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Summary

The analysis of multiple outcomes is becoming increasingly common in modern biomedical 

studies. It is well-known that joint statistical models for multiple outcomes are more flexible and 

more powerful than fitting a separate model for each outcome; they yield more powerful tests of 

exposure or treatment effects by taking into account the dependence among outcomes and pooling 

evidence across outcomes. It is, however, unlikely that all outcomes are related to the same subset 

of covariates. Therefore, there is interest in identifying exposures or treatments associated with 

particular outcomes, which we term outcome-specific variable selection. In this work we propose a 

variable selection approach for multivariate normal responses that incorporates not only 

information on the mean model, but also information on the variance-covariance structure of the 

outcomes. The approach effectively leverages evidence from all correlated outcomes to estimate 

the effect of a particular covariate on a given outcome. To implement this strategy, we develop a 

Bayesian method that builds a multivariate prior for the variable selection indicators based on the 

variance-covariance of the outcomes. We show via simulation that the proposed variable selection 

strategy can boost power to detect subtle effects without increasing the probability of false 

discoveries. We apply the approach to the Normative Aging Study (NAS) epigenetic data and 
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identify a subset of five genes in the asthma pathway for which gene-specific DNA methylations 

are associated with exposures to either black carbon, a marker of traffic pollution, or sulfate, a 

marker of particles generated by power plants.

Keywords

Bayesian variable selection; Markov chain Monte Carlo method; multivariate regression analysis; 
phase transition; structured spike-and-slab prior

1. Introduction

The identification of environmental determinants of asthma is a major priority in 

environmental health research. A number of studies have reported evidence suggesting that 

air pollution not only exacerbates existing asthma but also elevates the incidence of asthma 

(von Mutius, 2000; Trasande and Thurston, 2005). Recent work has focused on possible 

epigenetic mechanisms underlying these observed effects. Such work is important because 

changes in DNA methylation, a common epigenetic outcome, may persist over time even 

after exposure to a given environmental factor has ceased, and represent a mechanism 

through which interventions to counteract exposure, such as administration of methyl 

donors, might be possible.

In this article, we analyze data from the Normative Aging Study (NAS) (Bell et al., 1972), a 

Boston-area longitudinal study of the elderly veterans conducted by the Veteran’s 

Administration (VA) since 1963, to identify genes within the asthma pathway for which 

gene-specific DNA methylation is associated with air pollution levels in the Boston area. 

The study enrolled 2,280 male volunteers from the greater Boston metropolitan area. The 

participants, who have an average age of 42 at entry, were screened and determined to be 

free of major chronic medical health conditions to be admitted to NAS. Recently, Sofer et al. 

(2013) conducted a pilot study of particulate exposures on 141 individuals in the NAS and 

analyzed pathway-specific associations with methylation markers assessed in a genome-

wide scan of gene promoter regions. We consider the same data and focus on (i) the 

identification of specific genes in the asthma pathway that are associated with exposure to 

black carbon (BC), a marker of traffic pollution, and sulfate, a marker of particles from 

power plants, and (ii) estimation and inference of the effect sizes for the genes identified in 

(i). For our analysis, we exclude 9 individuals who had been diagnosed with asthma at the 

time of the examination and 40 individuals for whom black carbon and sulfate measures are 

not available. These are missing because NAS started measuring BC in 1995 and did not 

start measuring sulfate until 2000, and can thus be considered to be missing completely at 

random. Therefore the data considered for analysis consist of DNA methylation in 27 genes 

within the asthma pathway from 92 subjects in the NAS.

Statistically the goals of the study equate to identifying and estimating the association 

between each of the 27 gene-specific methylation outcomes and the environmental 

exposures, black carbon and sulfate concentrations, while controlling for potential 

confounders. An increasingly common approach to analyzing data on multiple outcomes is 

the development of a joint model that relates the mean vector of outcomes to a set of 
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covariates of interest. This approach provides multiple advantages over the simpler strategy 

of analyzing each outcome separately, including the opportunity to pool evidence across 

outcomes which can lead to more powerful tests on effects of interest (Breiman and 

Friedman, 1997).

