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Scarcely understood defects lead to asthenozoospermia,
which results in poor fertility outcomes. Incomplete
knowledge of these defects hinders the development of
new therapies and reliance on interventional therapies,
such as in vitro fertilization, increases. Sperm cells, being
transcriptionally and translationally silent, necessitate the
proteomic approach to study the sperm function. We have
performed a differential proteomics analysis of human
sperm and seminal plasma and identified and quantified
667 proteins in sperm and 429 proteins in seminal plasma
data set, which were used for further analysis. Statistical
and mathematical analysis combined with pathway anal-
ysis and self-organizing maps clustering and correlation
was performed on the data set.

It was found that sperm proteomic signature combined
with statistical analysis as opposed to the seminal plasma
proteomic signature can differentiate the normozoosper-
mic versus the asthenozoospermic sperm samples. This
is despite the results that some of the seminal plasma
proteins have big fold changes among classes but they
fall short of statistical significance. S-Plot of the sperm
proteomic data set generated some high confidence tar-
gets, which might be implicated in sperm motility path-
ways. These proteins also had the area under the curve
value of 0.9 or 1 in ROC curve analysis.

Various pathways were either enriched in these pro-
teomic data sets by pathway analysis or they were
searched by their constituent proteins. Some of these path-
ways were axoneme activation and focal adhesion assem-

bly, glycolysis, gluconeogenesis, cellular response to stress
and nucleosome assembly among others. The mass spec-
trometric data is available via ProteomeXchange with iden-
tifier PXD004098. Molecular & Cellular Proteomics 16:
10.1074/mcp.M116.061028, 57–72, 2017.

Sperm motility is a cornerstone of male fertility and defects
in motility are associated with poor fertility outcomes. Most
cases of asthenozoospermia are labeled idiopathic as the
underlying defect is not fully known, which necessitates man-
agement by intervention. Poor motility of the sperm usually
requires the interventional therapeutic measures such as ga-
mete intrafallopian transfer or in vitro fertilization. These inter-
ventions are not completely efficient in addition to being
expensive and unavailable in many countries. The defects
leading to asthenozoospermia are not understood, which
needs to change, to allow for innovative treatment options
directed at the root cause of this problem. Mature sperm are
believed to be transcriptionally and translationally silent (1),
which demands proteomic studies (as opposed to genomic or
transcriptomic studies) to understand the underlying path-
ways giving rise to sperm motility.

Differential proteomics can help a great deal to better un-
derstand the human sperm motility, as it is very easy and
non-invasive procedure to collect the human seminal fluid.
This presents an opportunity to study asthenozoospermia on
proteome scale. Quantitative differential proteomics associ-
ated with statistical analyses will provide us with proteins,
significantly different among the two classes of sperm (nor-
mozoospermic (NZS)1 and asthenozoospermic (AZS)), which
will have a role in the sperm motility pathways. Such studies
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will elucidate the pathways underlying the sperm motility,
which can lead to identification of novel treatment avenues.
Human seminal plasma and sperm have an ongoing ex-
change of protein factors between them. This exchange reg-
ulates the temporal aspects of various processes in success-
ful fertilization such as acrosome reaction, formation of
oviductal sperm reservoir and gamete interaction (2). Various
seminal plasma proteins have also been implicated in sperm
motility (3). There have been some studies on human sperm
and seminal plasma for identification of biomarkers of AZS
(4–6). However, low level of overlap between the results of
these studies, as well as lack of statistical power, restrict the
formation of a consensus on the topic. This demands more
studies for identifying proteins having roles in the human
sperm motility. We have performed a differential proteomic
study on NZS and AZS seminal plasma and sperm samples.
Quantified protein expression (667 proteins quantified in
sperm cell sample and 429 in seminal plasma samples) was
analyzed by ANOVA followed by principle component analy-
sis. Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA) based modeling was performed and sub-
sequent S-Plot identified the proteins being significantly dif-
ferent among the samples. Receiver operating curve (ROC)
analysis was performed on these significantly different pro-
teins and area under the curve was calculated. Various other
analyses such as multiple pathway analyses combined with
self-organizing maps analysis identified the clusters of cova-
riant proteins and associated pathways.

2. MATERIALS AND METHODS

Sample Collection and Preprocessing—Human semen samples
collected from Department of Laboratory Medicine, All India Institute
of Medical Sciences, New Delhi, India were processed as described
below. Institutional Ethics Committee approved the study with the
reference number IEC/NP-147/01.05.2014, RP-33/2014. The World
Health Organization (WHO) 2010 recommendations for semen anal-
ysis were followed. Samples were categorized as NZS based on
sperm count �15 million/ml, sperm motility �40% and normal sper-
matozoa morphology. Samples having less than 40% sperm motility
were characterized as AZS. The age of the semen donors was be-
tween 20–40 years. The clinical parameters of the semen donors are
given in supplemental Table S1. Samples with the visual presence of
leukocytes were not included in the study. Samples were centrifuged
at 2000 � g for 20 min at 4 °C to separate spermatozoa from seminal
plasma. The resulting pellet was washed with PBS three times and
centrifugation was repeated each time to completely remove seminal
plasma. Seminal plasma was further centrifuged at 10,000 � g for 20
min to remove cell debris and other impurities if any. The clear
supernatants obtained were lyophilized and stored at �80 °C till
further use.

