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Abstract

Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an 

object, extending a conventional image volume with a spectral dimension. In spectral CT, an 

image can be sparsely represented in each of multiple energy channels, and are highly correlated 

among energy channels. According to this characteristics, we propose a tensor-based dictionary 

learning method for spectral CT reconstruction. In our method, tensor patches are extracted from 

an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training 

dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which 

each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image 

tensor patches during an iterative reconstruction process, and the alternating minimization scheme 

is adapted for optimization. The effectiveness of our proposed method is validated with both 

numerically simulated and real preclinical mouse datasets. The results demonstrate that the 

proposed tensor-based method generally produces superior image quality, and leads to more 

accurate material decomposition than the currently popular popular methods.
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I. Introduction

Recently, spectral CT (multi-energy CT) has attracted an increasing attention. This imaging 

mode discriminates photon energies in the data acquisition process, and provides multiple 

projection datasets of an object in different energy bins, which can be achieved using 

different techniques such as a photon counting detector (PCD) [1], a sandwich (multi-layer) 

detector [2], a kV switching [3], [4], a multiple x-ray source [5], etc. The multichannel 

datasets can be utilized to generate material basis images for material decomposition [6], [7]. 

Such a material decomposition capability has great potential for functional and molecular 

imaging aided by contrast agents or probes [8]. In a photon counting detector, the number of 

photons can be counted in each energy channel or above a given threshold. As a result, 

different photon energies can be distinguished to generate multiple projection datasets 

simultaneously. Because the electronic noise is eliminated, PCD provides a higher signal-to-

noise ratio (SNR) than the conventional CT detector [9]. However, multichannel projections 

obtained from a PCD usually contain very strong Poisson noise for two main reasons. First, 

a single energy channel only contains a fraction of the total photons. Second, most PCDs can 

only tolerate a limited counting rate [1]. Thus, the data noise could significantly reduce the 

SNR of the decomposed material image, which would compromise the clinical value of 

spectral CT [10]. Therefore, the development of dedicated spectral CT algorithms for low-

dose reconstruction is of great importance to improve material decomposition for clinical 

applications.

Over recent years, the sparsity-exploiting methods (e.g., total variation (TV) [11]–[14], tight 

frame (TF) [15], wavelet [16], and dictionary learning [17]) have been applied to low-dose 

CT reconstruction with various degrees of success. A simple and direct way to apply sparsity 

exploiting methods to spectral CT is to use conventional low-dose CT methods in each 

energy channel independently. In 2012, Xu et al. [18] considered multichannel data as a 

group of conventional CT datasets, and iteratively reconstructed each channel image 

independently with TV regularization. In the same year, Xu et al. [17] proposed a dictionary 

learning based method for conventional low-dose CT reconstruction and demonstrated a 

performance superior to the TV based method. Then, the dictionary learning method was 

applied to spectral CT reconstruction [19]–[21]. In 2013, Zhao et al. [22] developed a tight-

frame based iterative reconstruction method for spectral breast CT. All the aforementioned 

spectral CT reconstruction methods only use the sparsity in the spatial domain. On the other 

hand, since the projection datasets in different channels are collected from the same object, 

the resultant images are highly correlated. The utilization of both the sparsity and correlation 

in images can significantly improve the spectral CT reconstruction performance. The low 

rank prior information is one of the major constraints to encourage the synergy among 

channels, and the nuclear norm of an image matrix or image gradient matrix can be included 

in the objective function to address this consideration. In 2011, Gao et al. [23] proposed a 

general framework for spectral CT reconstruction, named as PRISM (prior rank, intensity, 

and sparsity model) algorithm. PRISM is based on the robust principle component analysis 

(RPCA) [24], which employs both low rank and spatial sparsity. Chu et al. [25], [26] 

combined TV and low rank regularizations and demonstrated better spectral CT results than 

that from the sparsity-only reconstruction. Also, Rigie and Rivière developed a vectorial 
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total variation (VTV) based spectral CT reconstruction method, which incorporates the 

nuclear norm to encourage the rank-sparsity of a multichannel gradient vector field [27]. In 

2015, Kim et al. [28] used a spectral patch-based low rank penalty to solve the noisy and few 

view problem for kVp switching-based spectral CT.

As a mathematical tool to describe a multidimensional array [29], a tensor provides another 

way to handle correlation among energy channels for spectral CT. For example, Semerci et 
al. treated x-ray attenuation coefficients in different energy channels as a tensor and used a 

tensor nuclear norm regularization for spectral CT reconstruction [30]. In 2014, the PRISM 

method was extended from a vector formulation to a tensor counterpart [31], [32]. There are 

two widely used tensor decompositions [29]: Tucker decomposition and Candecomp/Parafac 

decomposition (abbreviated CP decomposition or CPD). These two decompositions can be 

viewed as generalizations of singular value decomposition (SVD) [33]. With a tensor 

decomposition method, the conventional dictionary learning (denoted as vectorized 

dictionary learning, abbreviated as VDL) can be extended into tensor-based dictionary 

learning (TDL) [34]–[36], which ought to be more powerful in capturing structures and 

more sparsely representing a multidimensional array. In 2015, we proposed an adaptive 

tensor-based spatio-temporal dictionary learning method for 4D CT reconstruction [37]. The 

preliminary experiments including a sheep lung perfusion study and a dynamic mouse 

cardiac study demonstrated that our proposed algorithm had a better performance than the 

VDL based method in the case of few-view reconstruction. Very recently, we reported a 

tensor-based spectral CT reconstruction method via spatio-spectral dictionary learning [38].

