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Abstract

Many studies in the social and behavioral sciences involve multivariate discrete measurements, 

which are often characterized by the presence of an underlying individual trait, the existence of 

clusters such as domains of measurements, and the availability of multiple waves of cohort data. 

Motivated by an application in child development, we propose a class of extended multivariate 

discrete hidden Markov models for analyzing domain-based measurements of cognition and 

behavior. A random effects model is used to capture the long-term trait. Additionally, we develop a 

model selection criterion based on the Bayes factor for the extended hidden Markov model. The 

National Longitudinal Survey of Youth (NLSY) is used to illustrate the methods. Supplementary 

technical details and computer codes are available online.
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1. INTRODUCTION

Empirical studies in social and behavioral research often involve multivariate discrete data. 

Dichotomized responses from multiple items on a survey, which are indicators of the 
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presence of a multitude of behaviors (or the lack thereof), are routinely included in such 

studies. The past decade has also witnessed, for good reasons, a tremendous growth of 

cohort data in the social sciences (Frees 2004, p. 4; Singer and Willet 2003). Unlike cross-

sectional data, longitudinal data collected from a cohort are valuable for informing the 

researcher about the dynamics of behavior and changing attitudes and perceptions in a 

population. As an example, the field of child development traditionally has sought to 

describe universals of development and to investigate mechanisms of development through 

the use of small-scale, cross-sectional experiments. However, emphasis has recently been 

shifting from this kind of so-called variable-centered study to person-centered longitudinal 

studies, which include large-scale, long-term projects such as the National Longitudinal 

Survey of Youth (NLSY, Chase-Lansdale et al. 1991). These studies often aim to identify 

subgroups of differential risks, and to delineate risk and protective factors that explain how 

development proceeds differently in different subgroups (Laursen and Hoff 2006). Indeed, in 

the NLSY, extensive cognitive and linguistic outcome measures on a national sample of 

children are being collected over an extended period of time, and these measures can be 

related to external variables such as socioeconomic status (SES) and maternal health, both 

mental and physical.

The discrete hidden Markov model (HMM, Rabiner 1989; MacDonald and Zucchini 1997) 

is a natural way for modeling discrete multiple outcomes (also referred to interchangeably as 

“responses” in this article) collected on individuals or social units over time. The HMM 

assumes the presence of two parallel stochastic processes: an observed sequence of 

outcomes and a Markovian sequence of underlying latent states that drives the observed 

stochastic changes. Observed outcome variables over time are assumed to be conditionally 

independent given latent state. Furthermore, when more than one outcome variable is 

involved, conditional independence between multiple outcomes given latent state is also 

assumed.

Although the multivariate HMM has many features necessary for successful person-centered 

longitudinal studies, several modeling and computational limitations exist. First, while the 

conditional independence assumption greatly simplifies computation, the assumption may 

not be realistic in many social science applications. In the NLSY dataset, a child-

developmental profile may contain clearly identifiable domains such as problematic 

behaviors and cognitive development. It is unlikely that measurements within the same 

domain (e.g., oral reading and reading comprehension within the domain of cognitive 

development) would satisfy the conditionally independent assumption given latent state.

Second, in person-centered longitudinal studies, there often exist discernible individual 

stable traits that “drive” an individual’s responses both across domains and across time 

points. In a longitudinal study of domestic violence, Snow Jones et al. (2010) found 

evidence that a relatively stable individual trait of violent behavior exists among batterers, 

despite the fact that their behaviors may cycle back and forth from overtly violent behavioral 

states to relatively nonabusive behavioral states. Statistically, the stable trait can be modeled 

as an individual-specific random effect that induces a level of conditional correlation across 

outcomes and time points given latent state. In other words, the conditional independence 
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assumption in HMM is relaxed to allow for heterogeneity among individuals within a 

specific latent state.

A third challenge in person-centered longitudinal studies is that conventional indexes for 

model selection in HMM, such as the AIC and BIC, may be invalid because observations 

across time points are generally not independent. For example, in BIC, the sample size needs 

to be adjusted to account for the correlation between observations across time.