Further Processing and Trypsin Digestion—Lyophilized sperm and
seminal plasma were rehydrated on a thermomixer for 2 h (25 °C) in
0.1% Rapigest SF (Waters, Manchester, UK) for seminal plasma,
whereas the concentration of Rapigest for sperm samples were 0.5%.
Samples were sonicated (at 50% output) by a probe sonicator
(UP200H, Dr. Hielscher GmBH, Germany) for 5 cycles of 3 s each. The
protein concentration was determined with Pierce BCA assay kit
(Thermo Fisher Scientific, Waltham, MA). The liquid containing the 30
�g total protein was aliquoted and boiled at 100 °C in a water bath for

10 min. After cooling down the samples, dithiothreitol (DTT) was
added to the final concentration of 5 mM to the samples and they were
incubated at 65 °C in a thermomixer for 30 min. Samples were again
cooled down and iodoacetamide was added to the final concentration
of 15 mM and samples incubated for 30 min at 25 °C with shaking.
Fifteen mM DTT (final concentration) was again added to the samples
to quench the remaining Iodoacetamide and prevent overalkylation.
One �g of the Trypsin Gold (Promega, Southampton, UK) was added
to each sample and the mixture was incubated at 37 °C overnight.
Next day, the samples were cleaned by C18 spin columns (Pierce,
Thermo Fisher Scientific) according to manufacturer’s protocol. Elu-
tion was dried in the speed vacuum (Savant, Thermo Fisher Scientific)
and reconstituted in 86 �l of 0.1% formic acid containing 50fmol of
Hi3 peptide mixture (Waters) per 4 �l as a spike-in standard for
quantitation of proteins.

UPLC-MS—Four �l samples, equivalent to �1.4 �g total protein,
was injected to nano Acquity UPLC (Ultra Performance Liquid Chro-
matography) - system (Waters). TRIZAIC nanoTile 85 �m x 100 mm
HSS-T3u wTRAP was used as separating device prior to mass spec-
trometer. Samples were loaded, trapped and washed for 2 mins with
8.0 �l/min with 1% B. The analytical gradient used is as follows: 0–1
min 1% B, at 2 min 5% B, at 65 min 30% B, at 78 min 50% B, at 80
min 85% B, at 83 min 85% B, at 84 min 1% B and at 90 min 1% B with
450 nL/min. Buffers were made to UPLC-grade chemicals (Sigma-
Aldrich); Buffer A: 0.1% formic acid in water and Buffer B: 0.1%
formic acid in acetonitrile.

The data was acquired in DIA (data independent acquisition) fash-
ion using HDMSE-mode with Synapt G2-S HDMS (Waters Corpora-
tion). HDMSE mode included ion mobility spectroscopy (IMS). The
collected data range was 100–2000 m/z, scan time 1 s, IMS wave
velocity 650 m/s, collision energy was ramped in trap between 20 to
60 V. Calibration was done with Glu1-Fibrinopeptide B MS2 frag-
ments and as a lock mass, Glu1-Fibrinopeptide B precursor ion was
used during the runs.

The samples were run as triplicates and further analysis was done
with, Progenesis QI for Proteomics - software (Nonlinear Dynamics,
Newcastle, UK).

Data Analysis—The raw files were imported to Progenesis QI for
proteomics software (Version V2, Nonlinear Dynamics) using lock
mass correction with 785.8426 m/z, corresponding to doubly charged
Glu1-Fibrinopeptide B. Default parameters for peak picking and align-
ment algorithm were used. The software facilitated the peptide iden-
tification with Protein Lynx Global Server (PLGS version 3.0) and
label-free quantification (7).

The peptide identification was done against Uniprot human FASTA
sequences (UniprotKB Release 2015_09, 20205 sequence entries)
with (CLPB_ECOLI (P63285)), ClpB protein sequence inserted for
label-free quantification. Modifications used were as follows: fixed at
cysteine (carbamidomethyl) and variable in methionine (oxidation).
Trypsin was used as digesting agent and one missed cleavage was
allowed. Fragment and peptide error tolerances were set to auto and
FDR to less than 4%. Auto-tolerances are calculated by PLGS auto-
matically depending on the resolution of the run. For example, the first
run had resolution of 17170.87 and the precursor tolerance was 5.8
ppm and fragment tolerance was 14.6 ppm. The false discovery rate
in an Ion Accounting search is less than the specified rate (default �
4%) all the way through the search, right up to the last protein
identified. When the false discovery rate exceeds the specified FDR
value the search stops. The FDR is determined using a randomized
version of the specified sequence data bank. One or more ion frag-
ments per peptide, three or more fragments per protein and one or
more peptides per protein were required for ion matching. These are
default parameters in the software.
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The identified proteins are grouped as one according to parsimony
principle and also peptides unique to the protein are reported. Par-
simony principle states that protein hits are reported as the mini-
mum set that accounts for all observable peptides. Progenesis QI
for proteomics does not take a strict parsimonious approach be-
cause of over-stringency as has been pointed out before (8). How-
ever, for resolution of conflicts, if two proteins contain some com-
mon peptides, protein with fewer peptides is subsumed into the
protein with higher number of peptides that are a superset of the
subsumed protein’s peptides. All relevant proteins are listed as a
group under the lead protein with greatest coverage or the highest
score when the coverages of two or more proteins are equal.
Quantitation is performed using the lead identity peptide data. More
details about this approach can be accessed on the software
website (www.nonlinear.com).