In this work we propose a new Bayesian variable selection model that identifies outcomes 

associated with a set of covariates incorporating not only information on the mean model, 

but also information on the variance-covariance structure of the outcomes. The approach 

effectively leverages the dependence across outcomes in order to assess the effect of a 

particular covariate on a given outcome. To accomplish this, we utilize the covariance 

model, which is estimated in the model fitting process, to specify a multivariate prior on the 

latent binary selection indicators. The prior has the appearance of a Markov random field 

(MRF) prior with edge potentials specified in terms of the model covariance, which is 

updated and re-evaluated at each Markov chain Monte Carlo (MCMC) step. Hereafter, we 

refer to this prior as an MRF prior.

There has been a considerable amount of research on Bayesian variable selection methods. 

Spike and slab approaches have been widely adopted for variable selection problems 

(George and McCulloch, 1993, 1997; Hernández-Lobato et al., 2013; Narisetty and He, 

2014) and the idea has been extended to multivariate regression problems (Brown et al., 

1998). In this approach, the regression coefficients are assumed to arise from a scale mixture 

of a point mass at 0 and a normal density.

In our case, the approach of Brown et al. (1998) is suboptimal because the method selects 

the same covariates for all responses. Several priors based on an MRF have been proposed to 

incorporate biological information on the structured dependence between covariates in 

variable selection for univariate regression models (Li and Zhang, 2010; Vannucci and 

Stingo, 2010; Stingo et al., 2011). Our approach differs from these existing MRF models in 

that we leverage the dependence among multiple outcomes in our prior specification for the 

variable selection indicators, as opposed to specifying it based on the network structure 

known a priori among covariates.

The remainder of this paper is organized as follows. Section 2 describes the proposed 

Bayesian framework, including model formulation and specification of prior distributions, as 

well as the MCMC algorithm to sample from the posterior distribution. Section 3 presents 

results from simulation studies that evaluate the operating performance of the proposed 

approach and compare it to that obtained using existing Bayesian variable selection methods 

based on independent Bernoulli priors. Section 4 presents results from the analysis of the 

NAS data. Section 5 concludes the paper with a discussion.

2. A Bayesian Framework for Multivariate Data

In this section, following a description of a general multivariate normal regression model, 

we present prior distributions including the proposed MRF prior for the latent binary 

selection indicators. We provide general guidelines for specifying the hyperparameters and 
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covariance structures considered in this paper. Details of the computational algorithm are 

provided in Web Appendix A.

2.1 Model Formulations

Suppose that outcomes yi = (yi,1,…, yi,q)⊤ are observed for subject i = 1,…, n. We consider a 

linear regression model with multivariate response yi and p candidate predictors xi = (xi,1,…, 

xi,p)⊤. Specifically, we assume yi follows a multivariate Normal distribution:

(1)

where β0 = (β0,1,…, β0,q)⊤ are the intercepts, βj = (βj,1,…, βj,p)⊤, for j = 1,…, q, are the 

regression parameters. B is the p × q matrix whose columns are β1,…, βq, and Σ is the 

variance-covariance matrix.

2.2 Prior Distributions

A Bayesian framework requires the specification of prior distributions for model parameters. 

In the context of Bayesian stochastic search variable selection, a mixture of two normal 

distributions has been widely used for the regression parameter prior (George and 

McCulloch, 1993, 1997):

where Σ(i,j) is the (i,j)-th element of Σ and γk=(γ1,k,…,γq,k)⊤, for k=1,…, p, is a vector of 

binary latent variables indicating the membership of each regression parameter to one of the 

components. In general, v0j and v1j are set to small and large values, respectively. If the data 

support γj,k = 1 over γj,k = 0 then the covariate k is deemed to be an important covariate for 

the j-th outcome. An alternative to the mixture of normal distributions is to specify a spike-

and-slab prior distribution, by letting  and  , as follows:

(2)

where  is the point mass distribution at 0. The spike-and-slab prior has several advantages 

over a mixture of two normal priors including: i) a clear separation for variable selection by 

setting βj,k = 0 when γj,k = 0; ii) ease of performing sensitivity analyses as there is only one 

hyperparameter  to specify. Therefore, we take the prior (2) for βj,k in our proposed 

framework.