In this paper, we propose a spectral CT reconstruction method based on the following 

consideration. Generally speaking, an animal or patient spectral CT image consists of no 

more than three basis materials (this number can increase when multiple contrast agents are 

injected), and a small image patch usually contains only one or two basis materials, which 

mean low rank in the spectral dimension [28]. Therefore, a spectral image patch can be 

represented sparsely with a well-trained spatio-spectral dictionary. Because TDL 

accommodates sparsity in both spatial and spectral dimensions, the sparsity and correlation 

properties can be fully integrated into a tensor-based image reconstruction framework. 

Consequently, the noise and artifacts in reconstructed images can be effectively suppressed 

to depict fine tissue features well, which leads to more accurate material decomposition 

results. Along this direction, the current paper reports a major improvement and extension of 

our previous conference paper [38].

The rest of this paper is organized as follows. Section II reviews tensor decomposition. 

Section III summarizes tensor-based dictionary learning. Section IV develops the tensor 

dictionary learning based spectral CT reconstruction method. Section V describes 

numerically simulated and real preclinical experiments and key results. Finally, Section VI 

discusses related issues and concludes the paper.
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II. Preliminaries on Tensor

A. Basic Notations of Tensor

Tensor is a multidimensional array. An nth-order tensor is denoted as  ∈ ℝI1×I2×…×In, 

whose (i1, i2, ⋯, in) element is xi1i2⋯in, 1 ≤ ik ≤ Ik, k = 1, 2, ⋯, n. Specifically, for n = 1 and 

n = 2, tensors are vectors and matrices respectively. Without loss of generality, we consider a 

3rd-order tensor  ∈ ℝI1×I2×I3 in the rest of this paper.

A 3rd-order is called a rank-one tensor if it can be written as the outer product of three 

vectors,

(1)

where the symbol “∘” denotes the vector outer product, and a ∈ ℝI1, b ∈ ℝI2 and c ∈ ℝI3. 

The (i1, i2, i3) element of the tensor is the product of the corresponding vector elements

(2)

A tensor can be transformed into a matrix using an unfolding operator, which is an element 

reordering process. The mode-k (k = 1, 2, 3) unfolding of  is denoted by X(k),

(3)

i.e. X(1) ∈ ℝI1×I2I3, X(2) ∈ ℝI2×I1I3, X(3) ∈ ℝI3×I1I2. A tensor can be multiplied by a matrix 

or vector. The k-mode (k = 1, 2, 3) matrix product of a 3rd-order tensor by a matrix U ∈ 
ℝJ×Ik is denoted by  𝗑k U ∈ ℝI1×⋯×Ik−1×J×Ik+1×⋯×In, n = 3, which is still a 3rd-order 

tensor, whose elements are

(4)

For example, if k = 2, then . The k-mode (k = 1, 2, ⋯, n) 

product of a nth-order tensor by a vector v ∈ ℝIk is denoted by  𝗑̄k v ∈ 
ℝI1×⋯×Ik−1×Ik+1×⋯×In which is a matrix, and its elements are

(5)

Here we propose a new tensor operation, which is denoted as
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(6)

where k = 1, 2, ⋯, n, w ∈ ℝIk, and  has the same size as that of . ℋk ( , w) is defined as 

follows:

(7)

ℋk ( , w) is a tensor weighting operator, which weights the tensor  by the weighting 

vector w in the kth mode. Likewise, we define the inverse operator of ℋk ( , w), which is 

denoted as  and computed as

(8)

Thus, we have

(9)

B. Tensor Decomposition

The Tucker and CP methods are important for tensor decompositions. The Tucker 

decomposition transforms a tensor  ∈ ℝI1×I2×I3 into a core tensor  ∈ ℝJ1×J2×J3 multiplied 

by a matrix in each mode:

(10)

where A1 ∈ ℝI1×J1, A2 ∈ ℝI2×J2 and A3 ∈ ℝI3×J3 are decomposed matrices in three modes 

respectively, gj1j2j3 is the (j1, j2, j3) element of the core tensor, a1j1, a2j2 and a3j3 are the 

corresponding normalized columns in the matrices A1, A2 and A3 respectively. The Tucker 

decomposition becomes CPD if the core tensor is diagonal. That is, a tensor can be 

decomposed into the sum of several rank-one tensors via the

(11)

where a1r ∈ ℝI1, a2r ∈ ℝI2 and a3r ∈ ℝI3 are normalized vectors, and λr is the weight. The 

tensor decomposition can be implemented using an alternating least squares (ALS) method 

[29].
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III. Tensor-Based Dictionary Learning

Given a set of 3rd-order training tensors (t) ∈ ℝN1×N2×N3, t = 1, 2, ⋯, T, the tensor-based 

dictionary learning can be formulated as the following optimization problem:

(12)

where  = { (k)} ∈ ℝN1×N2×N3×K is a tensor dictionary, K is the number of atoms, αt is the 

coefficient vector, ‖·‖F is the Frobenius norm, ‖·‖0 means the ℓ0-norm (namely, the number of 

nonzero elements), and L represents the sparsity level. (k) ∈ ℝN1×N2×N3 is the kth atom, 

which is a rank-one tensor. The atom can be rewritten as , where 

, i = 1, 2, 3, are normalized vectors.

In the conventional dictionary learning approach, extracted image patches are first 

transformed into vectors to form a training dataset, and then the K-SVD method is used to 

learn a vector-based dictionary [39]. Likewise, the K-CPD was developed to learn a tensor-

based dictionary [34]. The objective function Eq. (12) can be optimized in an alternating 

way. The first step is to fix  and update αt in the objective function Eq. (13), which can be 

solved using the multilinear orthogonal matching pursuit (MOMP) algorithm [34], and the 

MOMP method is presented as Algorithm 1.

