Bullmore and Sporns, 2009). In graph analysis, a hub node manifests the 

properties of high node degree, high betweenness centrality, short distance to other nodes in 

the network and low local clustering coefficient (Bullmore and Sporns, 2009). We identified 

a number of brain hubs including the ectorhinal, perirhinal, temporal association, cingulate, 

insular and piriform cortices (Figure 9), and these results are mostly in agreement with 

anatomical hubs previously identified in the rat brain (van den Heuvel et al., 2015), which 

suggests a convergence of brain hubs in anatomical and functional networks.
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Functional integration can also be reflected by the rich-club organization of the network. It 

has been shown in humans that highest-degree node regions are also highly mutually 

interconnected, forming a `rich club' of brain areas that are crucial for efficient brain 

communication (Colizza et al., 2006; van den Heuvel and Sporns, 2011). In the present 

study we identified a list of rich-club regions in the rat brain, including the right temporal 

association cortex, right ectorhinal and perirhinal cortices, lateral area of right secondary 

visual cortex, right dorsolateral entorhinal cortex, bilateral auditory cortex, bilateral insular 

cortex, bilateral cingulate cortex, bilateral piriform cortex, right dorsal CPu, and thalamus. 

Taken together, these results suggest the rat brain network is highly integrated.

An interesting observation of the present study is that some brain hubs and rich-club regions 

were only present on the right side of the rat brain. Notably, only male rats were included in 

the present study and the right neocortex of male rats has been found to be thicker than the 

left neocortex (Diamond et al., 1975). These results suggest that the right neocortex of the 

male rat brain may play a more important role than the left in information processing.

Comparative functional neuroanatomy between humans and rodents

The successful translation of animal research relies on an effective understanding of how 

features have been conserved between humans and other species. In neuroscience, human 

functional connectivity studies have shown great promise in revealing organizational 

characteristics of brain networks in both healthy and pathological conditions. The potential 

of animal research to move these investigations forward remains largely untapped, in part 

because the conservation of the brain organization between species remains unclear. To 

address this problem, in the present study we have provided a robust functional atlas of the 

rat brain and analyze the similarity of its organization to the human brain.

Our data indicate that the rat brain network conserved fundamental topological properties as 

the human brain. Table 3 compared the topological matrices of the rat brain network 

measured in the present study with those of the human brain network reported in a study 

using a similar number of nodes (116 nodes in the human brain network and 130 nodes in 

the rat brain network) at three densities (0.15, 0.20, 0.25) (Sinclair et al., 2015). The 

comparison shows that all topological measures are quantitatively similar between the 

human and rat brain networks at all densities. Both species exhibit high levels of segregation 

and integration of their brain networks. This comparison indicates that the rat brain network 

shares significant topological features with the human brain, and highlights the translational 

value of the present study.

Another interesting question is that whether hub regions are conserved across humans and 

rodents. Previous human and mouse studies consistently singled out the cingulate cortex as a 

brain hub and/or a rich-club region in both structural and functional networks (Buckner et 

al., 2009; Grayson et al., 2014; Liska et al., 2015; van den Heuvel et al., 2010). Interestingly, 

we also found that the cingulate cortex was a brain hub in the awake rat brain as well. 

Furthermore, our data showed that rat functional network has a rich-club organization, 

which is a feature shared by human brain networks and the rat anatomical brain networks 

(Grayson et al., 2014; van den Heuvel et al., 2016; van den Heuvel and Sporns, 2011). Taken 
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together, these findings provide compelling evidence that the cingulate cortex is a functional 

hub region conserved across species.

Potential Limitations

There are a couple of technical limitations in the present study. First, the two parcellation 

numbers selected (40 and 130) are rather arbitrary. It should be noted that any parcellation 

scheme with a finite number of partitions is only an approximate representation of the 

functional organization of the brain (Moreno-Dominguez et al., 2014). In general, a low-

dimensionality parcellation represents a `coarse' partition of the brain, whereas a high-

dimensionality parcellation represents a `fine' partition of the brain. On the other hand, a 

low-dimensionality parcellation typically has a higher signal-to-noise ratio than a high-

dimensionality parcellation. Precise determination of the optimal parcellation number 

remains a topic of active research in the field.