The latent binary variables γj,k, for j = 1,…, q, k = 1,…, p, are typically assumed to be 

independent Bernoulli random variables with inclusion probabilities πk, which can be 

viewed as the initial guess for the proportion of outcomes associated with the k-th covariate. 

However, the independent prior for variable selection does not exploit information in the 
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data on the within-subject correlations among outcomes. Indeed, one would expect that 

highly correlated outcomes might be associated with the same covariates. Therefore, we 

propose a prior that can incorporate the underlying dependence between outcomes into the 

inclusion probabilities. Following Li and Zhang (2010), we model the relations among the 

variable selection indicators γk, using an MRF. Letting ci,j denote the correlation between 

the i-th and j-th outcomes, we specify the following MRF prior distribution for γk:

(3)

where 1q is a q-vector of ones and Cabs is a q×q matrix whose (i,j)-th element is given by 

 . While the hyperparameter ωk dictates the shrinkage of the 

model together with  in (2), the hyperparameter η determines the extent to which other 

outcomes impact the probability of including a given covariate in the model for a given 

outcome. It can be shown that the joint prior (3) corresponds to a set of conditional Bernoulli 

distributions given by

where

and γ(−j),k is the vector γk with the j-th element removed. Note that setting η=0 is the 

conditional prior being equivalent to the conventional independent Bernoulli prior 

distribution. Lastly, we assign a conjugate normal distribution for the intercept 

, where (μ0, h0) are hyperparameters to be specified and Iq is the q × q 
identity matrix.

2.3 Specification of Hyperparameters and Phase Transition

Since the prior distributions for βj,k and γj,k play an important role in the proposed variable 

selection framework, the corresponding hyperparameters should be carefully selected. A 

realistic value can be chosen for  based on the expected magnitude of effects for relevant 

covariates. When there is not sufficient information in the data, an unreasonably large value 

of  may lead the prior to support a large value for βj,k as if the corresponding covariate 

were important, while too small a value for  may result in the prior being highly 

concentrated around 0 (Liang et al., 2008). In practice, one could fit a univariate regression 

model for each of the outcomes to obtain estimates of βj,k then  can be chosen based on 

the variance of the estimates of βj,k (Li and Zhang, 2010). Logistic transformation of the 
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hyperparameter ωk, denoted by logit−1(ωk), can be interpreted as the prior proportion of 

responses that are associated with the k-th covariate when the underlying dependence 

between outcomes is ignored (i.e., η = 0).

As mentioned in Section 2.2, the hyperparameter η controls the extent to which the 

dependence between outcomes is taken into account for variable selection. A greater value 

of η encourages the selection of a covariate for an outcome when the covariate is selected 

for other outcomes correlated to the one under consideration. It is important to note that the 

specification of η requires special attention because of the phase transition behavior (Li and 

Zhang, 2010; Stingo et al., 2011). The phase transition problem commonly occurs in models 

that use an MRF parametrization as in (3). One crucial issue is that, for a given value of 

 , the model size in terms of the number of selected predictors increases with a small 

change of η value. Several guidelines have been suggested to preclude this problem by 

detecting the phase transition boundary for η in the Bayesian variable selection context 

although no theoretical results have been obtained. Li and Zhang (2010) derived an 

approximate prior-based estimate of the phase transition boundary in the hyperparameter 

space given that the MRF prior is exchangeable and provided a heuristic method for 

choosing hyperparameters to avoid the phase transition: first choose realistic values for 

and η under the assumption of a sparse model then choose the value of ωk based on the 

approximate prior-based estimates of the phase transition boundary. For a given choice of ωk 

and , Stingo et al. (2011) simulated from the prior distribution in (3) over a grid of η 
values to detect the phase transition boundary ηpt (the smallest value that leads to the 

selection of all covariates) and specified a Beta hyperprior on η/ηpt. Our approach is close to 

how Stingo et al. (2011) found ηpt except that we perform the grid search strategy on the 

posterior distribution. Specifically, we implement the following strategy to detect ηpt over 

the posterior distribution:

i. Simulate M0 posterior samples for model parameters over a grid of η values, 

{ηg :g = 0,…,G, η0=0}.

ii. For the k-th covariate (k=1,…, p), let  denote the 10th percentile of 

posterior mean estimates of γk (across the outcomes) for the model with η = ηg. 