The proteins were considered different if they have a fold change 2
or more and an ANOVA p value 0.05 or less. The ANOVA calculation
assumes that the conditions are independent and applies the statis-
tical test that assumes the means of the conditions are equal.

The label-free protein quantitation was done with Hi-N method (7).
In every injection, the sample contained also 50 fmol of six CLPB_
ECOLI (P63285, ClpB protein) peptides (Hi3 E. coli Standard, Waters).
Hi3 peptides are used for normalizing the peptide abundancies and
relative quantitation was based on all the non-conflicting peptides
found. The peptide ranking is done across all the runs. The abundan-
cies of the peptides are averaged to provide a signal to the protein.
Workings of the Progenesis softwares have been described in details
on the software website (www.nonlinear.com) and also in published
literature (9).

Peptide Statistics by Progenesis QI Proteomics—Explanation
about some of the common terms used in peptide statistics is given
below.

Q value: tells us the expected proportion of false positives if that
peptide ion’s p value is chosen as the significance threshold.

Power: can be defined as the probability of finding a real difference
if it exists. 80% or 0.8 is considered an acceptable value for power.
The Power Analysis is performed independently for each peptide ion,
using the expression variance, sample size and difference between
the means.

Experimental Design and Statistical Rationale—We studied 5 NZS
and 8 AZS spermatozoa samples as well as 7 NZS and 10 AZS
seminal plasma samples. Categorization parameters are given in
Sample Collection and Preprocessing and clinical measurement of
the samples are given in supplemental Table S1. Samples were
compared among the classes, NZS and AZS. Differences between
controls and cases were evaluated with ANOVA on a protein-to-
protein basis. Principle component analysis was done with Progen-
esis QI for proteomics. EZinfo 3.0.3.0 (Release date Dec 02, 2014,
Umetrics, Sweden) is a separate statistical package that can be used
with Progenesis QI for proteomics. The data was imported into the
EZinfo and supervised OPLS-DA modeling was performed, which
gave us the variance versus correlation plot (S-Plot). Default param-
eters were used. ROC curve analysis was also performed on some of
the significantly different proteins predicted by S-Plot in case of
sperm proteomic data set. Analyze-It program, which works with
Microsoft Excel, was used with all the default parameters. This is an
exploratory/discovery based study to propose protein targets impli-
cated in defects of AZS.

Pathway Analysis—The pathway analysis was done by three dif-
ferent methods. Literature was searched for several proteins from
data set leading to sperm motility pathways and it is presented as
a figure in Results. Integrated Molecular Pathway Level Analysis
(IMPaLA) was used for pathway over representation analysis by their
web-based service. The method and rationale behind the approach

has been published previously (10). Ingenuity pathway analysis (In-
genuity Systems, Redwood City, CA) was used for performing core
analysis on the sperm cells proteomic data set with default parame-
ters of the software. The results (canonical pathways) are presented in
Results as a figure.

Self-Organizing Maps (SOM)—The objective of the SOM algorithm
is to find prototype vectors that represent the input data set and at the
same time realize a continuous mapping from input space to a lattice
(11). This lattice consists of a defined number of “neurons.” All the
SOM calculations and analysis were done in MATLAB based on
the following basic principle. The basic principle behind the SOM
algorithm is that the weight vectors of neurons that are first initialized
randomly, come to represent a number of original measurement
vectors during an iterative data input process. The iterative process is
carried out by a sequential regression process. For each observation
x(t), where t � 1, 2, . . . is the step index, we first identify the index c
of some reference model, which represents the best match in terms of
Euclidean distance by the condition,

c � argmin �x�t� � mi�t� �, � i (Eq. 1)

Here, the index i ranges over all reference models on the map. The
construction �x � y� represents the Euclidean distance between fea-
ture vectors x and y. Next, all reference models on the map are
updated with the following regression rule where model index c is the
reference model index as computed above.

mi�t	1� �
�j�1

n hci�t�xj�j�1
n hci�t�

, � i (Eq. 2)

Here hci is the neighborhood function that is defined as follows:

hci � �0 if�c � i� � �
� if�c � i� 	 � (Eq. 3)

Where �c � i� represents the distance between the best matching
reference model c and some other reference model i on the map, � is
the neighborhood distance and � is the learning rate. This regression
is usually repeated over the available observations.

Data Repository—The raw files were converted with MSConvert
(ProteoWizard) to mzML-files. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via
the PRIDE (12) partner repository with the data set identifier
PXD004098.

3. RESULTS

Metadata—Sixteen samples were included in the study ac-
cording to the criterion described in Methods. The samples
had varying sperm counts and motility parameters as seen in
the supplemental Table S1. Every sample was run three times
and the samples, where three technical replicates were not
similar (where the alignment of triplicates was retrospectively
visibly poor in Progenesis QI for proteomics after they did
not group closely in principal component analysis), were
excluded from the further analysis. Three such not similar
triplicates were excluded from further analysis and they are
indicated in the supplemental Table S1. Sperm from sample
A4 were not analyzed because there was too little protein
recovered from it.

Proteomic Analysis—Human sperm cells and seminal fluid
samples were analyzed in HDMSE mode followed by data-
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base search and the corresponding results are reported
below.

