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Abstract

Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the 

breast. Investigating its temporal progression could provide fundamental new insights for the 

development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We 

investigate the problem of reconstructing a plausible progression from single-cell sampled data of 

an individual with Synchronous DCIS and IDC. Specifically, by using a number of assumptions 

derived from the observation of cellular atypia occurring in IDC, we design a possible predictive 

model using integer linear programming (ILP). Computational experiments carried out on a 

preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding 

predicted progression models are classifiable into categories having specific evolutionary 

characteristics. The approach provides new insights into mechanisms of clonal progression in 

breast cancers and helps illustrate the power of the ILP approach for similar problems in 

reconstructing tumor evolution scenarios under complex sets of constraints.
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1 Introduction

DUctal Carcinoma In Situ (DCIS) is considered a precursor lesion for invasive breast cancer 

and is found synchronously in approximatively 45% of patients affected by Invasive Ductal 

Carcinoma (IDC) [1]. Specifically, DCIS is the last step in a continuum of non-invasive 

stages of increased cellular atypia, which are believed to develop from flat epithelial atypia 

and atypical ductal hyperplasia [2]. Incidences of DCIS and IDC were estimated at 35 and 

155 per 100,000 women in the United States, respectively some years ago [3], [4]. The 

incidences of DCIS and early-stage IDC are expected to increase due to improvements in 

accuracy of mammography and its increased usage [5]. Investigating the temporal 

progression of solid tumors could provide fundamental new insights for the development of 

more effective diagnoses and treatments. Hence, increasing research efforts have been 

devoted to this topic in recent years [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. 

The topic has been reviewed in [17], [18].

Several studies have been performed on the dynamics of genomic alterations during the 

evolution of breast cancer using comparative genomic hybridization (CGH) data [19], 

mutation data [20], [21], [22], or fluorescence in situ hybridization (FISH) data [7], [11], 

[23], [24]. In this case study, we focus on reanalyzing the data collected on DCIS and IDC in 

[23]. Specifically, the authors carried out a single-cell FISH analysis [7], [20], [21], [25] on 

13 patients with synchronous DCIS and IDC of the breast. Heselmeyer-Haddad and 

colleagues observed both an enormous intercellular heterogeneity in DCIS and IDC 

(although lower in DCIS with respect to IDC) and signal patterns consistent with a non-

random distribution of genomic imbalances. The presence of recurrent patterns of genomic 

imbalances in the evolution from DCIS to IDC led the authors to suspect that similar 

sequences of genetic events might underlie progression across the patient cohort, enabling a 

classification. However, the partial classification proposed in [23] is based on static analysis 

of the single-cell data, not a model of progressing genetic changes.

Recent studies in various tumor types have shown extensive intra-tumor heterogeneity [26] 

either when the molecular data are point mutations [27], [28] or when the data are gene copy 

numbers measured by FISH [29], [30], as we use in this study. Therefore, modeling tumor 

progression based on single-cell data, as we do here, should yield more accurate models than 

analyses based on tumor-wide data on copy number or mutations [31]. Subsequent 

phylogenetic analyses [15], [16] of the data of [23] provided a proof of principle that one 

can reconstruct models of progression for DCIS and IDC data capable of identifying 

distinguishing features of amplification and loss of specific driver genes. Such work is, 

however, limited by the computational difficulty of accurately fitting phylogenetic trees to 

tumor data, particularly with regard to extending algorithmic theory of phylogenetics to 

cover realistic models of genomic copy number evolution. Further, none of the existing 
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methods for single-tumor phylogenetics, to our knowledge, is able to explicitly consider 

models of progression, such as DCIS/IDC data or explicit time-series samples, that would 

have a clinically defined sequence of progression among samples.

Using the data of [23], in this article, we address the problem of modeling and classifying 

progression of ductal carcinoma by single-cell phylogenetic analysis of tumors from a 

population of affected individuals. By making use of assumptions derived from the 

observation of cellular atypia occurring in ductal carcinoma, we first design a possible 

parsimony-based predictive model able to reconstruct a plausible progression of the 

carcinoma from single-cell samples of a patient. The modeling uses integer linear 

programming (ILP) to fit the single-cell data to a set of constraints that are intended to 

capture a model of our prior biological knowledge of plausible pathways of progression. The 

values of some variables in an optimal solution of the IP are interpreted as a structured 

model of progression. The use of mathematical programming to model tumor progression 

from molecular data was suggested by Farahani and Lagergren [32]. Mathematical 

programming and optimization have been used in a previous study on the relationship 

between DCIS and IDC [33], but that study was based on clinical characteristics of the 

patients without molecular data. Interestingly, a follow-up study on the same data suggested 

that mixture models allowing for two different types of clinical progression fit the data much 

better than any single model [34]. Mixture modeling has also been used effectively to infer 

tumor progression pathways from CGH data [35], [36]. In that same spirit, our 

computational experiments using FISH data show that the corresponding predicted 

progressions are non-random and classifiable into categories having specific evolutionary 

characteristics.

2 Profiling the progression of ductal carcinoma from single-cell sampled 

data

In this section, we briefly describe the data collected in [23] and introduce a number of 

biological and evolutionary assumptions that will prove useful to approximate progression of 

the tumor pathology considered here.

2.1 Sample data

The literature on tumorigenesis shows that progression of a tumor proceeds over time by 

increasing atypia from a normal cell [10], [11]. In ductal carcinoma, such atypia may affect, 

among other things, the number of copies of chromosomal segments and the number of 

genes in those segments (see [23]). Hence, the variation of the copy number of a (set of) 

gene(s) can be used as a measure of progression of a cancer cell with respect to the healthy 

cells.