Calculate  for g = 0,…, G.

iii. Declare the phase transition point ηpt to be ηg if  for any 

k=1,…,p.

iv. Set η=ηg−1.

The logic behind the strategy is that the phase transition can typically be detected prior to 

convergence of an MCMC chain and at least 10% of outcomes are assumed not to be 

associated with a particular covariate. Given  and logit−1(ωk)=0.1 or 0.5, Figure 1 

illustrates the phase transition boundaries of η based on a prior simulation approach and our 

posterior simulation approach for the analysis of the Normative Aging Study data. Both 

methods detect the phase transition with smaller value of η as ωk gets larger. This is also 

consistent with the investigation of Li and Zhang (2010) based on their approximate prior-
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based estimates. However, we can see that the phase transition boundary detected from the 

posterior distribution (2.1 in Figure 1 (a) and 1.1 in Figure 1 (b)) provides a better guideline 

to specify η than that suggested by the prior distribution because the phase transition point 

would have been underestimated by the approach relying solely on the prior (1.0 in Figure 1 

(a) and <0.1 in Figure 1 (b)).

2.4 Covariance Structure

The proposed MRF structure is flexible in that it can incorporate either an unstructured 

matrix or structured covariance pattern, such as compound symmetry or factor-analytic 

structure for the variance-covariance matrix Σ. One question that arises is how the proposed 

variable selection approach performs when this matrix is misspecified. In order to examine 

this issue here, we consider two models for Σ, a factor-analytic covariance structure 

assuming a single latent factor and the unstructured model.

In a factor-analytic model (Hogan and Tchernis, 2004), we assume that each subject has a 

latent variable bi that captures unobserved characteristics that are associated with yi. Then 

, where λ=(λ1,…,λq)⊤ is a q × 1 vector 

of factor loadings and σ2 measures the residual variation in yi. The model assumes 

independence between responses conditionally on bi. In order to ensure identifiability of λ 
(Bartholomew et al., 2011) and to exploit prior-posterior conjugacy for σ2, we take 

. Marginalizing over the latent variable bi, the factor-analytic model 

corresponds to (1) with Σ = σ2(λλ⊤ + I), implying the correlation between the j-th and j′-th 

responses is . For the factor-analytic model, we specify a normal 

distribution, , for λ and a conjugate inverse-gamma distribution, 

, for σ2.

The unstructured covariance structure imposes no specific pattern on Σ in (1). Therefore, q(q 
+ 1)/2 parameters need to be estimated for Σ under the unstructured model. For the 

unstructured model, an inverse-Wishart prior distribution, , is specified for the 

variance-covariance matrix Σ.

2.5 Markov Chain Monte Carlo

In order to perform posterior inference, we use an MCMC algorithm to obtain samples from 

the joint posterior distribution by either exploiting prior-posterior conjugacies or using a 

Metropolis-Hastings algorithm to update model parameters. A detailed description of the 

proposed computational scheme is provided in Web Appendix A. In order to improve the 

computation speed, we developed a series of core functions in C and provide the algorithm 

in the mBvs package for R. The software is available from the Comprehensive R Archive 

Network (http://cran.r-project.org/web/packages/mBvs/). To provide a sense of 

computational time, for the unstructured model, which is the more complex covariance 

structure requiring the estimation of a larger number of parameters, it takes 12 minutes to 
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generate 10,000 MCMC scans on a 2.5 GHz Intel Core i7 MacBook Pro for the analysis of 

the NAS data.