(13)

The next step is to update the tensor dictionary by fixing the sparse coefficient matrix. 

Similarly, atoms are updated

Algorithm 1

MOMP

Input: Sparsity level L and tolerance of representation error
    ε; Tensor signal , tensor dictionary  = { (k)}, k =
    1, ⋯, K.

Output: Representation vector α.

  1: Initialize the error and the counter: ℰ0 = , c = 0;

  2: while c < L & ‖ℰc‖F ≥ ε do

  3: Project the error to each atom:

pk = ℰc𝗑1dk
(1)𝗑2dk

(2)𝗑3dk
(3)

;

  4: Update the accessorial dictionary by adding the atom

𝒟c + 1
asr

 corresponding to the maximal pk:

𝒟asr = {𝒟i
asr},, i = 1, ⋯, c + 1;

  5: Update the sparse coefficient:
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αc = arg minα‖𝒳 − 𝒟asr𝗑4α‖
F
2

;

  6: Update the error: ℰc+1 =  − asr 𝗑̄4 αc;

  7: Update the counter: c = c + 1;

  8: end while

  9: return α = αc

alternatingly. To update the kth atom (k), we need to fix other atoms. Then, we find (t), 

whose sparse representation coefficients on (k) are nonzero, and group those 3rd-order 

tensors into a 4th-order tensor nz. The sparse representation coefficient matrix of nz is 

denoted as Λnz,k, whose elements in the kth row are written as αnz,k. Thus, the 

approximation error without the atom (k) is

(14)

and (k) can be obtained by solving the following objective function

(15)

where the superscript “⊤” denotes the transpose operator. Clearly, the above formulation 

gives a general optimization problem of CPD:

(16)

Therefore, the updated kth atom and the corresponding coefficients vector are

(17)

(18)

The tensor-based dictionary learning using K-CPD algorithm is summarized as Algorithm 2.

IV. Tensor-based Dictionary Learning for Spectral CT Reconstruction

A. Method

Similar to the conventional dictionary learning based CT reconstruction [17], the tensor 

dictionary based spectral CT reconstruction can be formulated as

Zhang et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(19)

Algorithm 2

Tensor-based Dictionary Learning Using K-CPD

Input: LD, K and other parameters; Training set of tensors
    (t), t = 1, ⋯, T.

Output: Tensor dictionary  ={ (k)}, k = 1, ⋯, K.

1: Initialize dictionary and setting c = 1;

2: Obtain the sparse representation matrix αc−1 of { (t)}
using MOMP.

3: for k = 1 : K do

4: Find (t), whose sparse representation coefficients on
(k) are nonzero, and grouping them as a 4th-order

tensor nz;

5: Calculate the error tensor using Eq. (14);

6: Decompose the error tensor using Eq. (16);

7: Update the kth atom and the corresponding coefficients
using Eqs. (17) and (18);

8: end for

9: c = c + 1;

10: Repeat steps 2–9 until the convergence criteria are met
(e.g. c > LD);

11: return 

where  ∈ ℝI1×I2×S and  ∈ ℝJ1×J2×S are the 3rd-order CT image tensor and projection 

tensor respectively, I1 and I2 are the image width and height respectively, J1 and J2 are the 

numbers of detector bins and projection views respectively, S is the total number of 

channels, X(3) and Y(3) are respectively the mode-3 unfoldings of  and , xs and ys are 

respectively the sth columns of  and  (the vectorized sth image and projection 

respectively), A is the system matrix which is determined using the ray driven method [40], 

 = { (k)} ∈ ℝN×N×S×K is the learned tensor dictionary, K is the number of atoms, the 

operator ℰr extracts the rth spatio-spectral image patch (a 3rd-order tensor) from  of 

N×N×S, and αr ∈ ℝK is the sparse representation vector of the rth extracted tensor patch. 

The parameter λ is used to balance the data fidelity and the sparse representation terms, and 

υr determines the trade-off between the representation precision and the sparsity level.

Because the attenuation coefficients depend on photon energies, they vary significantly 

among energy channels. Generally speaking, the norm of xs decreases with respect to the 

increment of the energy level. As a result, to minimize the error of dictionary sparse coding 

in the objective function Eq. (19), lower index channels corresponding to lower energy levels 

naturally have larger weights than higher index channels. It may induce overfitting in low 

energy channels and smoothness in high energy channels since the image norms are 
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remarkably different among channels. To address this issue, we introduce a weighting vector 

w ∈ ℝS to modify each channel for comparable norms across energy channels:

(20)

The weighting vector can be computed from the obtained projection data in advance. Thus, 

the normalized projection data is

(21)

To prevent the aforementioned problem of TDL, instead of reconstructing the image tensor 

 directly, the normalized image tensor  is reconstructed from 𝒴̂. 
Furthermore, to represent signals sparsely we prefer that each atom has a zero mean in each 

channel. Hence, the channel means of patches were removed before dictionary learning and 

signal representation. Similar to VDL [17], the mean removal process is equivalent to 

introducing S channel-mean atoms:  (k = 1, 2, ⋯, S), where 

, e0 is an all-one-value vector, the kth element of ek is one, and 

others are set to zero. Hence, the new TDL-based reconstruction method can be rewritten as