This article describes our effort to resolve the aforementioned limitations of the HMM, 

especially in the context of social and behavioral data. We discuss (1) a domain-based model 

for handling the existence of domains of items within the data, (2) a random effects model 

for capturing the individual-specific stable trait, and (3) a Bayes factor-based goodness-of-fit 

index, which we call the modified BIC, that takes into account the correlation between 

observations across time points. Related computational methods for implementing the three 

solutions will be discussed.

Several works in the literature of HMM are especially pertinent to this article. In an 

application of the HMM to rainfall data, Zucchini and Guttorp (1991) suggested 

modifications to relax the conditional independence assumption across their multisite 

precipitation model because sites in close proximity may exhibit similar rainfall patterns. 

Hughes, Guttorp, and Charles (1999) described a nonhomogeneous HMM for precipitation. 

Scott, James, and Sugar (2005) described an HMM for multiple, continuous observed data 

that are assumed to follow a multivariate t-distribution. Altman (2007) proposed mixed-

effects HMMs and applied the model to lesion-count data in a two-state Poisson model. The 

author also proposed using a quasi-Newton method for HMM and either numerical 

integration or Monte Carlo methods for handling the random effects. Rijmen, Vansteelandt, 

and De Boeck (2008) proposed, from an item-response theory (IRT, Lord and Novick 1968) 

perspective, HMMs for analyzing psychological data. Rijmen et al. (2008) applied the HMM 

to biomedical data collected from patients with brain tumor. A structurally identical family 

of models—the latent Markov models—has also been extensively studied in the social 

science literature. Some recent applications in social and economic sciences include the 

work of Bartolucci, Pennoni, and Francis (2007), Paas, Bijmolt, and Vermunt (2007), and Ip 

et al. (2010). Dias and Vermunt (2007) discussed model selection issues in latent Markov 

and mixture models. For a history of development of latent Markov models, see the works 

by Wiggins (1973), Humphreys (1998), Vermunt, Langeheine, and Bockenholt (1999), and 

the references therein.

The remainder of this article is organized as follows. We first describe the basic multivariate 

discrete HMM model and methods of estimating the models. Then we describe the 

aforementioned methods (1)–(3) for solving the several limitations of the HMM. 

Subsequently, we describe an application using NLSY data to illustrate the proposed 

methods.
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2. MODEL

2.1 The Basic Discrete Hidden Markov Model

Let yitj denote the discrete response of subject i at occasion t on outcome j, i = 1, …, N; j = 

1, …, J; t = 1, …, T. We assume that each outcome indicates the level of response k, k = 1, 

…, Kj, from an individual as measured by an “item,” such as a survey question. Specifically, 

yit = (yit1, …, yitJ)′ denotes the response vector of subject i at occasion t, and 

 represents the complete response pattern of subject i. Additionally, zit = 

1, …, S denotes the categorical (unobserved) latent state of subject i at occasion t. Thus, zi = 

(zi1, …, ziT)′ is the state sequence of subject i through the latent space over time. A first-

order Markov chain for the latent variable assumes that the latent state at occasion t + 1 

depends only upon the latent state at occasion t; that is, for any i, p (zit|zi1, …, ziT) = p (zit|

zit−1). Accordingly, the basic hidden Markov model contains the following three sets of 

parameters:

1. τ = (τrs), the S × S matrix of time-homogeneous transition probabilities 

between latent states, where for any i, τrs = p (zit = s|zit−1 = r), t = 2, …, T.

2. α1 = (α11, …, α1S)′, the S × 1 vector of marginal probabilities of the 

states at occasion 1, α1s = p (zi1 = s). The vector αt = (αt1, …, αtS)′, t = 2, 

…, T, can be recursively derived by the formula .

3. π = (πjsk), the J × S × Kj array of state-conditional response probabilities, 

where k is the index of outcome category, k = 1, …, Kj, and for any i, t, 

πjsk = Pr(yitj = k|zit = s), where .

Assuming conditional independence between responses given the latent state, the marginal 

probability of a response pattern yi is given by

(2.1)

with the summation over the entire latent state space  of size ST, and

(2.2)

Furthermore, we write out the likelihood equation using the local independence assumption 

given a latent state:

(2.3)
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where δ (yitj, k) = 1 if yitj = k, and 0 otherwise.