3. Simulation Studies

We assess the performance of the proposed multivariate Bayesian variable selection model 

on simulated data. Data sets are generated under several scenarios with different correlation 

structures between outcomes as well as different association patterns between two covariates 

and the vector of outcomes.

3.1 Setting

We design four different simulation scenarios where various correlation structures are 

considered between outcomes: in Scenario I the outcomes associated with covariate x1 are 

highly correlated but others are moderately correlated; in Scenario II the outcomes have the 

same correlation as in Scenario I but none of them are associated with any of the covariates 

(the null model); in Scenario III the outcomes associated with covariate x1 are moderately 

correlated to each other and the remaining outcomes are weakly correlated; in Scenario IV 

the outcomes related to covariate x1 are weakly correlated while those not associated to 

covariate x1 are highly correlated. Samples of size n=100 with q=10 responses and p=2 

covariates are generated under the model (1). Two continuous covariates are generated from 

 assuming Cor(x1, x2)=0.3 and 0.6, and the intercepts β0 are randomly set to values 

in the range of (−1, 1). In Scenarios I, III and IV, the effects of the covariates on the 

responses are assumed to be

while Scenario II considers the null case by setting all elements of B to zero. The variance-

covariance matrix Σ is set to an exchangeable correlation structure with correlation c1 within 

the block of the first five variables, an exchangeable structure with correlation c2 within the 

block of the second five outcomes, and a common cross-block correlation of c3 for pairs of 

outcomes from different blocks. The pairwise correlations (c1, c2, c3) are set to (0.70, 0.20, 

0.30) in Scenario I and Scenario II, while they are set to (0.40, 0.05, 0.10) and (0.20, 0.70, 

0.30) in Scenario III and Scenario IV, respectively. We consider 100 simulated replications 

for each scenario. In Web Appendix B, we provide the results from additional simulation 

studies (Scenarios I′-IV′) where data are generated under a factor-analytic covariance 

structure.

3.2 Analyses and Specification of Hyperparameters

In order to assess the performance of the model when the variance-covariance structure is 

both correctly specified and misspecified, we fit both unstructured and factor-analytic 

models with MRF prior to 100 simulated data sets under each scenario. For the intercept β0, 

we assign a non-informative prior distribution: (μ0, h0)=(0, 106). The hyperparameter , set 

to 100, is chosen to be fairly non-informative and ωk is set to 0, which corresponds to a 0.5 
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prior probability of being selected when ignoring the dependence between outcomes. For the 

factor-analytic model, a non-informative prior distribution is assigned for λ with (μλ, 

hλ)=(0, 106). We set  so that the induced prior for σ2 has a median of 1.44 

and 95% central mass between 0.27 and 39.81. Finally, for the unstructured model, (Ψ0, ρ0) 

are set to (δI, q+δ+1) with δ = 3. This choice corresponds to a prior distribution centered at I 
and having a variance equal to 2.0 for the diagonal elements of Σ. For the analysis of each 

simulated data set, the hyperparameter η is specified based on the posterior simulation 

approach described in Section 2.3, with a grid of η values {ηg=0.1(2g-1): g=1,…,G=50, 

η0=0} and M0=5,000 iterations. The average chosen values of η for the unstructured model 

are 1.26, 1.94, 1.44, and 1.26 in the four simulation scenarios, respectively, when Cor(x1, 

x2)=0.3. We ran each MCMC chain for 40,000 iterations with the first half taken as burn-in. 

We note that, in order to make a fair comparison with the existing independent Bernoulli 

prior, we keep the overall prior inclusion probability logit−1(ωk) equal to 0.5 for both the 

independent Bernoulli prior and our proposed MRF prior. Therefore, differences in 

performance between the two prior choices can be attributed to the proposed MRF prior for 

γk.

3.3 Results

Table 1 provides the results for the proposed Bayesian method under Scenarios I and II. In 

order to facilitate a comparison with the conventional approach, we also implemented the 

unstructured covariance model with an independent Bernoulli (IB) prior (equivalent to η=0) 

for γj,k. In addition, we assessed the effect of model misspecification by fitting the model 

using a factor-analytic covariance structure and present the results in Table 2. While, in the 

main paper, we only present the results that are associated with the first covariate (x1) for 

scenarios I and II when Cor(x1, x2)=0.3, results related to the second covariate (x2) as well 

as all results for Scenarios III and IV both with Cor(x1, x2)=0.3 and 0.6, are presented in 

Web Appendix B.