The data collected in [23] have been extracted from a cohort of 13 patients affected with 

synchronous DCIS and IDC and include copy numbers of five oncogenes: COX2 
(cyclooxygenase 2, located on 1q31.1), MYC (c-MYC, located on 8q24.21), HER2 (human 

epidermal growth factor receptor 2, located on17q12), CCND1 (cyclin D1, located on 

11q13.3) and ZNF217 (zinc finger protein 217, located on 20q13.2) and three tumor 
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suppressor genes namely, DBC2 (deleted in breast cancer, located on 8p21.3), CDH1 
(cadherin1, also known as epithelial cadherin, located on 16q22.1) and TP53 (tumor protein 

p53, located on 17p13.1). Numerous studies have shown that the considered oncogenes are 

preferentially gained in tumor pathologies of the breast and that the tumor suppressor genes 

are preferentially lost in these pathologies [23]. In particular, losses of TP53 mechanistically 

promote instability in the genome (see [37]), and hence variations of the copy number of 

TP53 deserve special attention. Given a population of individuals affected by DCIS and 

IDC, we assume that for each individual, data on DCIS and IDC single-cell samples (or 

taxa) are available. Here, we refer to the paired samples for one patient as a dataset and the 

datasets are numbered DAT1 through DAT13. For each cell of the either sample in a dataset, 

the ordered list of copy numbers of the eight genes is called a taxon. We encode each taxon 

as a sequence of eight numbers each of which represents the number of copies of one gene. 

For example, the sequence ⟨2.2.4.2.1 – 1.2.3⟩ describes a taxon having (in the following 

order): 2 copies of COX2, 2 copies of MYC, 4 copies of HER2, 2 copies of CCND1, 1 copy 

of ZNF217, 1 copy of DBC2, 2 copies of CDH1, and 3 copies of TP53, respectively. By 

convention, we use the dot to separate the copies of different genes in a given taxon and the 

dash to separate oncogenes from tumor suppressor genes. Different cells may have the same 

copy number taxon; the multiplicity of each taxon is part of the data, but not used in our 

modeling. The number of distinct taxa, ignoring multiplicity, in a sample ranges from 35 to 

126 for this dataset (see Table 1).

2.2 Biological assumptions

Human populations show an extensive polymorphism in the number of copies of some 

chromosomal segments and genes, called Copy Number Variants (CNVs), even among twins 

[38], but such benign CNVs have not been reported for the eight genes studied here. All 

eight genes are on autosomes, not the X chromosome. Therefore, it usually holds that 

healthy cells carry 2 copies of each gene, i.e., healthy cells can be represented by the taxon 

⟨2.2.2.2.2 – 2.2.2⟩ [23]. Hence, we consider the all-2 taxon as the origin of progression of 

ductal carcinoma in each patient.

During progression of the carcinoma, the copy number of a gene can potentially increase 

indefinitely or decrease to zero. Once a gene is lost entirely in a given taxon t, it is plausible 

to believe that such a gene cannot be regained in a subsequent descendant of t. Hence, we 

exclude the possibility that a generic taxon having zero copies of a specific gene, e.g., 

⟨2.2.4.2.1 – 0.2.3⟩, could be considered as the ancestor of any other taxon in the same 

dataset having a strictly positive number of copies of that gene, e.g., ⟨2.2.4.2.1 – k.2.3⟩, with 

k > 0. We refer to this assumption as the ex nihilo nihil assumption.

Similarly to [11], we also assume that: (i) invasive tumors still contain cancer cells from 

earlier progression steps even if they have not been sampled; (ii) the rate of cell proliferation 

and death is not significantly different among taxa; and (iii) the cells sampled in each dataset 

are a reasonable representation of the whole tumor. Moreover, we also assume that: (iv) the 

copy number of a gene can freely increase or decrease (provided that it remains strictly 

positive) along a given pathway; and (v) the temporal progression should be respected, i.e., 
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that DCIS taxa should temporally precede IDC taxa (although this assumption is relaxed 

later).

We further consider some additional assumptions to specifically reflect a model of the 

effects of TP53 loss. In particular, we assume that (vi) an increment of the number of copies 

of TP53 in a given taxon may potentially cause a Doubling-Loss Event (DLE) in its 

immediate descendant, i.e., a doubling of the number of copies of (all or part of) the genes in 

the taxon followed by a possible loss of copies of one or more genes (see [23]). Moreover, 

we assume that in absence of an alteration of the copy number of TP53 it is unlikely: (vii) to 

have more than three genes whose corresponding copy numbers double in a generation or 

(viii) to gain more than 3 copies of a gene in a generation. Finally, we assume that (ix) in 

case of a decrement of the copy number of TP53 it is unlikely that the immediate descendant 

gains more than three copies of a gene. It is worth noting that these assumptions may not be 

strictly conserved on real data because TP53 dysfunctions, or functionally equivalent 

abnormalities, can occur by means of a variety of mechanisms beyond TP53 copy number 

variation and that might not be visible in FISH data. Nonetheless, we include these 

additional assumptions in part to illustrate the kind of complex constraints for which the ILP 

approach is especially well suited.

2.3 The estimation criterion

The assumptions described above provide a list of the characteristics that we will assume 

should or could be included in any plausible prediction of progression of ductal carcinoma 

affecting a given patient. However, it is worth noting that these assumptions provide neither 

a criterion to predict progression itself nor a criterion to select a prediction from among 

plausible alternatives. Hence, in order to predict the progression of ductal carcinoma in a 

patient, two problems to be solved include identifying both a construction criterion and a 

selection criterion. As ductal carcinoma is a somatic evolutionary process, a possible 

approach to identify both criteria consists of using classical evolutionary theory [39]. 