Sperm Proteomic Analysis—For quantification only proteins
with 2 or more unique peptides were considered and only
these 667 proteins were taken for further analysis. Fold
change ranged from 79.4 to 1 when NZS had the highest
mean and from 19.6 to 1 when the AZS had the highest mean.
All protein abundances were compared by ANOVA among all
the samples and the p value ranged from 5.99 � 10�13 to
0.999. The confidence score of protein identifications ranged
from 1157.067 to 4.842. Ten of the most downregulated and
up-regulated proteins in AZS in human sperm cell samples
and human seminal plasma samples are presented in Table I
(complete data in supplemental Table S2, protein coverages
in supplemental Table S10). Some of the proteins having p
values higher than 0.05 are also present in bold letters in Table
I and II as they are not considered significantly different
among the samples despite having the big fold change. This
is mainly because ANOVA was considered as the major cri-
terion for establishing real differences between the groups.
This is a good strategy as we can see in supplemental Table
S3 that one NZS sample for neutrophil defensin 1 protein has
unusually high protein abundance (compared with AZS),
which results in high mean and subsequently high fold
change. Other samples in the NZS, however have low expres-
sion of this protein. ANOVA helps identify proteins having
consistent expression across the samples with real fold
changes.

Abundances of NZS and AZS quantified proteins (667 pro-
teins) in sperm cell proteomic data set were used for perform-
ing principal component analysis as described in Methods.
Upper panel shows the PCA biplot when all the proteins were
considered for PCA. There is a tendency for separation but
the samples do not completely segregate in the plot. When
only housekeeping proteins (FC 1.0 to 1.29) were used for
PCA (middle panel, Fig. 1) NZS versus AZS again does not
segregate into two completely separate classes, which is
expected. However, when the proteins passing the cutoff of
ANOVA p value below 0.05 and fold change more than 2, were
considered for PCA (lower panel, Fig. 1) there was a complete
separation of the samples into two components. The NZS
samples (blue) were clustered together tightly whereas a big-
ger cluster was observed for AZS samples, which was sepa-
rate from NZS cluster.

When the samples were divided into three classes based on
the motility of the sperm parameter (0%, 10–30%, 50–60%
motility) and then used for PCA, it is shown in Fig. 2. The
reason for classifying the samples into three motility classes
was to see if there is a continuous variation in the data set
from high sperm motility (50–60%) to moderate (10–30%
sperm motility) to no sperm motility (0% sperm motility). PCA
biplot can visualize this information easily in a graphical man-
ner. The total proteins PCA is shown in upper panel of Fig. 2,
PCA of housekeeping proteins is shown in the middle panel

and the lower panel represents the PCA when only house-
keeping proteins and proteins having ANOVA p value below
0.05 and fold change above 2 were used respectively (Fig. 2).
The NZS samples again cluster together tightly, separated a
little bit from 10–30% motility class and completely from 0%
motility classes. There is a progression seen in the clustering
of the samples from 0% to 10–30% to 50–60% motility.

Seminal Plasma Proteomic Analysis—In human seminal
plasma samples, 429 proteins were quantified with two or
more peptides (supplemental Table S3). Seven hundred twen-
ty-six peptides were identified by differences in IMS-drift time.
The fold change ranged from 3.16 to 1 when the highest mean
was set to NZS samples and from 9.68 to 1 when the highest
mean was set to AZS samples. Top 10 upregulated and
downregulated proteins in AZS samples are reported in Table
II with corresponding ANOVA p values and confidence score.

In the seminal plasma when the same PCA analysis was
done as described for sperm cells in Fig. 1, total proteins PCA
did not cluster differentially (upper panel, Fig. 3). When only
housekeeping proteins were used for PCA, as expected, the
two classes did not cluster differentially (middle panel, Fig. 3).
And unlike sperm cell samples, even the most changing pro-
teins PCA (PCA done with proteins having ANOVA p value
less than 0.05 and FC � 2) did not cluster significantly differ-
entially (lower panel, Fig. 3). This shows that sample groups in
seminal plasma data set are not significantly different as
selecting only the significant proteins should generally show a
good separation. The samples divided into three motility
classes (sample showing 0%, 10–30% and 50–60% sperm
motility) and then used for PCA (supplemental Fig. S1) did not
show any significantly better results compared with only two
classes (Fig. 3).

Orthogonal Statistical Validation of Proteomic Data—To as-
certain whether differentiation in the PCA space was real or
erroneous, we performed Orthogonal Projections to Latent
Structures Discriminant Analysis (OPLS-DA). If the separation
between the two classes is real in the PCA space, then
OPLS-DA should be able to pull out some proteins that are
really variable between the classes. Reverse would be true if
the separation was not real. This would serve as the valida-
tion of the PCA separation. Further, to access the validity of
the OPLS-DA model, we employed area under the curve
(AUC) values in receiver operating curve (ROC) analysis for
proteins declared significantly different by OPLS-DA. This
double validation strategy would ensure that only the true
significantly different proteins between the two classes are
identified.

Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA)—OPLS-DA is a modeling technique that
compares the markers coming from two different groups of
samples. From this modeling, an S-Plot can be generated that
has two axis, x axis is the measure of amount of change in a
particular analyte and y axis is a measure of significance of the
analyte in the two group comparison. When the number of
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variables is too big, such as in a shotgun proteomic experi-
ment, this analysis can be used to filter out the proteins that
are most significantly different among the two groups.
OPLS-DA can find out the predictive and uncorrelated vari-
ance in two classes of samples (13).