2.2 Estimation of the Basic HMM

The EM algorithm (Dempster, Laird, and Rubin 1977) is used to evaluate parameters for the 

basic HMM. For historical reasons, a version of the EM algorithm used to estimate HMM is 

also known as the Baum–Welch algorithm (Baum and Petrie 1966). Briefly, in the EM 

terminology, the latent state is treated as “missing data.” The objective here is to maximize 

the conditional expected log-likelihood of the complete data, which include the observed 

data y and the latent states z, given y and some provisional estimates for the parameters, 

where y and z, respectively, denote the vector of the collection of data (yi) and (zi).

Denote the entire parameter set defined in (2.1)–(2.2) by β, and let β(n) be defined as the 

estimate at the nth iteration of the EM algorithm. Furthermore, let

where Q is the conditional expected value of the complete data log-likelihood function given 

observed data y:

(2.4)

With discrete latent state variables z, we have

(2.5)

Assuming that observations between individuals are independent, it follows that

(2.6)

The posterior probabilities, p (zi|yi, β(n)), can be derived via the Bayes theorem in the so-

called E-step, which we shall describe in Section 3.2. Updating parameter values can be 

accomplished through the maximization of (2.6) with respect to β in the so-called M-step of 

the EM algorithm. The algorithm alternates between the E-step and the M-step until the 

absolute change in the objective function is smaller than a predetermined threshold value.

Specifically, the joint distribution of the complete data of subject i in (2.6) is

(2.7)
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One appealing feature about (2.7) is the separability of three sets of parameters, which can 

be optimized individually. By taking the logarithm on (2.7), we rewrite the objective 

function in (2.6):

(2.8)

We further define two sets of subject-specific HMM “pseudo-counts” as follows:

1. , where  is an S ×S matrix and for each i, the (r − s)th 

entry is

(2.9)

2.
, and . The vector 

, can be recursively derived by the formula 

.

Using the notation above, each of the three terms over the right side of (2.8) can be 

expressed as a multinomial log-likelihood of the form

(2.10)

where I is a vector of summation indices, iI are the “pseudo-counts,” which may take non-

integer values, and ψI are the model-based estimated probabilities. Specifically, in the first 

row of (2.8), I = {s|s = 1, …, S}, , and ψiI = α1s; in the second row of (2.8), I = {(r, 

s)|r = 1, …, S, s = 1, …, S}, , and ψI = τrs; and in the third row of (2.8), I = 

{(j, s, k)| j = 1, …, J, s = 1, …, S, k = 1, …, Kj }, , and ψI = πjsk.

In (2.10), the pseudo-counts , and  can be treated as observed 

responses in a cell of a multinomial distribution, and α1s, τrs, and πjsk as the cell probability 

parameters to be estimated. The following two conditions are satisfied for each of the three 

components: (1) the expected value of the pseudo-count equals the corresponding parameter, 

(2) the probability parameter entries sum to 1. For example, for the marginal component, for 

any i, , and . The M-step thus involves applying the sum-to-1 
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constraints to each of α1s, τrs, and πsjk, adding a Lagrange multiplier to each term in (2.8), 

and taking the derivative of each term. The updating equation for maximum likelihood 

estimates (MLEs) of α1s, τrs, and πjsk are the solutions of the re-estimation formulas of the 

basic HMM (Rabiner 1989):

(2.11)

(2.12)

(2.13)

Stated in various forms, the above expression of the conditional expected complete log-

likelihood function as multinomial log-likelihood and the estimation formula for the 

parameters are not new and well known in the literature (e.g., Cowell et al. 1999, p. 202). 

Our point of stating the result in the above form is to provide the formalism for the 

subsequent inference procedure when the HMM is extended.