Another limitation is that the optimal method to threshold RSFC during brain graph 

construction is still somewhat controversial. The question is whether the threshold should be 

based on the statistical significance of RSFC, or based on the density (De Vico Fallani et al., 

2014). Statistics-based thresholding methods have a straightforward statistical interpretation 

of the brain graph constructed, but are susceptible to non-neuronal physiological confounds. 

Meanwhile, sparsity-based thresholding methods can precisely control the density of the 

graph, but the graph construction can be more or less arbitrary. In the present study, to avoid 

the arbitrary nature of a single density, we reported global topological matrices within a 

reasonable range of densities that keep the whole-brain graph as one connected component. 

When a single threshold is necessary when computing nodal graph metrics, we applied the 

false-discovery rate (FDR) correction to determine the statistical significance of RSFC.

Only male rats were used in the present study. Since gender effects on RSFC have been 

identified in the human brain (Agcaoglu et al., 2015; Allen et al., 2011; Scheinost et al., 

2015), it should be also interesting to include female rats in future studies and investigate the 

relationship between gender and RSFC in awake rats. Furthermore, the EPI spatial 

resolution applied in the present study is moderate. It is expected that a higher EPI spatial 

resolution should reduce the partial volume effect, which will in principle render a sharper 

transition between RSFC profiles across different brain regions, and thereby should further 

improve the parcellation quality.

Summary

The present study developed a functional atlas of the awake rat brain and studied the 

topographical features displayed by a whole-brain network based on that atlas. Highly 

reproducible functional parcels that were both (within-parcel) homogeneous and (between-

parcel) specialized have been obtained. By constructing and analyzing the whole-brain 

network based on functional parcels, we found numerous hub regions in the awake rat brain 

that displayed structure-function convergence, and found a number of topological properties 

that preserved across mammalian brains. These results have significantly advanced our 

understanding of the rat brain specialization and integration. They also provide great value 

for studies of comparative functional neuroanatomy.
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The significance of our findings can also be extended to studies of translational models for 

neuropsychiatric diseases. Accumulating evidence has shown that abnormalities of 

topological configurations of human brain networks are tightly linked to different brain 

disorders (Baggio et al., 2014; Buckner et al., 2009; Ray et al., 2014), suggesting that brain 

network topology may serve as a potential biomarker for various brain diseases. Thus, 

mapping the functional rat connectome at its normal state will provide an important 

reference point that will facilitate the identification of altered connectome topology in 

animal models of brain disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the data analysis pipeline.
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Figure 2. Low-dimensionality functional atlas obtained by the whole-brain RSFC-based 
parcellation (40 parcels)
Left columns are individual parcel maps overlaid on structural images (the coronal view) 

with the distance to the bregma (unit: mm) labeled at the bottom of each image. Right 

columns are individual parcel maps overlaid on structural images displayed in the axial view. 

Confidence (silhouette) values are used for color-coding voxels of brain parcels. Brain 

parcels are grouped based on the anatomical system they belong to, and they are numbered 

according to their centroid location in the caudal-rostral direction.
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Figure 3. High-dimensionality functional atlas obtained by the whole-brain RSFC-based 
parcellation (130 parcels)
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Left columns are individual parcel maps overlaid on structural images (the coronal view) 

with the distance to the bregma (unit: mm) labeled at the bottom of each image. Right 

columns are individual parcel maps overlaid on structural images displayed in the axial view. 