Sperm Cell Proteomic Data Set—An OPLS-DA modeling
was performed on sperm cell proteomics data set. The result-
ing S-plot is shown in Fig. 4, which gave, as output, the most
different proteins among the two classes. Proteins passing
the threshold of 0.80 for p(corr) values were considered as
significantly different among the two classes. These proteins

and their associated characteristics are summarized in Table
III. All these proteins are downregulated in AZS sperm cells.

Seminal Plasma Proteomic Data Set—In seminal plasma
proteomic analysis none of the proteins passed the 0.80
cutoff for significance. No significant proteins were found for
seminal plasma data set, therefore from here onwards, the
seminal plasma data set was not considered for further anal-
yses described in the study.

Receiver Operating Characteristics (ROC) Curve Analysis—
Proteins found most significant in OPLS-DA S-Plot for sperm
cell proteomic data set were analyzed by ROC curve and the

FIG. 1. Sperm cells normal versus asthenozoospermic samples. Purple dots are for the asthenozoospermic samples and blue dots are
for the normozoospermic samples. Upper panel is the PCA when all the proteins quantitated were considered for the PCA, middle panel is
when only housekeeping proteins (FC 1.0 to 1.29) were considered for PCA. Lower panel is when only the proteins having ANOVA p value less
than 0.05 and fold change more than 2 in either condition were considered for PCA.

Sperm Proteomics Differentiates Normo- and Asthenozoospermia

Molecular & Cellular Proteomics 16.2 63



area under the curve (AUC) was calculated. These calcula-
tions with default options were done with Analyze-it program,
which works with Microsoft Excel. ROC curve analysis was
employed to further validate the diagnostic value of the
OPLS-DA model and to check if proteins suggested by S-
Plot, as being most significantly different between the NZS
and AZS in sperm cell proteomic data set, hold true in ROC
curve analysis as well (i.e. having high AUC values). Most of
these proteins had the perfect AUC of 1 with two of them
having 0.97 and 0.93 (Dynein light chain 1 and Fascin-3
respectively). One protein for which the fold change in sperm

cell proteomic data set was very close to 1 was also used in
the analysis as validation control for calculations by this
method. The AUC for this protein was 0.52, which was
expected as this protein should not be able to classify the
two classes of samples. All these calculations are shown in
Table IV.

Pathway Analysis—We did pathway analysis using several
tools including manually finding the information in literature,
because the databases these tools use are different and the
algorithms to find the pathways are different. Our objective
here was to find the relevant pathways from a comprehensive

FIG. 2. Sperm cells motility classes PCA: Purple dots are samples having 10–30% sperm motility, blue dots are samples having
50–60% sperm motility and orange dots are samples having 0% sperm motility. Upper panel is the PCA when all the proteins quantitated
were considered for the PCA, middle panel is when only housekeeping proteins (FC 1.0 to 1.29) were considered for PCA. Lower panel is when
only the proteins having ANOVA p value less than 0.05 and fold change more than 2 in either condition were considered for PCA.
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list. The 8 proteins from Table III, having the highest signifi-
cance in terms of differential classification of NZS and AZS
samples in OPLS-DA and ROC curve analysis in sperm cell
samples were used for extensive literature search to delineate
the pathways related to sperm motility. A schematic diagram
of the results of this literature search, which was able to
connect many of these sperm proteins to pathways related to
sperm motility and/or migration, are shown in Fig. 5. In addi-
tion to literature search, two more tools were used for path-
way analysis of proteins in sperm and seminal plasma namely
IMPaLA (10) and IPA.

Integrated Molecular Pathway Level Analysis (IMPaLA)—
IMPaLA tool was used for pathway over representation anal-
ysis in data set of sperm proteins sorted according to highest
mean in AZS (right panel, Fig. 6) and then proteins sorted
according to highest mean in NZS (left panel Fig. 6). The
results are shown in Fig. 6. The full pathway over represen-
tation results of sperm cell proteins are shown in supplemen-
tal Table S4. In highest mean NZS samples, Glycolysis, Glu-
cose metabolism and Gluconeogenesis were the major
pathways found. However, in highest mean AZS samples
cellular response to stress, nucleosome assembly, histone

FIG. 3. Seminal plasma PCA Normozoospermia versus Asthenozoospermia: Purple dots are normozoospermic samples and blue
dots are asthenozoospermic samples. Upper panel is the PCA when all the proteins quantitated were considered for the PCA, middle panel
is when only housekeeping proteins (FC 1.0 to 1.29) were considered for PCA. Lower panel is when only the proteins having ANOVA p value
less than 0.05 and fold change more than 2 in either condition were considered for PCA.
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demethylation and packaging of telomere ends were the ma-
jor pathways.

Ingenuity Pathway Analysis (IPA)—Ingenuity pathway anal-
ysis was performed on sperm cell and seminal plasma pro-
teomics data and the part of the results are shown in Fig. 7.
Top canonical pathways found in sperm proteomic data set
with -logp value above threshold can be seen in the figure
with the most significant being glycolysis, gluconeogenesis,
unfolded protein response and others such as protein ubiq-
uitnation pathway, cellular effects of sildenafil, aldosterone
signaling and eNOS signaling.