Specifically, provided a measure of the dissimilarity among taxa, the theory assumes that 

one taxon evolves from another by means of “small progressive changes,” mainly because 

the selective forces acting on that taxon may not be constant throughout its evolution [40], 

[41]. Over time, a collection of small changes will not generally provide the smallest 

accumulated change. However, if the changes are sufficiently small and the time scales over 

which taxa would be expected to have evolved are sufficiently short, the process of 

approximating small changes with smallest change can properly fit the corresponding 

evolutionary process [39]. This criterion, known in the literature as the parsimony criterion 
[39], suggests both a method to predict progression itself (e.g., by joining similar taxa at 

each step of the progression from the healthy taxon) and a criterion to select a prediction 

from among plausible alternatives (e.g., by choosing the one that globally minimize the 

dissimilarity among all taxa in the dataset, [42]). The large number of taxa per patient in the 

available FISH datasets and relatively short time scales over which they would be expected 

to have evolved (months to years) both support the use of parsimony over more sophisticated 

likelihood models for this kind of data. The small number of markers typically available and 

the frequent presence of ancestral cell states within the observed data also make this problem 

poorly suited for fast distance-based phylogeny methods, such as neighbor-joining or 
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UPGMA [43], and similar hierarchical clustering algorithms. However, the use of the 

parsimony criterion involves solving a particular network design problem whose optimal 

solution has to satisfy the assumptions described in Subsection 2.2. In the next section we 

shall formalize this problem and develop a possible mathematical programming approach to 

solve it exactly.

3 Modeling the parsimony criterion

The use of the parsimony criterion involves, as a first task, the identification of a measure of 

dissimilarity between taxa. As a generic taxon in a given dataset can be seen as a point in an 

eight-dimensional space, a possible measure of the dissimilarity between a generic pair of 

taxa in the dataset can be obtained by identifying a specific norm function able to reflect 

appropriately some or all of the assumptions listed Subsection 2.2. Before investigating this 

issue, we introduce some notation that will prove useful throughout the article.

3.1 Notation

We define D to be the set of sample data from a specific patient,  to be the set of the eight 

genes sorted according to the order described in Section 2.1, and g to be a generic gene in . 

Given a taxon ti ∈ D, we define  to be the copy number of the g-th gene in ti. For example, 

if ti = ⟨4.3.4.5.1 – 4.4.3⟩ then . We define  and  to be the sets of the oncogenes 

and the tumor suppressor genes in , respectively. Finally, we define  and  to 

be the subsets of DCIS and IDC taxa in D, respectively, and . We 

assume only distinct taxa in the DCIS the IDC individually, but the same taxon may occur in 

both. We assume that D always contains the healthy taxon, defined by having two (diploid) 

copy number for all genes. If this healthy taxon is missing from the input data, we add it in 

D. Moreover, we sort taxa in D in such a way that (i) the healthy taxon is the first taxon in D; 

(ii) taxa in  and  follow a tree-structured partial order; (iii) taxa in 

are located after the healthy taxon; and (iv) a taxon that occurs only in  cannot precede 

a taxon that occurs only in . Given a pair of distinct taxa ti, tj ∈ D, i < j, we define 

, for all . We define  as the number of oncogenes whose counts have 

doubled during the transition from taxon ti to taxon tj. Moreover, for a fixed dataset D we 

define the following sets:

(1)

(2)

(3)
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(4)

(5)

The set R1 denotes the set of pairs of taxa in D violating the ex nihilo nihil assumption. The 

set R2 denotes the set of pairs of taxa in D violating the temporal progression assumption (v) 

in a direct transition from ancestor to descendent. The sets R3, R4 and R5 denote the sets of 

pairs of taxa in D violating the assumptions (vii), (viii) and (ix), respectively.

3.2 Measuring the dissimilarity among taxa

As a generic taxon in the FISH dataset D can be encoded as an eight-dimensional vector, a 

natural choice to measure the dissimilarity between taxa ti, tj ∈ D is the L1 distance [15], 

defined as:

(6)

However, this measure is characterized by a major drawback: it does not take into account 

the evolutionary process related to the transition from ti to tj. As a result, the same distance 

can be assigned to different evolutionary processes, which in turn can be interpreted as 

equiprobable events, even if they are not in reality. For example, consider the following list 

of three taxa: t1 = ⟨2.2.2.2.2 – 2.2.2⟩, t2 = ⟨1.1.1.1.2 – 2.2.2⟩ and t3 = ⟨2.2.2.2.6 – 2.2.2⟩. If 
we use equation (6) to compute the dissimilarity between the healthy cell and the remaining 

two taxa we get d(t1, t2) = d(t1, t3) = 4. This fact means that, if the transition from t1 to t2 and 

from t1 to t3 happened in just one generation, the process of losing one copy in genes COX2, 

MYC, HER2 and CCND1 during evolution from t1 to t2 would be an event as likely as 

gaining four copies of ZNF217 during evolution from t1 to t3. As our classification attempt 

is based on the parsimony criterion, we assume that the transition from t1 to t3 is more likely 

than the transition from t1 to t2, because it involves a change in a smaller number of genes. 

One approach to account for this fact consists of modifying equation (6) as follows:

(7)

where μij is the number of equal entries (copy numbers) in taxa ti, tj ∈ D and c1 is a positive 

constant used to weight added μij. For example, if we set c1 = 1/8 then we get μ12 = 5, μ13 = 

7, d(t1, t2) = 4.375 and d(t1, t3) = 4.125. Hence, the transition from t1 to t3 becomes more 

likely than the transition from t1 to t2. It is worth noting that the addend 

represents the Hamming distance between vectors ti and tj, weighted by the positive constant 

c1. We denote this addend as H(ti, tj).
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The following proposition holds:

Proposition 1—The function d2(·, ·) induces a metric space in D.

Proof: If d2(·, ·) is a metric then it has to satisfy the following properties:

1) d2(ti, tj) ≥ 0 (non-negativity);

2) d2(ti, tj) = 0 iff ti = tj (coincidence axiom);

3) d2(ti, tj) = d2(tj, ti) (symmetry);

4) d2(ti, tz) ≤ d2(ti, tj) + d2(tj, tz) (triangle inequality).

It is easy to see that d2(·, ·) satisfies the first three properties. To show that d2(·, ·) also 

satisfies the triangle inequality, observe that the following inequality holds:

(8)

Inequality (8) can be seen as the convex combination (with multipliers equal to 1) of the 

following two inequalities:

(9)

(10)

Both (9) and (10) satisfy the triangle inequality [44], hence the statement holds.