We first evaluate the performance of the proposed MRF prior when the model is correctly 

specified. We do this by comparing the unstructured model with IB prior to the unstructured 

model with MRF prior in Table 1. Inference for variable selection can be done through the 

marginal posterior distribution of γj,1. In Scenario I, we can see that the posterior inclusion 

probabilities for the outcomes associated with the covariate using the MRF prior are 

uniformly, significantly larger than their IB prior counterparts. Applying a marginal 

posterior probability cutoff of 0.5, both the conventional and our proposed framework 

successfully identify the association with the covariate for the two outcomes with largest 

effect sizes (βj,1⩾0.20, j=4,5). However, the estimated inclusion probabilities for the 

outcomes with smaller effect sizes (βj,k≤0.15, j=1,2,3) are less than 0.08 with the IB prior 

while they are substantially increased and large enough for one more relevant variable to be 

selected using the MRF prior (0.28, 0.36, 0.71, respectively). In Scenario I, we can see that 

the estimates of βj,1, conditioning on γj,1=1, are less biased when using our proposed MRF 

prior. Furthermore, the associated posterior uncertainties, measured by the width of the 95% 

highest posterior density (HPD) intervals, appear to be larger for the proposed MRF prior. 

Therefore, the model with MRF prior has significantly higher coverage probabilities for the 
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relevant outcomes. In the null case (Scenario II), both models successfully exclude the 

covariate for all of the outcomes despite the presence of a group of strongly correlated 

outcomes.

In order to investigate how much the performance of the proposed prior deteriorates when 

the model is misspecified, we fitted a factor-analytic model with the MRF prior (Table 2). 

The misspecified factor-analytic model shows similar results for the estimates of βj,1 

compared to the unstructured model and the two models have comparable coverage 

probabilities. However, the estimated inclusion probabilities for the outcomes with smaller 

effect sizes (βj,k≤0.15, j=1,2,3) are generally smaller for the misspecified factor-analytic 

model compared to the unstructured model. For example, for the outcome j=3, the inclusion 

probability is 0.36 when the model is misspecified (factor-analytic in Table 2) while it is 

0.71 when the model is correctly specified (unstructured in Table 1). The reduced posterior 

inclusion probability from the factor analytic model needs to be understood based on an 

important characteristic of the proposed MRF prior: the prior has the ability to increase the 

power to detect a subtle effect for an outcome when there exist other outcomes for which the 

effects are clearly strong. That is, since the factor-analytic model less successfully detects 

the strong effects  compared to the unstructured model 

, primarily due to its more restrictive covariance structure, 

the MRF prior utilizes less information from the model covariance to improve the power to 

detect smaller, more subtle effects. However, even when misspecified, the factor analytic 

model still performs better than the standard practice of using an IB prior that ignores the 

dependence structure among the outcomes in the variable selection prior.

In conclusion, compared to the conventional prior, our proposed MRF prior provides more 

power to detect real effects by yielding higher inclusion probabilities when there is a true 

association. Furthermore, the MRF prior avoids the inclusion of non-relevant associations. 

The estimates of effect sizes and their associated uncertainties are relatively similar for both 

priors.

4. Application to DNA Methylation Data

The proposed Bayesian method described in Section 2 is motivated by an ongoing research 

investigating epigenetic variations induced by air pollution in the asthma pathway. Specific 

goals of the research include the identification of genes in the asthma pathway that are 

influenced by airborne pollutants and the estimation of their effects.