Validation of Pathways by Clustering Proteins by Self Orga-
nizing Maps (SOM) Followed by Pathway Analysis—Sperm
cell proteomic data set was divided into three categories with
samples having 50–60% motility in one category and 10–30
and 0% motility in another two separate categories. Only the
means of the samples falling in these categories were taken
further for analysis. The main reason for dividing the data set
into three categories instead of two used in other analyses
was to see if there was a continuous progression of disease
phenotype from 50–60% motility to 10–30% to 0% or vice-
versa (or in other words, if the proteomic data set can reveal
or reflect the severity of the disease in question). These cat-
egories were also formed in PCA for the same reason. After
categorization, a numerical data set was formed with three
variables, i.e. “0% motility,” “10–30% motility,” and “50–60%
motility.” Scaling of these variables is the first step before
analyzing the data completely, because the SOM algorithm
uses Euclidian metric to measure distances between vectors.
If one variable has values in the range of (0, . . . , 1000) and
another in the range of (0, . . . , 1) the former will almost
completely dominate the map organization because of its
greater impact on the distances measured. Therefore, the
data set is normalized using histogram technique.

The next step includes the initialization and training the
neural network. In the algorithm, we initialize the map with a
size of (26,5) and the training is done in two phases: (a) rough
training with large (initial) neighborhood radius and large (ini-
tial) learning rate; (b) fine-tuning with small radius and learning

rate. The batch training algorithm is iterative, but instead of
using a single data vector at a time, the whole data set is
presented to the map before any adjustments are made. In
each training step, the data set is partitioned according to the
Voronoi regions of the map weight vectors, i.e. each data
vector belongs to the data set of the map unit to which it is
closest. The training results are illustrated in supplemental
Fig. S2. From the component planes, it can be seen that the
0% motility and 10–30% motility data are related to each
other. However, 50–60% motility does not show strong rela-
tion with either of the motility classes (supplemental Fig. S2).
The correlation analysis can be better visualized in Fig. 8,
where the data points are in the upper three panel and map
prototype values on the lower three panels.

Fig. 8 shows the correlation analysis between different vari-
ables. Degree of the straightness of the line between variables
demonstrates correlation (more straight line means stronger
correlation). Note that the variable values have been denor-
malized. Taking a closer look at Fig. 8, it shows the aforesaid
correlation outcomes from supplemental Fig. S2. Based on
these analyses, the clustering of the data was done. supple-
mental Fig. S3 shows the Davies-Boulding index that indi-
cates there are five clusters. The clusters on the map are also
illustrated. Using this clusters information, respective data
belonging to a particular cluster was extracted. The extracted
clusters are given in supplemental Tables S5–S9, in which
each Table is a separate cluster.

To convert these clusters into biological information, path-
way over representation analysis (IMPaLA) of all the clusters
was done. The resulting pathways (only those which passed
the threshold of 0.05 p value) were compared with their path-
way counterparts from original NZS and AZS data set. Five
clusters and three parts of the original data set (highest mean
AZS and highest mean NZS conditions as well as housekeep-
ing proteins, FC 1–1.3) were compared with each other and
the results are shown in Fig. 9. When all the clusters are
compared with each other, it can be seen that major number
of the pathways enriched in each cluster are unique. Cluster 1
protein pathways mainly overlapped with the housekeeping

FIG. 4. S-plot of the semen cells
data set: S-Plot obtained from OPLS-
DA regression analysis. Discriminat-
ing component of the OPLS-DA model
is shown in the S-plot, which shows the
relationship between the correlation
p(corr) and the covariance (p). Data are
log10 transformed and mean centered.

Sperm Proteomics Differentiates Normo- and Asthenozoospermia

66 Molecular & Cellular Proteomics 16.2

http://www.mcponline.org/cgi/content/full/M116.061028/DC1
http://www.mcponline.org/cgi/content/full/M116.061028/DC1
http://www.mcponline.org/cgi/content/full/M116.061028/DC1
http://www.mcponline.org/cgi/content/full/M116.061028/DC1
http://www.mcponline.org/cgi/content/full/M116.061028/DC1
http://www.mcponline.org/cgi/content/full/M116.061028/DC1
http://www.mcponline.org/cgi/content/full/M116.061028/DC1


proteins. Cluster 2, 3 and 5 on the other hand, had majority of
the pathways common with AZS samples and cluster 4 had
overlapping pathways with NZS samples.

4. DISCUSSION

Twenty-four percent of infertile men present with isolated
AZS (14) caused by various factors including varicocele, in-
fection or genetic causes (15–17). Many cases are however
idiopathic in nature and no specific causes can be ascribed to
the condition (18). Further studies are needed to understand
the sperm motility better for treatment/management of such
cases. Sperm cells are transcriptionally and translationally
silent (1), which calls for proteomic studies to find proteins
implicated in aberrant and/or altered motility of sperm cells
associated with idiopathic AZS. Advantages of sperm pro-
teomic analysis and points to be considered have been re-
cently reviewed (19).

We have performed shotgun proteomic analysis of the
sperm cells and seminal plasma proteins in NZS and AZS
samples. We have included 667 proteins for quantification in
sperm cell samples and 429 proteins in seminal plasma sam-
ples. Quantification was performed label-free by the software
Progenesis-QI for proteomics. The quantification of these
proteins was followed by rigorous statistical/mathematical
data analysis including principal component analysis, OPLS-DA
(S-Plot), ROC Curve analysis and self-organizing maps anal-
ysis. The Principal Component Analysis (PCA) in Progenesis
QI for proteomics determines the principal axis of abundance
variation for individual proteins, which can easily identify the
outliers. This is also a good method to study technical repli-
cates as they should be close on a PCA biplot. As described
previously in the metadata section of the results, we have
removed such non-performing technical replicates from the
further analyses. Axes in PCA biplot represent the direction-
ality of most variation through the data. PCA biplot can dis-
tinguish if two or more classes of samples have little or more
variation compared with each other. It can be used to visual-
ize the differences among the classes in a simple manner.