(22)

where x̂s and ŷs are respectively the sth energy channel vectorized 𝒳̂ and 𝒴̂, mr is the 

channel-mean vector for the rth patch, and 𝒟̂ is the tensor dictionary trained with the 

normalized image tensor in advance via the tensor-based dictionary learning. For a given 

spectral CT dataset, its FBP reconstruction results can be used for training of a global 

dictionary. Although the FBP images contain noise, it has been found in our studies that the 

tensor dictionary training is robust against noise. The tensor dictionary can be learned using 

the K-CPD algorithm, which is an extension of K-SVD in terms of the embedded low-rank 

constraint, and each atom (rank-one enforced by K-CPD) serves as a motif to preserve 

structural signature and suppress image noise. Consequently, K-CPD based dictionary 

learning is more robust than K-SVD and it outperforms the K-SVD based counterpart as 

described below. Multiple studies in other areas have also demonstrated that the tensor 

dictionary gives superior performance [35], [37]. At the beginning, an image in each energy 

channel is reconstructed from the normalized projection {ŷs} using the conventional FBP 

method. Then, overlapped small image tensors of size N × N × S pixels are extracted from 

the image tensor, where N=8 in this paper and S is the number of energy channels. Similar to 

conventional DL, here the mean value in each energy channel of the extracted small image 

tensor is removed. After that removal, the tensors with small variance are removed, and the 

rest of the patches are grouped into a training set. Finally, 𝒟̂ is learned using Eq. (12).
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We apply an alternating minimization scheme to solve for 𝒳̂, mr and αr. Thus, Eq. (22) can 

be rewritten into the following three sub-problems:

(23)

(24)

(25)

where 𝒳̂n+1,  and  are the results from the (n + 1)th iteration. Eqs. (23)–(25) can 

be alternatingly solved. In this work, Eq. (23) is solved using the separable surrogate method 

[41]:

(26)

where the symbols [·]i1i2 and [·]i1i2s indicate the (i1, i2)th element of a matrix and the (i1, i2, 

s)th element of a tensor. The operator  puts a tensor patch in ℝN×N×S into the original 

image tensor space ℝI1×I2×S. Hence,  means that the 

difference between the rth extracted tensor patch and its sparse representation is put into the 

original image tensor space. In Eq. (26), the parameter λ balances between the fidelity and 

regularization terms. Since A varies for different scanning configurations, it is not easy to 

find the most suitable parameter λ. To deal with this problem, we rewrite λ into the 

following form

(27)

where η is a scale parameter, and the numerator and denominator of Eq. (27) are 

respectively the sums of the second order derivatives of the fidelity and regularization terms 

in Eq. (23). In Eq. (24), because atoms of 𝒟̂ have zero-means in individual energy channels, 

each element in mr is the mean of ℰr (𝒳̂n+1) in the corresponding channel. The update of αr 
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according to Eq. (25) is basically equivalent to solving a constrained problem, for example, 

using a multilinear orthogonal matching pursuit (MOMP) algorithm. The sparse 

representation is controlled by the sparsity level L and the precision level ε, which replace 

the intermediate variable υr in Eq. (25). The sparse coding process will stop when either 

‖αr‖0 ≥ L or . In this work, a simple stopping 

criterion is applied. The reconstruction process stops after a fixed number of iterations at 

which point the change in the image domain becomes rather small. Finally, the reconstructed 

image tensor is denormalized as

(28)

The overall flowchart of the proposed approach is summarized as Algorithm 3.

In the objective function Eq. (22), the sparsity term is defined in terms of the ℓ0-norm, which 

leads to a nonconvex problem. This issue can be addressed by relaxing the ℓ0-norm to the ℓ1-

norm to reach a global minimizer [39]. While in the numerical implementation, we prefer a 

sparser regularizer, many experiments indicate that solving the ℓ0-norm problem with 

MOMP can usually give satisfactory results. Also, the proposed reconstruction process 

involves solving two

Algorithm 3

Tensor-DL for Spectral CT Reconstruction

Input: η, ε, L, K and other parameters; Initialization of 𝒳̂.

Output: Image tensor .

Part I: Dictionary training

1: Normalize the projection datasets using Eq. (21);

2: Reconstruct images from the normalized projection using
FBP;

3: Extract tensor patches to form a training set;

4: Train a tensor dictionary using the K-CPD.

Part II: Image reconstruction

5: while the stopping criteria are not satisfied do

6: Update 𝒳̂n+1 using Eq. (26);

7: Update mr
n + 1

;

8: Update αr
n + 1

 using MOMP;

9: end while

10: Denormalize the image tensor using Eq. (28).

11: return 

sub-problems. Although the solution to each sub-problem is approximate during iteration, 

the final result should converge after a sufficiently large number of iterations based on our 

empirical observation.
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B. Numerical Implementation Details

The dictionary is typically over-complete to improve the sparsity of representation. Hence, 

the number of atoms in a dictionary should be much larger than that of pixels in an atom, 

i.e., K ≫ N × N × S. In the image processing field, K is usually four times the number of 

pixels in an atom for VDL [39]. However, due to high correlation among different channel 

images in the spectral CT, we found that it is not necessary to set K = 4 × N × N × S. We can 

achieve satisfactory results if we choose K > N × N × S. Therefore, K was uniformly set to 

1024 in our experiments. The sparsity level LD in the dictionary training can be set 

empirically between 5 and 10, and it was uniformly set to 5 in this paper. The ordered subset 

(OS) technique [42] was applied in our implementation to speed up the reconstruction, and 

the projections were divided into 20 subsets for all datasets. The tensor dictionary 

representation was performed after updating all subsets. The MATLAB Tensor toolbox [43] 

developed by Sandia National Laboratories was used to perform CPD and other tensor 

related operations. The size of each channel image was 512×512. The reconstruction process 

stopped after 50 iterations. The parameters η, ε and L were empirically set for different 

datasets.