4.1 Normative Aging Study Data

As outlined in the Introduction, our proposed variable selection method is applied to data 

from 92 participants in the NAS study focusing on q=27 genes in the asthma pathway. The 

algorithm for calculating the gene-specific methylation scores has been described previously 

(Sofer et al., 2013). We consider two prominent components of particulate matter (p=2): BC 

as a marker of traffic particles and sulfate as a marker of particles from power plants. The 

measurements on the components are averaged for the month before the blood draw. Since 
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DNA methylation varies depending on age, we adjust for participants’ age, but do not 

perform variable selection on it.

4.2 Results

We fit the model with the proposed MRF prior and the model with the independent 

Bernoulli prior to the NAS data. We set the hyperparameters  to the same 

values as in Section 3.2. Based on the posterior simulation approach with a grid of η values 

{ηg=0.1(2g-1): g=1,…,G=50, η0=0} and M0=50,000 iterations, we set the hyperparameter η 
to 1.1 (see Figure 1 (b)). For the prior of Σ, we set (Ψ0, ρ0) to (δI, q+δ+1) with δ = 3 so that 

the prior is centered at I and has variance equal to 2.0 for the diagonal elements of Σ. We ran 

two MCMC chains for 300,000 iterations each with the first half taken as burn-in. In order to 

assess convergence of the MCMC sampler, we plotted traces of the MCMC scans for each 

parameter. Overlaid plots for the two MCMC chains provide a visual assessment of 

convergence to the stationary distribution. The plots suggest that the chains are mixing well 

and do not show evidence of non-convergence. We provide the trace plots for illustrative 

parameters in Web Appendix C.

We apply a marginal posterior probability cutoff of 0.5 for variable selection. Estimated 

inclusion probabilities for BC and sulfate for each of the 27 genes are presented in Figure 2. 

A conventional Bayesian variable selection approach with IB prior identifies 2 genes (HLA-

DRA, IL9) associated with BC and no genes associated with sulfate. In contrast, our 

proposed method identifies 3 genes (HLA-DRA, FCER1G, IL9) associated with BC and 2 

genes (IL5, CCL11) associated with sulfate. As noted in Section 3, the proposed MRF prior 

improves the ability to identify subtle effects of exposure on a gene methylation score when 

there exist other correlated gene methylation sites for which exposure effects are present. For 

example, the exposure to BC is associated with methylation score in HLA-DRA based on 

the estimated inclusion probability (0.64 from model with IB prior; 0.79 from the proposed 

MRF prior); the 0.12 correlation between methylation scores in HLA-DRA and FCER1G 

helps the proposed model identify the effect of exposure to BC on FCER1G, which is not 

detected by the IB prior. A similar explanation holds for the substantial increase in inclusion 

probabilities using our approach for sulfate in association to CCL11 and IL5, which have a 

correlation of 0.37. In Table 3, we provide the estimated effects of exposure to BC and 

sulfate on genes selected based on our method and using the IB prior. Associated 

uncertainties in the form of posterior standard deviation conditioning on γj,k=1 and 95% 

HPD intervals are also provided. It appears that the estimated effects and uncertainties are 

relatively similar for both choices of prior.

Table 4 provides a summary of genes whose methylation scores are identified to be 

associated with exposures by our proposed approach. Supplementary information on the 

results of the analysis, such as estimated effects of exposures on all 27 gene methylation 

sites and the correlations between methylation markers, is given in Web Appendix C.
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5. Discussion

In this paper, we have developed a Bayesian variable selection method for multivariate data 

that accounts for the correlation structure between outcomes in the selection prior. A special 

MRF prior is devised to increase the power to detect subtle associations between multiple 

outcomes and one or more exposures. This has allowed us to address two important 

scientific questions from an ongoing epigenetic research: a) identify genes in the asthma 

pathway that are associated with particular environmental exposures; b) investigate effects of 

exposures on the identified gene methylation responses. Our proposed Bayesian framework 

determined a subset of genes associated with fine particulate levels that were not found 

using standard Bayesian variable selection approaches.

It should be noted that the use of an unstructured covariance matrix in the proposed 

Bayesian framework is not exactly the same as that in a frequentist mixed model analysis. 