The proteomic signature of sperm cell samples was able to
separate the two classes in PCA as shown in Figs. 1 and 2.
However, the separation was not very significant or complete
in seminal plasma proteomic data (Fig. 3 and supplemental
Fig. S1). Going back to the proteomic data sets, this was
probably because of the higher ANOVA p values (compared
with sperm cell proteomic data set) observed for majority of
the proteins in human seminal plasma proteins. Proteins with
lower ANOVA p values will be expected to lie further apart on
a PCA whereas those with higher ANOVA p values, meaning
low variance, will be expected to lie close to each other.
ANOVA, therefore is an easy potential predictor of PCA and
OPLS-DA performance and these techniques have been com-
bined in some instances previously (20).

When the variance among two classes is low, majority of
the variables fall into uncorrelated variance class and makes it
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difficult to find the predictive variance that can classify the two
samples (13). However, very low p values were observed for
more proteins in the human sperm cell proteomic data set and
OPLS-DA modeling and the corresponding S-plot was able to
pull out multiple proteins that are candidates for implication in
sperm motility pathways (Table III). None of the proteins from
seminal plasma passed the p(Corr) threshold of 0.80 in the
S-plot originating from OPLS-DA modeling. The AUC for sem-
inal plasma top differing proteins (according to fold change)
gave the highest value of 0.87 for spondin-2 (compared with
AUC of 1 for most of the significantly different proteins in
sperm cell) and much less for other top proteins (data not
shown). It is clear from all these analyses that human sperm
cell proteomic signature as opposed to human seminal
plasma proteomic signature can differentiate the NZS and
AZS groups easily.

The 8 significant proteins in S-plot of sperm cell proteomic
data set were all downregulated in AZS samples. We did an

extensive literature search for finding the common pathways
converging to sperm motility (Fig. 5). Five of these proteins
were found to be related to the sperm motility pathways
having multiple nodes. Ninein is a protein that helps assemble
the centrosomes (21, 22), which regulate the axoneme acti-
vation (23) which, in turn, is responsible for sperm motility (24).
Fascin-3 is an actin bundling protein and together they regu-
late actin stress fiber contraction (25), which is important for
axoneme activation converging to sperm motility. Plexin-B2 is
a cell surface receptor (downregulated in AZS sperm cells in
our data), which, upon ligand based activation, activates the
RhoA protein (26) leading to focal adhesion assembly and
contraction of actin stress fibers (27), once again converging
to axoneme activation and sperm motility pathway. RhoGDI,
which blocks this action of RhoA (28), was found to be up-
regulated in AZS sperm cells in our study (supplemental Table
S2). Many of these proteins are being implicated in the sperm
motility pathways for the first time and these interesting tar-
gets need further validation in future studies. It has previously
been found that OPLS-DA is a good tool for new hypothesis
formation in terms of classifying the classes of samples (13)
and many a times, it results in outputs that cannot be ex-
tracted by other types of analyses in terms of biological im-
portance.

The most significantly different proteins in S-plot for sperm
cells proteomic data set and some of the top proteins in
seminal plasma data set having the highest fold change dif-
ferences were analyzed by ROC curve analysis (Table IV, and
data not shown for seminal plasma proteins) to validate the
predictive power of these proteins to disease classes. In all
the comparative proteomics studies (discovery type or tar-
geted) whether searching for biomarkers or proteins signifi-
cantly different among the classes, disease versus the control
samples, ROC curve can play important role. It works as a
binary classification technique and evaluates the perfor-
mances of individual proteins to classify the samples. Tradi-
tional use of AUC from ROC curve has been in the biomarker
discovery or validation studies however it basically suggests
the significantly different proteins among the sample classes
(reflected in higher AUC). Therefore, it can also be used for

TABLE IV
ROC curve was drawn, for the proteins found to be significantly different in S-Plot of sperm proteomic data set and one housekeeping protein,
by Analyse-it program, which works with Microsoft Excel. Uniprot accession, full protein name, Area under the curve (AUC), 95% confidence

interval (95% CI) and standard error (S.E.) are given in the table

Uniprot accession Protein name AUC 95% CI S.E.

O15031;H0Y7X5 Plexin-B2 1 1–1 0

Q9BYX7 Putative beta-actin-like protein 3 1 1–1 0

E9PN67;C9J066;Q8N4C6 Ninein 1 1–1 0

Q92576;E7ER40 PHD finger protein 3 1 1–1 0

P63167;F8VRV5;F8VXI7;F8VXL2 Dynein light chain 1, cytoplasmic 0.975 0.906–1.044 0.035

Q8NCQ7;A0A0A0MT24 Protein PROCA1 1 1–1 0

Q9NQT6 Fascin-3 0.925 0.766–1.084 0.081

J3QSU1;F5H5K1;J3KTP0;J3QLI7;Q96QE4 Leucine-rich repeat-containing protein 37B 1 1–1 0