V. Experiments

In this study, numerical tests were first performed to quantitatively evaluate the performance 

of the proposed method relative to competing methods. The image quality was evaluated in 

terms of the root mean square error (RMSE) as well as two widely used image quality 

assessment metrics: the feature similarity (FSIM) [44] and the structural similarity (SSIM) 

[45]. Furthermore, post-reconstruction material decomposition was carried out. Then, a real 

preclinical dataset was employed to demonstrate the merits of the proposed method.

A. Numerical Simulation

In the numerical tests, an equidistant fan-beam geometry was assumed. There were 512 

detector bins of a 0.1 mm width per bin. 640 projections were uniformly collected over a full 

scan range. The distance from the source to the system origin was 132 mm, and the distance 

from the source to the detector was 180 mm. A 50 kVp x-ray spectrum was assumed, which 

was generated from the SpectrumGUI software [46]. The spectrum was divided into eight 

energy channels: [16, 22) keV, [22, 25) keV, [25, 28) keV, [28, 31) keV, [31, 34) keV, [34, 

37) keV, [37, 41) keV, [41, 50) keV. The energy channels are shown in Fig. 1. In the 

simulation, a realistic mouse thorax phantom was used [47], and 1.2% (by weight) iodine 

contrast agent was introduced into the blood circulation (see Fig. 2). For each x-ray path 

5000 photons were assumed emitted from the x-ray source. To generate multichannel 

projections, the emitted photons were distributed to each energy channel (in a step of 1 keV) 

according to the x-ray spectrum. We computed the expected number of photons in each 

energy channel along every x-ray path. To simulate data noise, random numbers were 

generated according to the Poisson distribution in which the variances were the 

aforementioned expected photon numbers. Then, the noise-free and noisy projections were 

obtained after a logarithmic operation [48]. The reconstructed CT images formed a 3rd-order 

tensor (512×512×8) with each pixel covered an area of 0.075×0.075 mm2. In this simulation, 

the default parameters were η=3.2, ε=0.0018, L=6 and K=1024 for TDL reconstruction.
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Fig. 3 shows the reconstructed four representative channels of the mouse phantom. These 

images were reconstructed using the conventional FBP, TV, TV combined with low rank 

(TV+LR), conventional vector-based dictionary learning (VDL) and the proposed tensor-

based dictionary learning (TDL). To compare image quality, many combinations of the 

parameters were tested for the proposed and competing methods, and the best results in 

terms of RMSE were selected for further comparison. Otherwise, it would be too time-

consuming to tune regularization parameters individually for all energy channels. A 

common TV regularization parameter was used for all the channels. In the case of VDL, an 

empirical strategy was employed for parameter selection with a single tolerance parameter 

for all channels [21], [49]. Here, the image reconstructed from the noise-free projection 

using the FBP method was used as the reference. Fig. 3 illustrates that TDL can obtain very 

clear images, and the resultant difference images are weaker than those obtained from other 

competing methods. Fig. 4 shows the quantitative evaluation indexes of the reconstructed 

image quality. Because the image quality metrics of the FBP images are far worse than those 

of the iteratively reconstructed images, they are not listed in Fig. 4. It can be observed from 

Fig. 4(a) that the TDL based reconstruction has the smallest RMSE in all the eight channels, 

followed by the TV+LR approach which has slightly smaller RMSE than VDL. The TV 

minimization method has the largest RMSE in all channels. The results were also evaluated 

in terms of FSIM and SSIM, which measure the similarity between two images and have 

been widely reported to be consistent with human visual perception [44], [45]. Recently, 

they were used to evaluate CT image quality [17] [37]. To compute FSIM and SSIM, the 

FBP images reconstructed from noise-free projections were used as the references. In 

addition, the dynamic range of each channel image was scaled to [0 255] in advance, and the 

default parameter setting in the source codes was used [50], [51]. The closer to 1.0 FSIM 

and SSIM are, the better the image quality is. In Fig. 4(b), TDL has the greatest FISM index 

in all channels, followed by the TV+LR and VDL. In Fig. 4(c), the TDL has a remarkably 

larger SSIM value than the other three competing methods in all channels. Fig. 4 illustrates 

that TDL has the best overall image quality in terms of quantitative evaluation.

Two regions of interest (ROIs), which have abundant detailed features, are indicated by the 

squares in Fig. 3. The magnified ROIs are in Figs. 5 and 6, respectively. Fig. 5 shows a bone 

ROI, where thoracic vertebra bones are separated by low-density tissues. From the second 

row, it is seen that noise was severe in the conventional FBP reconstruction, especially in the 

last channel where the signal-to-noise ratio (SNR) was so low that the thoracic vertebra 

bones structure could hardly be distinguished from noise. As a result, in the last few 

channels, the thoracic vertebra bones merged together, and the anatomical structure was lost 

in the TV and VDL images. By employing correlation between channels, the TV+LR 

approach preserved more bone structures than the TV and VDL based methods. However, 

the finer soft tissue features between bones were lost. On the other hand, the proposed TDL 

improved the image quality and suppressed noise much better. As a result, the vertebra 

bones and their surrounding soft tissue details were faithfully reconstructed. Fig. 7 gives the 

image quality assessment indexes of the bone ROI in Fig. 5. It is clearly seen that TDL 

yielded the best image quality in all channels according to the three indexes. Fig. 6 shows a 

lung ROI indicated in Fig. 3. Although the lung ROI contains abundant details, most of them 

cannot be distinguished due to the severe noise in the second row, especially for the small 
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size features. In the first column in Fig. 6, the TV and TV+LR results are contaminated by 

noise to some extent, while the VDL and TDL results show better image visibility. In the last 

three columns in Fig. 6, the TV and VDL methods reconstructed only a few of the larger 

features, while the TV+LR approach preserved more details. However, some shapes of these 

reconstructed features were not sufficiently accurate. In comparison, the TDL algorithm 

accurately reconstructed most of the detail features in all channels. Fig. 8 presents the image 

quality indexes of the lung ROI in Fig. 6. Evidently, the TDL method achieves the best 

image quality in all channels.