Confidence (silhouette) values are used for color-coding voxels of brain parcels. Brain 

parcels are grouped based on the anatomical system they belong to, and they are numbered 

according to their centroid location in the caudal-rostral direction.
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Figure 4. Comparison of parcel homogeneity between functional and anatomical parcellations
(a) Parcel homogeneity map of the functional parcellation. (b) Parcel homogeneity map of 

the anatomical parcellation. (c) Homogeneity value plotted against parcel size for the two 

parcellation schemes. The homogeneity value of the functional parcellation is above that of 

the anatomical parcellation for the most majority of parcel sizes, reflected by their Lowess 

fit curves.
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Figure 5. Reproducibility of the 40-parcel functional atlas evaluated using a split-group 
approach
Left (right) three columns are parcels obtained from the first (second) subset of the 

discovery sample. Brain parcels were matched between the two subsets based on the 

maximal DC. Distance to the bregma was labeled at the bottom of each image (unit: mm).
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Figure 6. Reproducibility of the 40-parcel functional atlas between the discovery sample (7 T) 
and replication sample (4.7 T)
Left (right) three columns are parcels obtained from the discovery (replication) samples. 

Brain parcels were matched between the two samples according to the maximal DC. 

Distance to the bregma was labeled at the bottom of each image (unit: mm).
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Figure 7. Rat whole-brain network constructed using 130 functional parcels
The network is visualized in the axial, sagittal and coronal views, respectively. Each 

ipsilateral parcel is represented by a node located at its centroid position with the node size 

proportional to the number of voxels of this parcel. For the display purpose only, each 

bilateral parcel is represented by two unilateral nodes, located at their corresponding 

ipsilateral centroid position and connected by a gray edge of uniform thickness. 8% of the 

strongest functional connections are displayed. Edges thickness is proportional to the RSFC 

strength. Red: positive connectivity; blue negative connectivity.
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Figure 8. Global topological measures of the rat brain network
Network segregation is measured by average clustering coefficient and modularity. Network 

integration is measured by characteristic path length and global efficiency. Network 

segregation and integration balance is measured by small-worldness index. Network 

resilience is measured by assortativity coefficient.
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Figure 9. Hub regions of the rat brain network
Parcels with the hub score ≥ 1 are displayed. Parcels with a hub score ≥ 3 are identified as 

the functional hubs in the present study.
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Table 1

Anatomical coverage of each parcel in the 40-parcel functional atlas of the awake rat brain.

System Parcel # Anatomical spatial coverage

brainstem regions

3 caudal part of pontine nuclei and subcoeruleus nucleus

4 raphe nucleus, ventral periaqueductal gray, and isthmic reticular formation

10 rostral part of pontine nuclei and reticular part of substantia nigra

midbrain regions

2 periaqueductal gray and central nucleus of inferior colliculus

9 external cortex of inferior colliculus, dorsal cortex of inferior colliculus, retrosplenial cortex, 
dorsal superior colliculus, medial pretectal nucleus, and habenular nucleus

11 periaqueductal gray, ventral superior colliculus, precuneiform nucleus, and reticular 
formation

thalamic and hypothalamic regions

18 mesencephalic reticular formation, zona incerta, and hypothalamus

21 dorsal part of thalamus

24 ventral part of thalamus

28 ventral part of thalamus, globus pallidus and lateral hypothalamus

amygdala regions
14 caudal part of amygdala

22 rostral part of amygdala

striatal regions
29 dorsal caudoputamen

33 ventral caudoputamen and whole nucleus accumbens

hippocampal and retrohippocampal 
regions

5 caudomedial entorhinal cortex and parasubiculum

6 dorsolateral and medial entorhinal cortex and transition area of subiculum

7 caudal part of ectorhinal cortex, perirhinal cortex, temporal association cortex, and transition 
area of subiculum

13 ventral subiculum, ventrocaudal CA1 and ventrocaudal dentate gyrus

16 postsubiculum, presubiculum, parasubiculum, dorsal CA1, rostral CA3 and dorsal dentate 
gyrus