3. EXTENDED MULTIVARIATE DISCRETE HMM

To fix notation, we denote item j within domain d by d (j), d = 1, …, D, and the predictive p-

vector of the individual long-term trait by xi. For example, the second item (j = 2) measuring 

anxiety in the domain of problematic behavior (d = 1) is subscripted as 1(2). On the other 

hand, xi may contain predictors such as family background. We denote the individual-

specific conditional probability Pr(yitj = k|zit = s) by πijsk. Note that an index i has been 

added to the subscript for π. As we shall see, by extending the HMM to include individual-

specific effects, the conditional probabilities given latent states would be functions of i. For 

discrete data, we use an appropriate link function for transforming the state-conditional 

response probabilities π. For the sake of illustration, we only describe the model for ordinal 

outcomes, although models for binary and unordered categorical responses can be 

constructed in a similar way. A modified cumulative logit transform (Fahrmeir and Tutz 

1994) for the response solicited from item j can be written as

(3.1)
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where the cumulative probability ζijsk is given by

(3.2)

with i = 1, …, N, j = 1, …, J, s = 1, …, S, and k = 1, …, Kj, and subject to the constraint 

. By requiring that the difference in logits in (3.1) be positive, the log–log 

transform enforces the order of the responses such that the cumulative logit of a higher 

category is always larger than that of a lower category. We shall refer to the collection of link 

functions (h1, …, hKj−1) simply as h(·).

We study the following ordinal cumulative logistic models:

(A) Domain-based HMM:

(3.3)

where k = 2, …, Kj − 1; s = 1, …, S − 1. No coefficients ϕ, ξ are defined for the last category 

Kj, and . To parameterize (3.3) into a full-rank model, no 

coefficient is estimated for ξd(j)sk at the last state S. See also the example of a design matrix 

discussed in the Appendix Estimation of GLM.

The simplest domain-based model is to constrain all of the items within the same domain to 

have identical logit: h1 (ζijs1) = ξd(j)s1, and hk (ζijsk, ζijs(k−1)) = ξd(j)sk, s = 1, …, S. 

Including the parameter ϕjk allows deviation of the logit of a specific item from the common 

logit of the domain. The domain-based model generally has fewer parameters than the model 

(3.1). The saving in the number of parameters can be substantial when there are many states. 

Other special cases of (3.3) are possible (e.g., ϕjk ≡ ϕj), but they will not be pursued further 

here.

(B) Person-specific HMM:

(3.4)

where k = 2, …, Kj − 1, θi is the individual random effect, and θi ~ N (0, σ2), where σ2 is 

the variance of the normal distribution. Model B represents a basic HMM with an additional 

random effect. The random effect θi can be interpreted as a relatively stable trait that 

consistently affects all of the measured outcomes of an individual.

Zhang et al. Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clearly, a unifying model can be constructed by combining the domain-based and the 

person-specific HMMs, and also including person-specific predictors xi for the latent trait:

(C) Unified HMM:

(3.5)

where k = 2, …, Kj − 1, and , where γ is a p-vector of regression 

coefficients.

3.1 Parameter Estimation and the M-Step

We first describe the estimating algorithm for the HMM with random effects (Model B). 

Subsequently, we discuss the estimation of the unified HMM. The EM algorithm continues 

to be the workhorse for parameter estimation in both cases. Following the notation in the 

section for the basic HMM estimation, the conditional expected log-likelihood of the 

complete data Q (β, β(n)) for Model B is given by

(3.6)

where θ = (θ1, …, θN). Assuming that θ and z are independent, we have p (zi, θi|yi, β(n)) = 

p (zi|yi, β(n)) fβ(n)(θi|yi), where fβ(n)(θi|yi) is the posterior density of θ.

Thus, the objective function is

(3.7)

in which the joint distribution of the complete data of subject i within (3.7) is given by

(3.8)

By taking the logarithm on (3.8) and substituting (3.7), we rewrite the objective function:
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(3.9)

In the M-step of the EM algorithm, one needs to evaluate the integrals in (3.9). There is 

generally no closed-form solution for the integral of the random effects θi. Various 

numerical procedures, including the Gauss–Hermite quadrature (Hinde 1982), Monte Carlo 

techniques (McCulloch 1997), and Taylor expansions (Wolfinger and O’Connell 1993) have 

been proposed. Our choice is the Gauss–Hermite quadrature for integration. Denote the 

vector of q quadrature points by v = (υl). The corresponding collection of weights 

, which depend upon the current estimate of the variance structure, σ(n), are 

used to approximate fβ(n) (θi). At a quadrature point υl, denote the conditional probability by 

πijksl = [πijsk (θi)]θi=υl. The integration notwithstanding, computationally the conditional 

expected log-likelihood still retains the multinomial form. We summarize this observation as 

a lemma.