A0A087WW73 Phosphoinositide phospholipase 0.525 0.175–0.875 0.178

FIG. 5. Five proteins having the significance of statistical anal-
ysis were connected to pathways related to sperm motility. These
pathways were found by extensive literature mining and the corre-
sponding references are given in the Discussion where role of all
these proteins are described in more detail. Green circles are the
proteins that are downregulated in asthenozoospermic sperm cell
samples and red are up-regulated. The yellow circles signify the
proteins that are involved in these pathways but were not found in our
data set.
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probing out the mechanistic insight from discovery proteomic
studies. It can help produce protein targets, which can be,
either tested as biomarkers or, used for mechanistic studies
to establish their roles in the disease. However, the typical
sample size for this kind of study that benefits from ROC
curve analysis is 30–50 when the AUC values are closer to 1
(29). Our study has 17 seminal plasma samples and 13 cor-
responding sperm cell samples and we realize it is a limited
study. However, it does give an important impetus for future
studies to validate our findings in larger sample sets and also
in clarifying roles of these proteins in mechanistic studies to

understand the process underlying the motility of the human
sperm.

In the SOM analysis of the sperm cells proteomic data set
we were able to cluster the data of three sperm motility
categories into five clusters. Correlation analysis showed that
50–60% motility did not correlate with the 10–30% or 0%
motility classes (Fig. 8). However, 10–30 and 0% motility
classes correlated strongly (Fig. 8). This is indicative of the
phenomenon where downgradation from high to low motility
is continuous and abundance of key proteins or the whole
proteomic signature of the classes can differentiate the

FIG. 6. IMPaLA pathway over-representation analysis of sperm cell proteomic data set: pathway over representation analysis was
performed separately on proteins list having highest mean in normozoospermia and asthenozoospermia. The top 10 pathways enriched
in both the conditions are shown here with p values of the pathways enriched in blue and Q value in red.

FIG. 7. Canonical pathways: Total proteins in sperm cell proteomic data set were analyzed for Ingenuity Pathway Analysis “Core
analysis” and the top canonical pathway enriched are shown here. Horizontal orange line running through the bars is the threshold for p
value for these pathways’s enrichment. Color coding for positive and negative z-score and for pathways with no activity pattern available are
shown in the figure.
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FIG. 8. Correlation analyses of the sperm cell proteomic data set divided in three motility categories. Panel A, B, and C are datapoints
in untrained map and D, E, and F are the trained map (50–60% motility (x axis) versus 0% motility (y axis) is panel A and D, 50–60% motility
(x axis) versus 10–30% motility (y axis) is panel B and E and 10–30% motility (x axis) versus 0% motility (y axis) is panel C and F. Data points
are the protein abundances with each point corresponding to one protein Id.

FIG. 9. Five clusters found by SOM in sperm cell proteomic data set are shown here. Pathway over-representation analysis was done
on clusters and highest mean NZS and highest mean AZS and housekeeping proteins using IMPaLA tool. These pathways were compared with
each other and the comparisons are shown in the form of Venn diagram.
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classes and reflect this downgradation. In-line with this fact
the optimal threshold cutoff found by ROC curve analysis for
the most significantly different proteins in OPLS-DA S-Plot
can prove to be a strong indicator of this progression. These
proteins, when going below or above certain abundance in
sperm cells may lead to lower motility. This is a significant
result however we realize that this needs to be validated in
larger set of samples. The five clusters found in the SOM
analysis of the sperm proteomic data set were found to sep-
arately contain largely pathways related to either NZS or AZS
or housekeeping proteins (Fig. 9). This suggests that func-
tional analysis of the clusters in terms of pathway over-rep-
resentation analysis is a good strategy to find the biological
relevance of the clustering techniques.

Going back to the integration of all these analyses tech-
niques, proteins having lower AUC in the ROC curve analysis
(Dyenin light chain 1 and Fascin3) are also the proteins that
have lower p(corr) values in S-Plot (however, still high enough)
than most other proteins in the Table (Table III). These two
proteins also have higher ANOVA p values than most other
proteins in table (however, still low enough, See Table III and
Table IV). These techniques of data analysis seem to have
some degree of crosstalk with each other and relevance in
one can be validated by relevance in the other. Appropriate
statistical and/or mathematical analyses have the power to
reveal proteins having the significant differences in a binary
classification that are not otherwise visible in a data set based
only on FC. OPLS-DA is very powerful technique for binary
data sets however validation analyses needs to be carried out
(such as ROC Curve analysis) to judge the validity of the
model.

In summary and conclusion, we have found that sperm
motility pathway defects are reflected in sperm proteomic
signature using appropriate statistical methods. Seminal fluid
proteomic data set is not reflective a great deal about these
defects, particularly in terms of mechanistic insights converg-
ing to appropriate pathways. Further studies to elucidate the
sperm motility pathways and defects thereof could be pref-
erably carried out on sperm samples, even though some
proteins from seminal plasma might still have roles to play.
ANOVA p values are a good indicator of the proteins different
among the two classes, which is also validated by other
statistical techniques such as OPLS-DA and ROC curve
analysis. Fold change, alone, should not be a criterion to
find the significantly different proteins among the two
classes of samples. We propose a moderate number of
proteins targets (Sperm cells proteomic data set, See Table
III and IV) whose abundance is significantly predictive of the
defects of the sperm motility pathways. These high confi-
dence targets need to be further validated in future studies
with larger sample sets and also in regard to their role in
the sperm motility in individual protein-based mechanistic
studies.
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