17 ectorhinal cortex, perirhinal cortex, ventral CA1, and ventral CA3

19 dorsal CA1

visual areas

1 retrosplenial cortex and caudal part of visual cortex

8 rostral part of visual cortex

12 rostral part of visual cortex and parietal cortex

auditory areas
15 left auditory cortex

20 right auditory cortex

somatosensory areas

26 primary somatosensory cortex

27 primary somatosensory cortex, and secondary somatosensory cortex

32 primary somatosensory cortex, secondary somatosensory cortex, and posterior part of the 
insular cortex

36 primary somatosensory cortex

olfactory areas 31 lateral hypothalamus, olfactory tubercle, and piriform cortex
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System Parcel # Anatomical spatial coverage

35 olfactory tubercle and piriform cortex, and a small portion of anterior part of the insular 
cortex

motor areas

30 primary motor cortex, secondary motor cortex, mammillary nucleus, and ventral 
hypothalamus

39 primary motor cortex, secondary motor cortex, and a small portion of frontal cortex

cingulate areas

23 area 1 of cingulate cortex and ventral part of retrosplenial cortex

25 ventral part of cingulate cortex, dorsal part of retrosplenial cortex, small portion of secondary 
visual cortex and secondary motor cortex

34 area 2 of cingulate cortex

prefrontal areas

37 lateral septal nucleus, infralimbic cortex, dorsal peduncular cortex, and dorsal tenia tecta

38 prelimbic cortex, orbital cortex, and insular cortex

40 orbital cortex, anterior olfactory nucleus, prelimbic cortex, and piriform cortex
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Table 2

Anatomical coverage of each parcel in the130-parcel functional atlas of the awake rat brain.

System Parcel # Anatomical spatial coverage

brainstem regions

2 subcoeruleus nucleus

7 pontine reticular nucleus

10 pontine nuclei

15 pontine nuclei, pontine reticular nucleus

24 oral part of pontine reticular nucleus

25 pontine nuclei

37 pontine nuclei, interpeduncular nucleus

midbrain regions

3 lateral periaqueductal gray, central nucleus of inferior colliculus

6 external cortex of inferior colliculus, dorsal cortex of inferior colliculus

8 right external cortex of inferior colliculus

9 raphe nucleus, tegmental nucleus, ventrolateral periaqueductal gray

18 left central nucleus of inferior colliculus

19 right central nucleus of inferior colliculus

22 left precuneiform nucleus, isthmic reticular formation

28 medial superior colliculus

33 ventral periaqueductal gray

34
right precuneiform nucleus, isthmic reticular formation, mesenceph reticular 

formation

35 left superficial gray layer of superior colliculus

36 deep gray layer of superior colliculus

39 right substantia nigra

42 left substantia nigra

46 mesenceph reticular formation

48 deep gray layer of superior colliculus, pretectal nucleus

51 parabrachial pigmented nucleus, red nucleus, reticular formation

55 medial pretectal nucleus, habenular nucleus

hippocampal and retrohippocampal regions

1 right ectorhinal cortex, right perirhinal cortex

11 left entorhinal cortex

12 right entorhinal cortex, right ectorhinal cortex, right perirhinal cortex

13 left entorhinal cortex

17 postsubiculum, parasubiculum, retrosplenial cortex

20 right entorhinal cortex

23 left ectorhinal cortex, left perihinal cortex, left temporal association cortex

26 left entorhinal cortex

27 presubiculum, transition area of subiculum

29 right ectorhinal cortex, right perirhinal cortex, right temporal association cortex

31 right dorsal subiculum

32 presubiculum, parasubiculum, dentate gyrus, CA3

38 dorsal CA1
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System Parcel # Anatomical spatial coverage