Fig. 9 shows the mean values and relative biases of bone, soft tissue and iodine enhanced 

regions in each channel for the selected iterative reconstruction methods. The relative bias, 

which indicates the absolute bias divided by the corresponding mean value of the reference 

in an energy channel, was used for comparison. The mean values of tissues in FBP images 

reconstructed from noise-free projection data served as the reference. Because the bone 

regions consist of small structures which tend to be smoothed by the TV regularization, the 

TV method has the greatest relative bias for bone (up to 4.4% in channel 8), followed by TV

+LR (2.2% in channel 8). The mean values of bone in VDL and TDL images are the most 

accurate. Their relative biases are below 1.6% in all channels. In terms of soft tissue, TV

+LR has the greatest relative bias with 1.3% in channel 8, and the soft tissue relative biases 

of other methods are below 0.8%. Particularly, TDL reaches <0.2% relative biases in all 

channels. Fig. 9(c) shows that the mean values of TV+LR are 2.5% higher in channel 5, 

3.6% and 3.2% lower in channels 6 and 7 respectively than that of the reference. This 

reflects the spectral flattening effect associated with TV+LR near the K-edge of iodine. The 

other methods have a relative bias of <1.0% for iodine, where VDL is generally the most 

accurate for iodine (relative bias of <0.7% in all the channels). In summary, TV results in 

large bias due to the fine structural tissue; and low rank regularization encourages images to 

have the signal flattened across different channels. Overall, two dictionary based methods 

are very accurate, with VDL especially preferred due to its consistent and excellent 

performance with respect to material types and energy channels.

Fig. 10 plots the convergence curve of TDL based spectral image reconstruction. It is 

observed that the error decreased monotonously and remained stable after about 25 

iterations. The RMSE of the whole spectral image tensor is as low as 0.0217 cm−1. To 

investigate the influence of the parameters on the reconstruction performance, we compared 

the results of TDL with different parameter settings. Fig. 11 shows the RMSE of TDL with 

respect to different parameter settings. In each subfigure, one or two parameters was/were 

changed while other parameters were fixed. Fig. 12 shows, one representative channel 

(channel 6) images and the corresponding difference images related to the reference image 

and the optimal parameter setting image (TDL in Fig. 3). It is observed from Figs. 11 and 12 

that ε is the key parameter for controlling the reconstructed image quality: a smaller ε can 

induce noise/fake structures, while a larger one can compromise structural details in the lung 

region. The larger η is, the smoother the image is. In terms of L, a smaller value can induce 

more blurred edges. Relatively speaking, the reconstruction quality is not sensitive to the 

number of atoms K in the dictionary, and a larger K can slightly reduce RMSE.
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To validate the proposed tensor-based dictionary learning method for material 

decomposition, the reconstructed spectral images were decomposed into three basis 

materials (bone, soft tissue and iodine contrast agent) using the post-reconstruction material 

decomposition algorithm [7]. Fig. 13 represents the proportions of three basis materials and 

the corresponding color images. It is seen from the third column that many pixels from the 

competing methods are wrongly classified as containing iodine, and the TDL provides the 

most accurate iodine components. To quantitatively evaluate the decomposition results, the 

RMSE values of each decomposed basis material are summarized in Table I. The FBP has 

the greatest RMSE in all the materials, and generally the error decreases gradually from TV, 

TV+LR to VDL. This suggests that the high quality of TDL reconstruction leads to excellent 

material decomposition results.

All the compared methods were implemented in MATLAB on an Intel(R) Core(TM) 

i7-4790 CPU, 3.60 GHz and 16 GB RAM PC platform. As a pilot study, we ran our un-

optimized codes with a single core from the CPU. For the tensor dictionary training, it took 

26.5 seconds per iteration, and the maximum number of iterations was 100. In each 

reconstruction iteration, the computational cost to update the fidelity term (forward and 

backward projections) was 5.10 minutes, and the costs to perform the regularization with 

TV, TV+LR, VDL and TDL were 2.18 minutes, 2.21 minutes, 52.8 seconds and 9.1 seconds 

respectively. The TV regularization requires remarkably longer time than the TDL 

regularization because it was implemented with an inner loop for sparse representation. For 

the TDL method, the computational cost mainly consists of dictionary training and forward/

backward projection, and the time-consuming task can be done using hardware accelerating 

techniques such as GPU [15].