Although d2(·, ·) takes into account the number of genes whose copy numbers have been 

subjected to a change during the transition from taxon ti to taxon tj, it does not take into 

account the value of such a change. For example, consider the following list of three taxa: t1 

= ⟨2.2.2.2.2 – 2.2.2⟩, t2 = ⟨2.2.2.4.4 – 2.2.2⟩ and t3 = ⟨2.2.2.2.6 – 2.2.2⟩. If we set c1 = 1/8 

and use equation (7) to compute d(t1, t2) and d(t1, t3) we get d(t1, t2) = 4.25 and d(t1, t3) = 

4.125. Hence, the transition from t1 to t3 is more likely than the transition from t1 to t2. 

However, as mentioned in the assumptions (vii)-(ix), we consider that the process of gaining 

three or more copies of any gene in just one generation is an unlikely event. One approach to 

impose these assumptions consists of penalizing the transitions involving copy number 

changes greater than one unit. This task can be performed by modifying equation (7) as 

follows:
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(11)

where ck satisfying ck ≤ ck+1, k = 2, … , 4, are positive constants used to weight the new 

addends. For example, if c2 = 1/16, c3 = 1/8 and c4 = 1/5 then d(t1, t2) = 4.5 and d(t1, t3) = 

5.125. Thus, the transition from t1 to t2 becomes more likely than the transition from t1 to t3.

Proposition 2—The function d3(·, ·) induces a semimetric space in D.

Proof: It is easy to see that the non-negativity, the symmetry properties hold for d3(·, ·). To 

see that also the coincidence axiom holds, denote

and observe that, for some ti, tj ∈ D, d3(ti, tj) can be written as

(12)

If ti = tj, then d2(ti, tj) = 0 and Qij = 0. If ti ≠ tj, then d2(ti, tj) > 0 and either Qij = 0 or Qij ≥ 0. 

As at least one of the two addends is different from 0, the coincidence axiom holds.

Now observe that d3(·, ·) does not satisfy the triangle inequality. This fact can be seen by 

showing a counterexample. Specifically, first note that if the triangle inequality held for d3(·, 

·), then for some ti, tj, tz ∈ D, d3(ti, tj) we should have

(13)

Inequality (13) can be seen as the convex combination (with multipliers equal to 1) of the 

following three inequalities:

(14)
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(15)

(16)

The L1 distance and the Hamming distance satisfy the triangle inequality. However, 

inequality (16) does not. In fact, if we consider the following three taxa: t1 = ⟨1.1.1.1.1 – 

1.1.1⟩, t2 = ⟨2.2.2.2.2 – 2.2.2⟩ and t3 = ⟨3.3.3.3.3 – 3.3.3⟩ we have that Q(i, z) = 16c2 > Q(i, 
j) + Q(j, z) = 0. Thus, the statement follows.

Semimetrics are particularly interesting to our purposes, as they suggest that transitions 

from, e.g., t1 = ⟨1.1.1.1.1 – 1.1.1⟩ to t2 = ⟨2.2.2.2.2 – 2.2.2⟩ and from t2 to t3 = ⟨3.3.3.3.3 – 

3.3.3⟩, are more likely than the single-step transition from t1 to t3.

It is worth noting that there may exist particular types of transitions that (i) happen in one 

generation, (ii) involve a large part or all of the genes in , and (iii) are characterized by big 

copy number changes. For example, when a DLE occurs then it is possible to evolve from t1 

= ⟨2.2.2.2.2 – 2.2.2⟩ to t2 = ⟨4.4.4.4.4 – 4.4.3⟩ in just one generation. We assume that DLE 

is relatively rare compared to more localized variations and may be not easy to detect. For 

example, it is not easy to determine whether the pair of taxa t1 = ⟨2.2.2.1.2 – 1.1.1⟩ and t2 = 

⟨2.4.4.2.4 – 2.2.2⟩ represents a DLE or arise through two distinct evolutionary processes 

from the healthy all-2 cell. However, if a DLE was the transition that occurred, equation (11) 

would provide d(t1, t2) = 11.25 under the assumption that c1 = 1/8, c2 = 1/16, c3 = 1/8 and c4 

= 1/4. This value is far larger than the dissimilarity between, e.g., t1 and t3 = ⟨3.3.3.2.3 – 

2.1.2⟩ under the same cost value (equal to d(t1, t3) = 7.125). Hence, the transition from t1 to 

t2 would not be considered as likely. To enable identification of possible DLEs in the 

considered datasets, we modify the dissimilarity measure (11) by adding a new term in (11). 

Specifically, we denote η as the number of genes whose copy numbers have doubled during 

the transition from taxon ti to taxon tj and we set . Then, we consider the 

following measure of dissimilarity between taxa ti, tj ∈ D, i < j:

(17)

where c5 is a sufficiently large positive constant such that c5 >> ck, k = 1, … , 4. The addend 

 constitutes a weighted heuristic approximation of Lee distance [44]. The 

following proposition holds:

Proposition 3—The function d4(·, ·) induces a premetric space in D.

Proof: It is easy to see that the non-negativity and the coincidence axioms hold for d4(·, ·). 

Since the triangle inequality does not hold for d3(·, ·), then d4(·, ·) does not induce a metric 

space either. To see that also the symmetry property does not hold for d4(·, ·) it is sufficient 
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to consider taxa. t1 = ⟨2.2.2.2.2 – 1.1.1⟩ and t2 = ⟨1.1.4.4.4 – 2.1.1⟩ and to observe that d4(t1, 

t2) = d3(t1, t2) + 4c5 and d4(t2, t1) = d3(t2, t1) + 2c5 = d3(t1, t2) + 2c5.