41 CA1, CA3, dentate gyrus

45 left CA1, left CA3, left dentate gyrus

47 right entorhinal cortex, right ventral subiculum

50 ventral CA1, ventral CA3, ventral dentate gyrus

53 CA1, CA2, CA3

60 dentate gyrus, CA1, CA3

62 right CA1, right dentate gyrus

64 left CA1, left dentate gyrus

67 ectorhinal cortex, perirhinal cortex

70 CA1, CA2

thalamic and hypothalamic regions

56 medial mammillary nucleus

58 right anterior pretectal nucleus, right zona incerta, right ventral thalamic nucleus

61 right lateral geniculate nucleus

65 parafascicular thalamic nucleus, posterior thalamic nucleus group

66 zona incerta, posterior hypothalamic nucleus

71 dorsal thalamus

72 left posterior thalamic nucleus group, ventral thalamic nucleus

75 right posterior thalamic nucleus group, right ventral thalamic nucleus

77 lateral hypothalamus

82 ventral thalamic nucleus

83 lateral hypothalamus

84 globus pallidus, zona incerta

86 lateral hypothalamus

89 stria medullaris of thalamus

90 medial hypothalamus

92 ventral thalamic nuclei

95 lateral hypothalamus

amygdala regions

49 left amygdala

52 right amgdala

69 amygdala

81 amygdala

88 amygdala

striatal regions

74 dorsocaudal caudoputamen

93 left dorsal caudoputamen

94 right dorsal caudoputamen

96 dorsal caudoputamen, lateral septal nucleus

98 ventral caudoputamen, nucleus accumbens, lateral septal nucleus

106 dorso-rostral caudoputamen

112 ventrorostral caudoputamen, nucleus accumbens

visual areas 4 monocular primary visual cortex, retrosplenial cortex
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System Parcel # Anatomical spatial coverage

5 binocular primary visual cortex, lateral area of secondary visual cortex

14 lateral area of left secondary visual cortex, left temporal association cortex

16 lateral area of right secondary visual cortex, right temporal association cortex

21 primary visual cortex

40 right primary visual cortex

auditory areas

30 right auditory cortex, right temporal association cortex

44 left auditory cortex, left temporal association cortex

54 right auditory cortex

57 right auditory cortex

59 left auditory cortex, left temporal association cortex

76 right auditory cortex

79 left auditory cortex

olfactory areas

100 olfactory tubercle

104 piriform cortex

109 olfactory tubercle, lateral septal nucleus

115 olfactory tubercle, piriform cortex

120 anterior olfactory nucleus

128 anterior olfactory nucleus, piriform cortex

130 anterior olfactory nucleus

insular areas

99 left insular cortex

103 right insular cortex

105 agranular insular cortex

107 insular cortex, secondary somatosensory cortex

116 left agranular insular cortex

122 right agranular insular cortex

somatosensory areas

63 left parietal cortex, left primary somatosensory cortex

78 primary somatosensory cortex, secondary visual cortex

80 primary somatosensory cortex

85 primary somatosensory cortex, primary motor cortex

87 right primary somatosensory cortex, right secondary somatosensory cortex

91 left primary somatosensory cortex, left secondary somatosensory cortex

101 primary somatosensory cortex

102 left primary somatosensory cortex, left secondary somatosensory cortex

111 primary somatosensory cortex

prefrontal areas

113 lateral septal nucleus, infralimbic cortex, dorsal peduncular cortex, dorsal tenia tecta

119 prelimbic cortex

124 prelimbic cortex, orbital cortex

125 secondary motor cortex

129 dorsolateral orbital cortex
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System Parcel # Anatomical spatial coverage

motor areas

114 right primary motor cortex, right secondary motor cortex

117 primary motor cortex, secondary motor cortex

118 primary motor cortex

121 secondary motor cortex

123 secondary motor cortex

126 secondary motor cortex

127 secondary motor cortex

cingulate areas

43 retrosplenial cortex

68 retrosplenial cortex

73 retrosplenial cortex, cingulate cortex

97 cingulate cortex

108 cingulate cortex

110 cingulate cortex
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Table 3

Comparisons of graph metrics between the human and rat brain.
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