Lemma 1—Equation (3.9), which is a generalized form of log-likelihood functions in (2.8) 

but with an additional dimension of quadrature points for random effects, simplifies to four 
separate multinomial expressions (2.10). In particular, the first two terms on the right side 
remain in the same form as the basic HMM. Additionally,

1.
in the third term of (3.9), I = {s, j, k, l}, , and 

ψiI = πijskl, where , of which the conditional 
density is evaluated at θi = υl; and

2. the fourth term of (3.9) can be simplified into the log-likelihood function 
of multinomial responses as follows:

(3.10)

where , and wl = fβ(υl).

Proof: Comparing the third row of (3.9) with that of (2.8), we only need to add in  and 

add an extra dimension l to α̃(n), and thus the proof of the first part is straightforward.
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For the second part, because θi’s are independent of the latent states, the fourth row of (3.9) 

simplifies to .

Lemma 1 implies that the computational methods for the basic HMM can still be applied to 

the random effects model (Model B), but with an additional dimension of quadrature points. 

For the unified HMM in Model C, there is no closed-form solution for solving the regression 

coefficients in the conditional probability model. Following the setup in Lemma 1, we can 

include a generalized linear model (GLM) for the unified HMM. Technical details for 

estimation of the GLM are provided in an Appendix.

3.2 Computation of the E-Step

The E-step involves the computation of posterior probabilities of the latent states given 

observed data. Accordingly, the joint distribution and selected marginal distributions have to 

be evaluated. In HMM, the E-step involves the evaluation of p (yi) and p (zi). It is well 

known that brute force summation is not efficient for obtaining marginal probabilities. 

Various techniques, including approximating algorithms such as Monte Carlo methods, have 

been proposed (Korb and Nicholson 2003, p. 61). The computations of p (yi) and p (zi), for 

example, both require the summation of ST terms. In our implementation, we adopted the 

junction-tree method developed from graphical model theory (Jensen, Lauritzen, and Olesen 

1990; Lauritzen 1995). The essence of this implementation is a decomposition of a high-

dimensional joint probability distribution into self-contained modules of lower dimensions 

called cliques (to be defined later) and the subsequent local computation of clique 

probability distribution. In order to do this, the first step is to create a Directed Acyclic 

Graph (DAG) for the associated statistical model. The directed graph, consisting of nodes 

(variables) and arcs, is a pictorial representation of the conditional dependence relations of 

the statistical model. Figure 1(a) shows the DAG of the extended HMM with random effects 

θ. The second step is to “moralize” the graph, that is, remove arrows and connect (marry) 

parents, if they are not already connected. A third step is to triangulate the moral graph; 

edges are added so that chordless cycles contain no more than three nodes. For the basic 

HMM, the moral and triangulated graphs are topologically identical to the DAG, but for the 

HMM with random effects, the graphs are not identical. We show the triangulated graph in 

Figure 1(b). The fourth step is to identify cliques (maximal subsets of nodes that are all 

interconnected) from the triangulated graph and form compound nodes by fusing nodes of 

the same clique into a single node. The fifth step is to create separator nodes, which consist 

of intersections of adjacent compound nodes (Figure 1(c)). The final tree structure is known 

as a junction tree, an important property of which is that the joint probability function can be 

factorized into the product of clique marginals over separator marginals (e.g., Jensen, 

Lauritzen, and Olesen 1990):

(3.11)

where  and , respectively, denote the set of cliques and the set of separators. Cowell et al. 

(1999, pp. 28–35) provided a simple example to illustrate the process. The junction tree 
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forms the basis of efficient local computation of clique marginals in the E-step and the 

global computation of the joint density through so-called message-passing schemes (Pearl 

1988; Jensen, Lauritzen, and Olesen 1990), which essentially consists of repeated 

applications of the Bayes theorem.

Implementation through the junction-tree method has several advantages. First, it has proved 

to be a highly efficient and scalable algorithm for inference in graphical models, and has 

been implemented in commercial software such as Hugin (Hugin Expert, Aalborg, Demark). 