B. Preclinical Mouse Study

The proposed TDL based reconstruction method was also evaluated using preclinical 

projections from a mouse injected with 0.2 ml of 15 nm Aurovist II gold nanoparticles 

(GNP) (Nanoparticles; Yaphank, NY). GNP was injected into the mouse’s tail vein, and the 

mouse was alive for about three hours between the injection and euthanasia. Then, the 

mouse was scanned on a MARS (medipix all resolution system) micro-CT with a Medipix 

MXR CdTe layer detector [52]. The x-ray source (SB-120-400, Source-Ray Inc., New York) 

used a minimum focal spot of 75 µm. The distances from the source to the system origin and 

to the detector were 158 and 255 mm respectively. Over a full scan range, 371 projections 

were uniformly collected. Thirteen energy channels were used to collect projections with the 

source being operated at 120 kVp and 175 mA. The channels of real datasets were different 

from that for the aforementioned numerical simulation. Here each energy channel received 

x-ray photons, whose energies were above a given energy threshold, which increased with 

the increment of the energy channel index. Hence, the first channel had the lowest energy 

threshold, and almost all the photons were included, while the last channel took the fewest 

photons. The detector chip was moved horizontally with overlapped pixels to cover a wider 

FOV of 34.89 mm in diameter that the detector aperture and to correct production defects in 

the detector sensor layer. To reduce noise in the sinogram, neighboring detector bins were 

merged to form a new sinogram of size 512×371. We applied the wavelet-Fourier filtering 

method [53] to reduce ring artifacts. Because of detector defects, only part of the projections 
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were usable. Thus, we reconstructed two representative slices in the vicinity of the thorax. 

The reconstructed CT images were 3rd-order tensors of 512×512×13 covering an area of 

18.41×18.41 mm2. The parameters were η=1.5, ε=0.001, L=8 and K=1024 for TDL based 

reconstruction.

Fig. 14 shows the reconstructed images in two representative channels (channels 1 and 13) 

and material decomposition results. Fig. 15 shows a magnified region of interest (ROI) 

containing the thoracic vertebra. Fig. 16 shows another ROI on a different slice in the 

vicinity of the thorax. Because the first channel used nearly all the detected photons, it was 

assumed as the conventional gray-scale CT image. In contrast, the SNR of the thirteenth 

channel images is the worst. It is observed from the middle column in Fig. 15 that the 

images reconstructed using the FBP method contain severe noise. Detailed features of the 

thoracic vertebra, such as the soft tissue gap between bones, were strongly contaminated, as 

indicated by the arrow 1. In addition, the structures indicated by the arrows 2 and 3, can 

hardly be distinguished. Although the images reconstructed by TV, TV+LR and VDL 

contain less noise, the tissue structures were blurred to some extent, and the blocky effects 

caused by the TV minimization were noticeable. By comparison, the finer tissue features 

were well preserved by the proposed TDL technique. In the middle column of Fig. 16, only 

TDL and TV+LR can preserve the structures of the rib and sternum, as indicated by the 

arrows 1 and 2. The improved image quality can benefit the material decomposition. In the 

right columns of Figs. 14 – 16, soft tissue, bone and GNP were decomposed and colored in 

green, red and blue, respectively. As far as GNP regions are concerned, the color in the first 

slice was very light because there was no major vasculature, and the concentration of GNP 

was low; in the second slice, the vasculature containing high concentration GNP, colored in 

blue, can be clearly observed. It is encouraging that TDL gives more accurate decomposition 

results for each material without blocky artifacts. For example, while a few pixels at the 

boundary of vasculature were incorrectly decomposed as bone (colored in red) using the 

competing method, the decomposition result obtained from TDL was correct, as shown in 

Fig. 16.

VI. Discussions and Conclusion

The proposed TDL method requires a normalization of raw projection datasets before 

reconstruction. Otherwise, the image quality will be compromised in some cases. Fig. 17 

shows the reconstructed images using the TDL method with the same parameter settings but 

without the normalization. It can be seen from the results of the simulated data that the first 

channel contains a few artifacts in the vicinity of some edges, and the last channel has 

slightly smoother edges. In comparison, the reconstructed results of the real data are of very 

good quality, and the differences are small for the ones obtained from the proposed TDL (as 

shown in Fig. 14). This is due to the normalization weighting vector w: the ratio between the 

maximum and minimum of w in the simulated dataset is 3.6, compared with 1.2 in the real 

preclinical dataset, which means that the image value differences among channels in the 

simulated mouse are substantially greater than those of the preclinical datasets. Fig. 17 

demonstrates that the normalization is necessary for the proposed TDL method if the ratio of 

the maximum and minimum of w is large.
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Because TDL considers data redundancy in true spatiospectral space, its performance will be 

compromised to some extent if fewer channels are available. To evaluate this aspect, the 

aforementioned numerical experiments were repeated for only 4 channels. Particularly, 

channels 1, 4, 6 and 8 in the numerical simulation were selected to form a new dataset, and 

channels 1, 3, 8 and 13 in the mouse measurement were chosen for re-testing. It is seen from 

Fig. 18 that the image quality was reduced a little bit, but the proposed method remained 

superior to the competitive methods.

The main reconstruction parameters of the TDL based method are η, ε, L and K. Among 

these parameters, K is not sensitive and can be set as a constant, and it is proper to set L 
between 6 and 8 for various datasets. η balances the data fidelity and signal sparsity. 

Generally speaking, it can be selected from a relatively wide range. In contrast, ε is the most 

crucial parameter that needs to be tuned carefully. ε indicates the representation error of a 

tensor patch, and a proper ε enables all channels to reach the best image quality collectively. 

The parameters for numerical simulation and preclinical studies were not the same, because 

of different imaging configurations in terms of the x-ray spectrum, exposure, energy 

channels, etc. In practice, imaging conditions could be typically fixed for a given CT scanner 

and specific types of applications. This makes it feasible to empirically optimize parameters 

or adaptively determine them in advance or on fly [54].