Premetrics are useful for our purposes as, in our classification attempt, we consider DLEs as 

directional evolutionary processes, i.e., processes that consider the transition from taxon ti to 

tj and from taxon tj to ti as two events having different probabilities. It is also worth noting 

that d4(·, ·) models the assumption that a duplication event followed by some loss or (few) 

gain events is more probable than a large number of sequential gain or loss events. For 

example, d4(·, ·) indicates that the transition e.g., from t1 = ⟨2.2.2.2.2 – 2.2.2⟩ to t2 = 

⟨4.4.4.4.4 – 4.4.3⟩ is more likely to have occurred in two events (e.g., from t1 = ⟨2.2.2.2.2 – 

2.2.2⟩ to tk = ⟨4.4.4.4.4 – 4.4.4⟩ and then from tk to t2 = ⟨4.4.4.4.4 – 4.4.3⟩) rather than in a 

sequence of transitions in which at each step a copy number of a gene increase (e.g., from t1 

= ⟨2.2.2.2.2 – 2.2.2⟩ to tk1 = ⟨3.2.2.2.2 – 2.2.2⟩, from tk1 to tk2 = ⟨3.3.2.2.2 – 2.2.2⟩, and so 

on, until the transition from tkq = ⟨4.4.4.4.4 – 4.3.3⟩ to tk2 = ⟨4.4.4.4.4 – 4.4.3⟩). In the 

remainder of the article, we shall use d4(·, ·) to measure the dissimilarity between a pair of 

taxa in D and for simplicity of notation we will write d4(ti, tj) as dij.

3.3 Using integer programming to predict the progression of ductal carcinoma under the 
parsimony criterion

In this section, we formalize the parsimony criterion in terms of an optimization problem on 

a graph. To this end, given a set D of single-cell sample data extracted from a patient, 

consider a complete undirected weighted graph G = (V, E), called tumor graph, having a 

vertex i for each taxon ti ∈ D and a weight dij for each edge (i, j) ∈ E. We assume that vertex 

1 represents the healthy taxon ⟨2.2.2.2.2 – 2.2.2⟩, i.e., the origin of progression, and we 

define V1 = V \ {1}. Then, predicting the progression of ductal carcinoma from D via the 

parsimony criterion is equivalent to solving the following problem:

Problem—The Parsimonious Tumor Progression Problem (PTPP)

Given a set D of single-cell sample data extracted from a patient and the corresponding 

tumor graph G = (V, E), find an arborescence rooted in vertex 1, covering all of the 

remaining vertices in V1, satisfying the assumptions discussed in Subsection 2.2, and such 

that the sum of the distances among all pairs of adjacent taxa in the arborescence is 

minimized.

It is worth noting that the PTPP cannot be trivially solved by means of classical hierarchical 

clustering algorithms such as UPGMA [43]. In fact, in classical molecular phylogenetics the 

observed taxa can only be terminal vertices of a phylogeny; the internal vertices represent 

speciation events occurred along evolution of taxa are usually assumed to be non-

contemporary to them. In contrast, in tumorigenesis, ancestor and descendant clones may 

co-exist throughout tumor progression [23]. This fact alone suggests that a phylogeny 

obtained via traditional clustering algorithms may not constitute a suitable representation of 

a tumorigenesis. Similarly, the PTPP cannot be trivially solved by using any greedy 

algorithm for the minimum spanning tree [45], at least because the solutions provided by 

these algorithms may not satisfy the assumptions (iv)-(v).
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A possible approach to solve PTPP consists of using Integer Linear Programming (ILP), 

which provides both a powerful tool to model the assumptions in Subsection 2.2 and a 

certificate of optimality for the solution to the PTPP so computed. In particular, the presence 

of the assumption (v) may require the use of ILP formulations based on path variables and 

solvable via column generation approaches and branch-and-price methods similar to those 

described, for example, in [46]. However, we have observed that the strict temporal 

progression assumption (v) does not quite match the study design of [23]. In fact, the DCIS 

and IDC single-cell samples extracted from each patient were physically sampled at the 

same time. Even if the assumption that the DCIS state strictly precedes the IDC state is 

completely correct at the single-cell level, the transformation from DCIS to IDC must have 

happened at an earlier point in time when the DCIS was in a precursor state P of the sampled 

state. Since gene copy number changes are likely to have occurred between P and the 

sampled DCIS, the cells containing these late changes will not be temporal predecessors of 

cells in the sampled IDC. For example, in the dataset DAT10 (see Figure 10 in 

supplementary data downloadable at perso.uclouvain.be/daniele.catanzaro/

SupportingMaterial/IDC.pdf) the IDC taxon ⟨2.2.2.2.2 – 3.2.2⟩ would be obliged to appear 

in progression later than DCIS taxa ⟨2.2.2.3.2 – 2.2.2⟩ and ⟨2.2.2.2.2 – 2.3.2⟩ even if it 

seems to be contemporaneous with them. Moreover, this fact leads us to suspect the 

possibility that the causes underling the progression from DCIS to IDC may not be 

exclusively restricted to the 8 genes considered in [23]. Hence, we decided to relax the strict 

temporal progression assumption (v) along a path by transforming it into an absence of 

alternating invasive/non-invasive states, i.e., an absence in the arborescence of three 

contiguous vertices i ≠ j ≠ k ∈ V such that i precedes j, j precedes k, and such that the 

corresponding taxa satisfy the following property: ,  and 

. Moreover, we decided to relax the absence in the arborescence of pairs of 

taxa belonging to R3 ∪ R4 ∪ R5 by penalizing their existence by means of a particular cost 

in the objective function. Specifically, we add in (17) the addend c6λij, where c6 ≥ c5, and

Then, a possible ILP formulation for the PTPP is the following:

Formulation

(18a)

(18b)
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(18c)

(18d)

(18e)

(18f)

(18g)

Constraints (18b) impose the absence of pairs of adjacent vertices in the arborescence 

belonging to R1 ∪ R2, i.e., pairs of taxa violating either the ex nihilo nihil assumption or the 

strict temporal progression assumption (v) in a direct transition from ancestor to descendent. 