As a special form of the graphical model, the HMM described in this article can be 

efficiently implemented using junction tree. More importantly, the graphical model 

framework permits the extension of the basic HMM to include model refinements in highly 

flexible ways. For example, in the unified model with random effects, nodes representing the 

stable latent trait can be added to the graphical representation, and the modified junction tree 

can then be implemented through the aforementioned general algorithm.

The above algorithm was built upon a Matlab toolbox called BNL (Rijmen 2006), which 

combines the toolbox of Kevin Murphy (Murphy 2001) for constructing the junction tree 

with a GLM estimation framework for parameterizing the conditional probabilities. The 

entire program can be downloaded from http://www.phs.wfubmc.edu/public/downloads/

MHMM.zip.

3.3 Model Selection

In the fitting of HMM models, the number of hidden states is usually not known a priori. An 

approach suggested by Huang and Bandeen-Roche (2004) in a context of latent class 

analysis is to employ the Bayesian Information Criterion (BIC; Schwarz 1978) to determine 

the optimal number of states that gives the lowest BIC value by fitting a range of basic 

HMMs, without covariates, to the data. While BIC is simple and easy to use, it is a function 

of the sample size N and has the potential problem of not being able to specify the 

appropriate “effective sample size” in a longitudinal context because observations of the 

same subject at different time points are correlated. Generally, if observations from across all 

T time points are used to determine the number of latent states, the correct sample size 

should be somewhere between N and NT.

Following the work on the Bayes factor (Kass and Raftery 1995), we derive a criterion that 

can be used for model selection in the HMM context. Specifically, the criterion is an 

approximation of the probability density of observations given a specific Model H.

Denote the observed data by Y and the model parameter by β = (βi) = (α1, τ, π), i = 1, …, d. 

The marginal probability density of observing the data under Model H can then be written in 

an integral form:

(3.12)
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where f (β|H) is the prior distribution of parameters of Model H. By assuming that the 

integrand is highly peaked about its maximum at the maximum likelihood estimate β̂, we 

can approximate the integral by Laplace’s method (De Bruijn 1970), that is,

(3.13)

where Σ̂ is the covariance matrix, that is, [−D2l(β̂)]−1, and l(β) = log(p (Y|β, H) × f (β|H)) is 

the log-likelihood of observed data and the parameter priors.

In HMM, we can explicitly derive from the likelihood functions (2.8) an analytical form of 

(3.13). Recently, Bayarri et al. (2007) provided a similar derivation for a Bayes factor-based 

BIC using the multivariate ANOVA model. Visser et al. (2006) derived another Bayes factor 

under a multivariate autocorrelation model. In the latter work, through simulation 

experiments, it was also shown that Bayes factor-based criteria perform better than BIC. For 

the basic HMM (2.8), we follow the notation in Section 2.1 and assume that Kj ≡ K. The 

Laplace approximation leads to the following results.

Lemma 2—The (−2) times log probability of observing the data, given a discrete hidden 
Markov model with parameters that follow a Dirichlet prior distribution with a count vector 
of 1, can be approximated with Laplace’s method as follows:

(3.14)

where d = S2 − 1 + SJ (K − 1) is the number of parameters of an S-state HMM, Σ̂ = 

[−D2l̃(β̂)]−1, and l̃ = log(p (Y|β, H).

Notice that compared to l, l̃ is only the log-likelihood of observed data without the prior 

parameters. The exact covariance matrix Σ̂ can be computed using Lystig and Hughes’s 

method (2002) for HMM. A proof is provided in an Appendix. We call the model selection 

index in (3.14) the modified BIC (mBIC).

To compare the performance of mBIC with BIC, a simulation study was undertaken with the 

following conditions and levels within each condition: number of states S = 3, 4; sample size 

N = 100, 200, 400; number of outcomes J = 2, 8, 19; and number of time points T = 3, 5, 10. 

Both 3-state and a 4-state HMMs were used to generate 100 datasets under each condition. 

The parameters used to generate the data were based on the structure of a 19-item dataset 

reported by Rijmen et al. (2008). We modified the parameters so that the states are relatively 

well separated. Table 1 shows the proportion of correct models selected among 100 datasets 

within each condition. The mBIC tends to perform better than the BIC when any one of the 

three conditions: sample size N, number of outcomes J, or the number of time points T, is 

small. For example, for 3-state models, when N = 100, J = 8, and T = 3, mBIC correctly 
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selected the 3-state model 68% of the time versus 49% for BIC. Both models tended to 

select the 2-state model when they did not select the correct model. Both the mBIC and BIC 

perform consistently well when the levels of sample size, number of outcomes, and number 

of time points become higher.