The TDL method achieves better image quality than that of its competitors because it 

effectively uses two characteristics of spectral CT imaging: sparsity and correlation in the 

true physical space. A tensor atom  represents a signal as a whole, 

where  represents spatial structures, and  represents physical association across 

different energy channels. Thus, a tensor atom shares the same spatial structures in each 

channel, and the lost signal (compromised by severe noise) in a certain channel can be 

restored from the remaining channels. Therefore, a tensor-based spatio-spectral dictionary is 

desirable for analyzing spectral datasets and preserving structural details than a vectorized 

dictionary.

Although encouraging results were obtained by the proposed TDL based method, there is 

still room for improvement. One way for improvement is to combine it with statistical 

reconstruction [41], which could help eliminate streaks along the direction of photon 

starvation. While CPD was employed in this paper, the Tucker decomposition based 

dictionary learning could be also a good choice for spectral CT. In the near future, we will 

compare these two tensor-based dictionary learning methods for spectral CT reconstruction.

In conclusion, we have developed a tensor-based dictionary learning approach for spectral 

CT image reconstruction and evaluated it relative to several competing methods. The 

proposed approach can preserve detailed features and allow superior material decomposition 

to the competitors. Further work is underway to improve and characterize this approach for 

preclinical and clinical applications.
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Fig. 1. 
Spectrum and eight energy channels used in the numerical simulations.
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Fig. 2. 
Mouse thorax phantom (left) and the iodine contrast agent distribution (right).
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Fig. 3. 
Numerical simulation results with the mouse thorax phantom. (a) From left to right columns, 

the images correspond to four representative channels 1, 4, 6 and 8 respectively. The first 

row images were reconstructed from noise-free projections using the FBP. From the second 

to bottom rows, the images were reconstructed from a noisy dataset using FBP, TV, TV+LR, 

VDL and TDL respectively. From the left to right columns, the display windows are [0 3], [0 

1.2], [0 0.8] and [0 0.8] cm−1 respectively. (b) Difference images of the results in (a) with 

respect to the noise-free FBP images in the first row of (a). The rows and columns 

correspond to that of (a), and the display window is [−0.5 0.5] cm−1
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Fig. 4. 
Quality assessment for the reconstructed mouse thorax phantom images.
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Fig. 5. 
Magnified bone ROI indicated in Fig. 3. The row and column have the same meaning as 

those in Fig. 3.
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Fig. 6. 
Same as Fig. 5 but for the lung ROI.
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Fig. 7. 
Image quality assessment over the bone ROI shown in Fig. 5.
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Fig. 8. 
Image quality assessment over the lung ROI shown in Fig. 6.
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Fig. 9. 
Mean values of the three types of tissues in each channel (left) and the corresponding 

relative biases.
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Fig. 10. 
Convergence curve for the TDL reconstruction.
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Fig. 11. 
RMSE of the TDL with respect to different parameter settings. (a) The RMSE plots for η = 

3.2, (b) those for L = 6, and (c) the RMSE plot with respect to K.
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Fig. 12. 
Reconstructed mouse thorax phantom images using the TDL approach with respect to 

different parameter settings. From the left to right columns, the images correspond to cases 1 

– 6. Case 1: default parameters η=3.2, ε=0.0018, L=6; Case 2: η=3.2, ε=0.0015, L=6; Case 

3: η=3.2, ε=0.0022, L=6; Case 4: η=3.2, ε=0.0018, L=4; Case 5: η=4.5, ε=0.0018, L=6; 

Case 6: η=3.2, ε=0.0018, η=6, K=2048. The top row lists the reconstructed images in 

channel 6 in a display window [0 0.8] cm−1, and the next two rows are the corresponding 

difference images relative to the reference images and the TDL with the default parameter 

setting, respectively. The display window is [−0.2 0.2] cm−1.
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Fig. 13. 
Material decomposition results from the phantom study. From the left to right, the first three 

columns are the decomposed bone, soft tissue and iodine contrast agent components, 

respectively. The fourth column is the color representation of the decomposed images where 

red, green and blue components correspond to the three basis materials respectively.
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Fig. 14. 
Representative results of the first real mouse dataset. The left column lists the first channel 

images, and the middle for the last channel images (channel 13), both of which are in the 

display window [0 0.8] cm−1. The right column is the color representation of the material 

decomposition results, where the red, green and blue components correspond to the three 

basis materials: bone, soft tissue and GNP respectively. From top to bottom, the images were 

reconstructed using the FBP, TV, TV+LR, VDL and TDL respectively.
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Fig. 15. 
Magnified bone ROI indicated in Fig. 14. The row and column have the same meaning as 

those in Fig. 14. The display windows are [0 0.8] cm−1 for the left column and [0.1 0.7] 

cm−1 for the middle column.
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Fig. 16. 
Same as Fig. 14 but for another slice. The display window is [0 1.0]
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Fig. 17. 
Images reconstructed using the proposed TDL method without data normalization. The first 

column images are the numerical simulation results of channels 1 and 8 in the display 

windows [0 3] and [0 0.8] cm−1 respectively. The second and third columns present the 

corresponding difference images with respect to the reference image and the standard TDL 

results in the display window [−0.2 0.2] cm−1. The fourth column images are the mouse 

results in channels 1 and 13 in the display windows [0 0.8] cm−1. The fifth column images 

are the corresponding difference images with respect to the standard TDL results in the 

display window [−0.2 0.2] cm−1.
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Fig. 18. 
Same as Fig. 17 but reconstructed from four-channels datasets using the standard TDL 

method.
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