Constraints (18c) impose the absence of oscillating invasive/non-invasive states. Constraints 

(18d) impose the absence of cycles in the arborescence. Constraint (18e) imposes that the 

overall number of arcs in the arborescence is ∣V∣ – 1. Finally, constraints (18f) impose the 

absence of incoming arcs for vertex 1.

4 Numerical experiments

To test the predictions provided by Formulation 3.2 we reanalyzed the [23] datasets obtained 

from a population of 13 individuals affected by invasive ductal carcinoma of the breast. For 

completeness, we report in Table 1 a simple description of each dataset in terms of the 

number of DCIS and IDC single-cell taxa. We refer the interested reader to [23] for a more 

extensive and systematic description the datasets.

We implemented Formulation 3.2 in ANSI C++ by using Xpress Optimizer libraries 

v18.10.00. The experiments run on a Pentium 4, 3.2 GHz, equipped with 2 GByte RAM and 

operating system Gentoo release 7 (Linux kernel 2.6.17). When solving the instances of 

Formulation 3.2, we activated Xpress automatic cuts, Xpress pre-solving strategy, and used 

Xpress primal heuristic to generate the first upper bound for the problem. We did not limit 
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the computation time of the above Formulation because time is not a hard constraint for this 

application.

As progression of a tumor in a patient usually is an unobservable process, there is no general 

way to validate empirically a candidate set of costs for the dissimilarity measure proposed in 

(17). After a number of preliminary attempts aiming to obtain a measure able both to 

provide integer values and to guarantee the respect of the hierarchical assumptions described 

in Subsection 2.2, we set the costs in (17) as follows: c1 = 30, c2 = 60, c3 = 90, c4 = 500, c5 

= c6 = 1000. However, we observe that this is not the only possible choice and that there 

exist alternative measures of dissimilarities that could be considered as plausible as the one 

proposed in this article. For example, an alternative measure of the dissimilarity between 

taxa ti, tj ∈ D, i < j, could be obtained by maximizing the likelihood related to the transition 

from a taxon ti to tj, under the hypothesis that the copy number of each gene changes 

independently of the others. This task could be performed e.g., by solving the following 

optimization problem:

(19a)

(19b)

(19c)

where pu is the probability that the copy number of gene g remains unchanged in the 

transition from taxon ti to taxon tj; pi is the probability that the copy number of gene g 
increases in the transition from taxon ti to taxon tj; pd is the probability that the copy number 

of gene g decreases in the transition from taxon ti to taxon tj;  is a positive number equal 

to 1 if the copy number of gene g remains unchanged in the observed transition from taxon ti 

to taxon tj and 0 otherwise;  is a positive number equal to  if the copy number of gene g 

increases in the observed transition from taxon ti to taxon tj and 0 otherwise; and  is a 

positive number equal to  if the copy number of gene g decreases in the observed 

transition from taxon ti to taxon tj and 0 otherwise.

The likelihood-based approach entails the quantification of the assumptions described in 

Subsection 2.2 and the expression of these assumptions in terms of constraints for Problem 

(19a)-(19c). We did not investigate the likelihood-based approach much further, as studying 

alternative measures of dissimilarity for the considered FISH data is not the main scope of 

the present article. Here, we merely observe that the likelihood-based approach and the 

measures of dissimilarities discussed in Subsection 3.2 are related. In fact, for fixed values 
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of the probabilities pu, pi and pd, the logarithm base (e.g., pi) of the objective function in the 

likelihood-based approach becomes

(20)

Whenever the logarithms are defined in (20), the addend 

would add

(21)

where K1 = logpi(pu) and K2 = logpi(pd) are two positive constants. This fact shows one 

relationship between the likelihood-based approach and, e.g., d1(·, ·). Similar relationships 

exist also for dk(·, ·), k ∈ {2, 3, 4}. Investigating further these relationships warrants 

additional analysis.

5 Results and discussion

Figures 1, 2 and 3 show examples of predicted progression trees for three paired DCIS/IDC 

cases, provided to illustrate some of the similarity and differences between inferred 

phylogenies by dataset. The remaining full trees are omitted in the main manuscript for 

brevity but can be found in the supplementary data downloadable at perso.uclouvain.be/

daniele.catanzaro/SupportingMaterial/IDC.pdf.

A few general trends are apparent from manual examination of the trees. The progression of 

the IDC is characterized by an elevated tendency to lose copies of TP53 (17.79% ± 5.11%) 

and other tumor suppressor genes (36% ± 5.35%). Moreover, the tumor suppressor genes 

have a high level of spontaneous variation (see Figure 4), i.e., the tendency of a single gene 

in a taxon to increase or decrease its copy number with respect to its immediate ancestor 

while the copy numbers of the remaining genes in both taxa are unchanged. CDH1 shows 

the highest average rate of spontaneous variation (16.53 ± 6.59), followed by TP53 (15.36 

± 5.18) and DBC2 (14.23 ± 6.51). Among the oncogenes, COX2 shows the highest level of 

spontaneous variation (13.19 ± 6.02), followed by ZNF217 (10.75 ± 6.07), CCND1 (10.13 

± 4.69), HER2 (10.03 ± 3.33) and MYC (9.79 ± 3.87). Interestingly, ZNF217 is more prone 

to spontaneous variations in datasets DAT07 and DAT09 and this phenomenon seems to be 

correlated to the variation induced by CDH1 (see Figures 22 and 24 in supplementary data). 

The doubling-loss event is less frequent (7%±3.99%) than loss of tumor suppressor genes. It 

also appears to be more specific to particular datasets than others.