4. DATA ANALYSIS EXAMPLE

The dataset contains three waves of biennial data collected from 1989 to 1994 in the 

National Longitudinal Survey of Youth (NLSY79), and the 1990–1994 Children of the 

NLSY (CoNLSY). Because of missing value problems, which are rather extensive within 

this NLSY subsample, we only selected those children who had at most two missing values 

out of a total of 24 measurements taken over the three-year period. This resulted in a sample 

of 367 children (52% female, 29% African–American, and 20% Hispanic; age range 

approximately 5–9). There are partially missing values within this final sample, but the 

percentage is less than 3%. We used multiple imputation (Rubin 1987; Schafer 1997) for 

handling missing item responses. Before conducting HMM analysis, the dataset was 

preprocessed—a set of m = 5 values were imputed for missing values using PROC MI (SAS 

Institute Inc.).

Our analysis focuses on cognitive and social development in children five to nine years old. 

The goal is to identify homogeneous groups of children in terms of their behavioral and 

cognitive outcomes and to examine how various risk factors, including maternal alcoholism, 

may affect development. While previous studies (e.g., Snow Jones 2007) have found a 

positive association between parents’ or maternal alcohol consumption and children’s 

behavioral and cognitive problems, many of these studies only assume a linear trend in 

social or cognitive outcomes as a function of risk factors.

Five outcome variables were selected from the Behavior Problem Index (BPI): anti-social, 

anxious, peer conflict, headstrong, and hyperactive behaviors. Three variables that measure 

academic achievement were selected from Peabody Individual Achievement Test (PIAT) 

scores: math, oral reading, and reading comprehension. We respectively refer to these two 

sets of variables as representatives of Domains 1 and 2. The BPI and PIAT outcomes were 

trichotomized into three categories (0, 1, 2) based on nationally normed percentiles with 

cutpoints at 15% and 85%. Diagnostic groups determined by cutoff points have been 

commonly used in school reporting systems and research studies to categorize at-risk status. 

Shepard, Smith, and Vojir (1983), for example, used a cutoff at the 12th percentile in PIAT 

math to define “below-grade performance” in fifth graders. In a personality study, Hart, 

Atkins, and Fegley (2003) used the 80th percentiles as cutoff scores on the BPI scales for 

forming diagnostic groups. We also observe that many school systems use the 15th, 50th, 

and 85th percentile for reporting purposes, and our choice of cutoffs at 15% and 85% 

reflects these considerations. To further facilitate model interpretation, BPI categories were 

then reordered so that movement from 0 to 2 represented increasingly better behavior and 

conformed to the direction of the PIAT classification.

An important variable that may significantly contribute to a child’s development trajectory is 

home environment. In our analysis, we include home environment variables in the 
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conditional distributions using the Home Observation for Measurement of the Environment 

(HOME) inventory. Two HOME scores were available that measured cognitive stimulation 

and emotional support. Demographic variables such as gender were found not to be 

significant in this sample, and the analysis results reported here do not include such 

variables. We report regression models using maternal drinking, and the other HOME 

variables.

4.1 Results of HMM Analyses

Table 2 shows the BIC and mBIC values for models with two to five hidden states. Both BIC 

and mBIC values suggest the 5-state model, but both values for the 5-state model are very 

close to those of the 4-state model. One of the states in the 5-state has low prevalence and 

was not seen to offer significant information when further consultation with content experts 

was solicited. We therefore selected the 4-state model for all subsequent analyses. To 

illustrate the several proposed features of HMM described in Section 2.2, we report results 

from analyzing the NLSY data using several different HMM models:

Model 0: Basic HMM. No covariate was used, and a saturated conditional 

probability model was fitted to the data.

Model I: Domain-based HMM. Items that belong to the same domain d = 1, 2 

(for behavioral and cognitive, respectively) are assumed to follow (3.3).

Model II: HMM with person-specific random effects θi to account for 

dependency given state but without covariate.