While the latter approach would involve a very large number of covariance parameters, 

which could yield unstable coefficient estimates or convergence problems during model 

fitting, the former assumes a prior structure using an inverse-Wishart distribution and 

therefore shrinks the estimated variance-covariance matrix back towards the mean of the 

prior inverse-Wishart distribution. This shrinkage yields a more parsimonious fit than a 

frequentist fit based on an unstructured matrix.

In general, one could choose the covariance structure by conducting exploratory analyses 

comparing fitted and observed variances and correlations, along with information criteria 

such as BIC or DIC. In the NAS application, there was a demonstrated lack of fit with the 

factor-analytic structure. Therefore, we used an unstructured model.

It is noted that our proposed method can be implemented for data with multiple covariates 

(large p). Like any other Bayesian variable selection approach, application of the proposed 

method to data with p > n would require the specification of an informative prior to 

compensate for the lack of information in the likelihood. Otherwise, with a general prior, the 

MCMC algorithm stochastically searches through a lower-dimensional subspace, so that the 

number of covariates in the proposed models at each MCMC iteration is always less than n 
(Zhang et al., 2008). In order to provide more details on computation time and how 

realistically our proposed approach could scale up with p for other applications, we ran 

simulation studies with n=100 subjects and q=10 outcomes to check how the computation 

time grows as the number of covariates p increases, using a 2.5 GHz Intel Core i7 MacBook 

Pro. We monitored the time to generate 10,000 MCMC scans for the unstructured model, 

which is the more complex covariance structure requiring the estimation of a larger number 

of parameters. Using the mBvs R package we built, it took 2, 8, and 42 minutes for data with 

p=10, 100, and 1,000 covariates, respectively. However, a longer chain may be needed for 

data with high-dimensional covariates to make sure the right model subspace is being 

sampled with sufficient frequency.

While our analysis focused on a pre-selected pathway, it is often of interest in epigenetics to 

study the entire epigenome. Applying our method to the entire epigenome will raise 

computational issues, especially with the unstructured covariance model, as the number of 
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outcomes q will be very large. One possibility would be to extend the method to multivariate 

mixture models, where groups of methylation sites with similar profiles will be identified 

and group-specific regression would be fit, thus requiring the estimation of component-

specific covariance matrices which will have smaller dimensions. Our proposed MRF prior 

could also be adopted for models with different types of outcomes. However, the 

computation could be more challenging as generalized linear models will need to be 

considered for non-Gaussian response variables. In these cases, one possibility would be to 

consider approximate Bayes methods for computationally efficient strategies. Adapting the 

beta-binomial priors on γ and scaled priors on v2 (Celeux et al., 2012) for our proposed 

multivariate prior formulation is another promising area for future development. Finally, 

while we chose the model covariance as a dependence measure between outcomes, one 

might be interested in considering a different distance/correlation matrix in equation (3). The 

proposed methodology is fairly general and can be applied with different choices of 

correlation/dissimilarity matrix.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Detection of phase transition boundary for η in the analysis of Normative Aging Study data. 

The estimated model sizes, , where  is the average of prior/posterior simulations 

for γj,k, are provided over a grid of η values based on the prior simulation approach and our 

posterior simulation approach given that  and logit−1(ωk)=0.1 (panel (a)) or 0.5 

(panel (b)).
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Figure 2. 
Analysis of Normative Aging Study data. Unstructured models are fitted using IB or MRF 

prior for γj,k. Marginal posterior probabilities of inclusion for black carbon or sulfate in 

relation to the 27 genes in the asthma pathway are presented.
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Table 4

Summary of genes in asthma pathway identified to be associated with black carbon and/or sulfate using the 

proposed Bayesian framework. Official full names and related biological processes are provided (NCBI, 

2015).

Gene symbol Official full name Recognized biological process

HLA-DRA major histocompatibility complex, class II, DR alpha Immune system

FCER1G Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide Allergic reactions

IL5 interleukin 5 Eosinophilic inflammatory disease†

IL9 interleukin 9 Asthma

CCL11 chemokine (C-C motif) ligand 11 Eosinophilic inflammatory diseases†

†
These include atopic dermatitis, allergic rhinitis, asthma and parasitic infections
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