We offer a tentative classification of the datasets in Table 2, manually clustering the datasets 

based on apparent genetically distinct subsets of tumors. Specifically, we can distinguish 

between progressions showing a preponderance of doubling-loss phenomena (“Doubling-
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Driven” column in Table 2) and progressions showing a low or absent presence of the 

doubling-loss event (“Doubling-Absent” column in Table 2). The first group is the largest 

and can be in turn subdivided in three main subgroups, namely: the regular, the abnormal-
with-TP53-predominance and the abnormal-with-CDH1-predominance. The regular group is 

the largest subgroup and includes datasets DAT02 (Figure 2), DAT03, DAT04, DAT11, 

DAT12 and DAT13. As a general trend, this group shows a high spontaneous variation, 

usually affecting the tumor suppressor genes CDH1 and TP53, which in general tend to be 

lost. Moreover, the copy numbers of the genes in general do not tend to increase with respect 

to the root node to a similar degree as is seen in the abnormal groups and usually do not 

exceed 8 copies. The doubling-loss event is more predominant in the regular group than in 

others, it usually tends to affect (almost) all genes (see, e.g., taxa ⟨2.2.2.1.2–1.1.1⟩ and 

⟨4.4.4.2.4 – 2.2.2⟩, or ⟨2.3.2.1.2 – 1.1.1⟩ and ⟨4.6.4.2.4 – 1.2.2⟩ in Figure 2). It can be 

considered as a possible driving mechanism of progression of the carcinoma, being located 

in several internal vertices of corresponding predictions.

The abnormal-with-TP53-predominance subgroup includes datasets DAT08 and DAT06 

(Figure 3). It is characterized by a very high spontaneous variation for TP53 with frequent 

loss either of the tumor suppressor gene CDH1 if DBC2 is affected by high spontaneous 

variations or, vice versa, loss of the tumor suppressor gene DBC2 if CDH1 is affected by 

high spontaneous variations. The copy number of the genes tends to increase more than in 

the other categories, but usually does not exceed 8 copies. The instance DAT06 shows 

multiple situations in which some or all of the tumor suppressor genes are lost and this 

phenomenon usually comes together with a simultaneous loss of one or more oncogenes. A 

similar situation can be observed also in DAT08 (see supplementary data), although the loss 

of gene copies is less predominant. Interestingly, dataset DAT08 shows a very high level of 

variation of TP53 with copy numbers ranging from 0 to 5. This fact seems to suggest the 

presence of a strong selective pressure acting on this gene. Similarly, in both datasets, COX2 
and MYC show a high level of variation, particularly COX2, although with a tendency 

towards gain or doubling events. The doubling-loss event is less preponderant in these 

tumors than in the regular subgroup and it is “abnormal” in the sense that it usually does not 

affect all of the genes but just some of the genes (see, e.g., taxa ⟨4.2.2.2.3–2.2.2⟩ and 

⟨5.4.3.4.1 – 2.2.3⟩ in Figure 3 or taxa ⟨2.2.2.2.2 – 1.1.2⟩ and ⟨4.2.2.2.2 – 2.1.3⟩ in Figure 8 

of supplementary data). Also in this case, the doubling-loss event can be considered as a 

possible source of progression of the carcinoma, being located in several internal vertices of 

corresponding predictions.

The abnormal-with-CDH1-predominance subgroup includes datasets DAT01 (Figure 1), 

DAT07, and DAT09. It is characterized by a very high spontaneous variation of CDH1 with 

respect to TP53, high spontaneous variation of CCND1 and ZNF217, and a low tendency to 

lose tumor suppressor genes. This subgroup shows the highest absolute gene copy numbers, 

with some single oncogenes showing copy numbers up to 25 in single cells (see e.g., DAT07 

in supplementary data). The doubling-loss event is still present, although to a lesser degree 

than in the previous two subgroups.

Finally, the doubling-absent subgroup includes datasets DAT05 and DAT10. It is 

characterized by a very high spontaneous variation of CDH1, high spontaneous variation of 
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COX2 and MYC, and a low tendency to lose tumor suppressor genes. This subgroup does 

not show a significative presence of doubling-loss phenomena, although some genes 

(namely, COX2 and MYC) tend to acquire high copy numbers with respect to the root, 

especially in DAT10. Specifically, in this dataset progression of the carcinoma seems to be 

caused by iterated increments of COX2 over time, which seems to be associated with 

variation in the copy number of CDH1.

The apparent subgrouping of tumors suggests variations patient to patient, not just in random 

accumulation of mutations, but also in the phenotype for generating mutations. More 

specifically, distinct subsets of tumors show preferences for generation of aneuploidy versus 

amplification or loss of specific driver genes as well as in the selection of driver genes. 

These results are consistent with both a generic driver-passenger model, in which defined 

subtypes of tumors arise due to recurrent selection for malformations that produce specific 

selective advantages to tumors [47], [48], and with the mutator phenotype model, in which 

distinct subsets of tumors are driven by distinct mechanisms of generating genetic diversity 

[49]. In evolutionary terms, our results suggest intra-cellular heterogeneity is driven by 

variability in both mechanisms of diversification and selection for specific driver genes.

In principle, predicting tumor progression from single-cell sample data extracted from an 

individual is not a time-sensitive application. However, exploring the relationships between 

the computation times of Formulation (18) and the size of the instances of the problem may 

provide a better understanding of the computational performance of Formulation (18). As 

single-cell sample data are currently very difficult to obtain, we decided to considered a set 

of artificial instances of the problem characterized by 100, 150, 200, 250 and 300 taxa, 

respectively. For a fixed size (number of taxa) t ∈ {100, 150, 200, 250, 300} we generated 

20 random arborescences, each rooted in the healthy taxon and spanning t vertices. The 

algorithm used to generate a generic random arborescence T consisted of repeating the 

following steps: (i) given a vertex i, generate k children of i, k being a pseudorandom integer 

in [0, 10]; (ii) select a random vertex of T and repeat step (i) until t vertices are generated. In 

our experiments, we used the Mersenne twister library [50] as the pseudorandom generator. 