Model III: HMM with only fixed effects on conditional probabilities:

(4.1)

where xi1, xi2, and xi3 are the two HOME scores and the maternal pregnancy 

drinking score, and β1 to β3 are the corresponding fixed effects.

Model IV: Unified HMM with both fixed and random effects on conditional 

probabilities that follows (3.5).

Table 3 contains the prior probabilities of five states and the transition probabilities table 

under Model 0, whereas Figure 2 displays the profile of each of the four states, also 

estimated from Model 0. Each stacked bar in Figure 2 shows the conditional probability 

distribution of the response categories for a specific item within each state. State 1 can be 

interpreted as the “no problem or a minor problem” state, State 2 as the “bad behavior 

(Domain 1) but good academics (Domain 2)” state, State 3 as the “good behavior but poor 

academics” state, and State 4 as the “bad behavior and poor academics” state. While 

different models fitted to the data produce different conditional probabilities, the profiles of 

the four states remain relatively stable (for Models II and IV, the profiles are obtained from 

averaging over individual profiles). Table 4 reports parameter estimates of Models I–IV and 

their respective standard errors. The random effects in both Models II and IV are significant. 

To investigate the heterogeneity of the individuals within a given state, we graphically 
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display the probabilities of the N = 367 individual responses over all the items in Figure 3. 

The heterogeneity among individuals within a given state appears to be substantial, and the 

significant variance of θi in Models II and IV also reflects the potential conditional 

dependence among item responses within a given latent state.

From Table 4, the domain-based model suggests that the domain effect—that is, the domain 

(behavior or academic) to which an item belongs—is highly significant. The domain 

estimates for the states are consistent across the several models and agree with the findings 

in Figure 2. For example, the values of domain estimates are higher in State 1 for both 

academic and behavior, showing that children in State 1 perform better in both domains. 

State 2 generally has low values in academic and moderately high values in behavior, 

whereas the values in State 3 are reversed. Models III and IV each contain a regression 

component for the conditional probabilities using HOME scores and maternal drinking 

status. Both cognitive stimulation and emotional support at home show strong positive 

impacts on the conditional response probabilities (p < 0.001), indicating that more 

supportive home environments are associated with better behavior and academic 

performance. Figure 4 shows that although both high and low Home Cognitive Stimulation 

groups have increases in State 4 children over time, the percentage of State 1 students is 

indeed higher in the high Home Cognitive Stimulation group than in the low Home 

Cognitive Stimulation group. Maternal drinking was not statistically significant. In other 

words, the long-term stable trait underlying individual behavior and cognition is associated 

more with home environmental variables and not so much with maternal drinking status. 

However, it is worth noting that there are only 12 high-risk-pregnancy drinkers in this 

sample, which may contribute to low power that is not sufficient to detect a difference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Directed Acyclic Graph (DAG) for HMM with random effects. Shaded ovals indicate 

observed variables (two are shown here at each time point), and unshaded ovals indicate 

latent variables. (b) Moral and triangulated graphs for DAG in (a). The parents of the 

observed variables are joined in a moral graph (e.g., arc from θ to Zi1). (c) Junction tree for 

DAG in (a). Ovals indicate clique nodes and variables between clique nodes are separators.

Zhang et al. Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Conditional probability profile for the 4-state model. Each column represents the distribution 

of expected responses to an item. The bar at the bottom represents the worst response 

category (0) and the second bar the next worst category (1).
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Figure 3. 
Comparison of sample average conditional probabilities, πjsk, in circles, with fitted 

individual conditional probabilities, πijsk, in lines, under Model II. (a) State 1, response 

category 0; (b) State 1, response category 2; (c) State 2, response category 0; (d) State 2, 

response category 2. A color version of this figure is available in the electronic version of 

this article.
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Figure 4. 
State prevalence over time for two Home Cognitive Stimulation groups. States 1 to 4 are 

ordered from bottom up.
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Table 3

Estimated prior state probabilities and transition probabilities.

State 1 State 2 State 3 State 4

Prior probabilities α 0.21 0.31 0.28 0.20

Transition probabilities τ 0.89 0.06 0.03 0.01

0.07 0.80 0.04 0.09

0.07 0.11 0.69 0.13

0.00 0.05 0.13 0.82
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