For each random arborescence T, we simulated the progression of tumor cells by randomly 

choosing on each arc (i, j) of T the type of mutation on vertex j (namely, copy number 

increment, copy number decrement and pure doubling) and the genes involved in the 

mutation. Specifically, we first set taxon j equal to its ancestor i. Subsequently, we set the 

probabilities of having a copy number increment, a copy number decrement and a pure 

doubling phenomenon roughly similar to the average frequencies of observing those 

phenomena in the considered real datasets (namely 0.84, 0.15 and 0.01, respectively). Then, 

we generated a random number r in [0, 1] and used this value to determine the type of 

mutation on taxon j. In particular, we used the following three cases: if r ≤ 0.84 an increment 

of gene copy number arises; if 0.84 < r ≤ 0.99 a decrement of gene copy number arises; if r 
> 0.99 a pure doubling phenomenon arises. If the selected type of mutation is an increment 

or a decrement of gene copy number, the number of genes and the genes themselves 

subjected to the corresponding mutation are randomly chosen according to the following 

rules: (i) the number of selected genes cannot exceed 3; (ii) the ex nihilo nihil assumption 

has to be satisfied in the transition from taxon i to taxon j; (iii) the increment (or decrement) 

of gene copy number cannot exceed 2. If the selected type of mutation is a pure doubling, 
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then the copy numbers of all genes (but TP53) of vertex j are doubled and the copy number 

of TP53 is increased by 1 unit. Finally, the nature of taxon j (i.e., whether it belongs to 

,  or ) is randomly determined by strictly respecting the temporal 

progression. Figure 5 shows the average computation times taken by Formulation (18) to 

solve the random instances so generated. The five average computation times fit a 

polynomial function of the number of taxa, with exponent approximately 2 (i.e., quadratic). 

At present, this is not a serious issue, as extracting large size single-cell sample datasets 

from patients is expensive and datasets containing more than 300 taxa are rarely analyzed. 

However, it reasonable to believe that in the coming years the cost for extracting single-cell 

sample data from patients will decrease; hence, datasets of larger and larger size will 

become more and more common. Therefore, investigating alternative ILP formulations able 

to reduce the solution time necessary to analyze a large dataset deserves further research 

efforts.

6 Conclusion

We proposed an approach to reconstruct a plausible progression of ductal carcinoma from 

single-cell sampled data of an affected individual. The approach is based on combining a 

generic parsimony model for evolutionary tree inference with a complex set of system-

specific assumptions derived from prior knowledge regarding cellular atypia occurring in 

ductal carcinoma. ILP tools provide a way to describe and efficiently solve for optimal tree 

models in the presence of such complex constraints. Given the enormous variability between 

tumor types and study designs, our ILP strategy may have much broader utility for 

interpreting complex cellular variation data with reference to complicated system-specific 

biological constraints. While some aspects of our specific constraint sets are likely to be 

applicable across broad classes of tumor types (e.g., modeling the role of TP53 in 

chromosome instability or imposing timing constraints on defined pre-cancerous and 

cancerous progression stages), though, we do expect that some problem-specific expertise is 

likely to be needed to develop comparable approaches for other tumor progression systems. 

For example, we have studied another data collection of paired samples with single-cell 

FISH data on cervical cancer in which the pairs are from the primary tumor and from a 

metastasis [15]. For such a primary/metastasis study design, progression models could give 

insight into what evolutionary changes allow the metastatic sample to spread. The genes 

selected for FISH analysis in the cervical cancer data mostly differ from the genes in the 

DCIS/IDC, so one would need to adapt our modeling here to the cancer characteristics of the 

genes evaluated by FISH in that other data collection.

Our model suggests that progressions estimated from a population of 13 affected individuals 

are non-random and classifiable into several categories seemingly distinguished by distinct 

selective pressures and distinct mechanisms for generating genetic diversity. The complex 

and heterogeneous evolutionary landscape they reveal may have important implications for 

strategies for cancer treatment. In particular suggesting that developing effective therapies 

may require considering both the current spectrum of driver mutations in a tumor and the 

mutator phenotype by which it is generating diversity. For example, Martins et al. [11] point 

out that whether a breast cancer patient is a good candidate for drugs that inhibit PARP is 
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currently thought to depend on whether the patient’s cancer genome has a defect in DNA 

damage repair leading to genomic instability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Predicted progression from DCIS to IDC for the dataset DAT01. For ease of interpretation, 

each sample is represented by a sequence of numbers separated by dots and a dash. 

Specifically, the first five numbers represent the copy numbers for the oncogenes COX2, 

MYC, HER2, CCND1 and ZNF217 and the last three numbers represent the copy numbers 

for the tumor suppressor genes DBC2,CDH1 and TP53. The samples in black and red refer 

to DCIS or IDC single-cells, respectively. The samples in blue refer to single-cells found in 

both DCIS and IDC.
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Fig. 2. 
Predicted progression from DCIS to IDC for the dataset DAT02.
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Fig. 3. 
Predicted progression from DCIS to IDC for the dataset DAT06.
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Fig. 4. 
Predicted spontaneous variation of the gene copy number (expressed in percentage) in the 

considered datasets.
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Fig. 5. 
Average computation times taken by Formulation (18) to solve instances of the problem 

containing 100, 150, 200, 250 and 300 taxa, respectively. The vertical bars indicate the 

standard deviations.
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TABLE 1

Characteristics of the analyzed datasets.

Dataset Number of
DCIS taxa

Number of
IDC taxa

Overall number of
distinct taxa

DAT01 123 119 207

DAT02 35 76 100

DAT03 79 69 115

DAT04 102 120 181

DAT05 58 57 77

DAT06 33 93 118

DAT07 84 76 128

DAT08 92 69 109

DAT09 71 69 137

DAT10 126 102 138

DAT11 77 99 146

DAT12 92 124 172

DAT13 57 97 114
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TABLE 2

A possible classification of the analyzed datasets.

Doubling-Driven Doubling-Absent

Regular Abnormal

TP53-driven CDH1-driven

DAT02 DAT06 DAT01 DAT05

DAT03 DAT08 DAT07 DAT10

DAT04 DAT09

DAT11

DAT12

DAT13
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