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SUMMARY The human Ureaplasma species are the most frequently isolated micro-
organisms from the amniotic fluid and placentae of women who deliver preterm
and are also associated with spontaneous abortions or miscarriages, neonatal respi-
ratory diseases, and chorioamnionitis. Despite the fact that these microorganisms
have been habitually found within placentae of pregnancies with chorioamnionitis, the
role of Ureaplasma species as a causative agent has not been satisfactorily explained.
There is also controversy surrounding their role in disease, particularly as not all women
infected with Ureaplasma spp. develop chorioamnionitis. In this review, we provide evi-
dence that Ureaplasma spp. are associated with diseases of pregnancy and discuss re-
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cent findings which demonstrate that Ureaplasma spp. are associated with chorioamnio-
nitis, regardless of gestational age at the time of delivery. Here, we also discuss the
proposed major virulence factors of Ureaplasma spp., with a focus on the multiple-
banded antigen (MBA), which may facilitate modulation/alteration of the host immune
response and potentially explain why only subpopulations of infected women experi-
ence adverse pregnancy outcomes. The information presented within this review con-
firms that Ureaplasma spp. are not simply “innocent bystanders” in disease and high-
lights that these microorganisms are an often underestimated pathogen of pregnancy.

KEYWORDS amniotic fluid, chorioamnionitis, multiple-banded antigen,
neonate/fetus, pregnancy, Ureaplasma, virulence factors

INTRODUCTION

Chorioamnionitis refers to inflammation of the fetal membranes, which comprise
the chorion and amnion. Although the chorioamnion is anatomically part of the

placenta, it is derived from the zygote and is considered to be of fetal origin (see
“Development, Structure, and Function of the Chorioamnion” below). The chorioam-
nion is also in contact with the decidua, a tissue of maternal origin, and together these
form the maternal/fetal interface. Chorioamnionitis frequently occurs in parallel with
microbial infection of the chorioamnion and amniotic fluid (1–3); however, it may also
occur in the absence of demonstrable microorganisms (i.e., “sterile inflammation” [2, 4],
which will not be discussed in this review). The clinical signs of chorioamnionitis include
fever, uterine fundal tenderness, maternal tachycardia (�100 beats/minute), fetal
tachycardia (�160 beats/minute), and purulent or foul-smelling amniotic fluid (5).
However, it is becoming increasingly apparent that a large proportion of chorioamnio-
nitis cases are subclinical and are not diagnosed until retrospective analysis of the
placenta (6) (see “Diagnosis of Chorioamnionitis” below). Upon histological examina-
tion, acute chorioamnionitis is defined as diffuse influx of neutrophils into the chorio-
amnion/decidua, and the severity of the maternal and fetal immune response can be
classified according to published standards (7). Chronic chorioamnionitis is less well
defined but has been characterized by an infiltration of maternally derived mononu-
clear cells, usually macrophages and T lymphocytes, into the chorioamnion or chorionic
plate (the fetal surface of the placenta that directly connects to the uterine wall, where
the chorionic villi are formed) (7, 8).

Since amniotic fluid, but not the placenta, is accessible prior to delivery in women
at risk for preterm labor, most clinical studies have correlated intra-amniotic infection
or inflammation rather than chorioamnionitis with preterm labor/delivery. However,
intra-amniotic infection, defined as microorganisms detected in the amniotic fluid (9),
may not always be concordant with retrospective diagnosis of histological chorioam-
nionitis. Recently, a National Institutes of Health workshop recommended that the term
“chorioamnionitis” be replaced with “intrauterine infection or inflammation or both”
(abbreviated as “Triple I” and characterized as being either proven or suspected) or
isolated maternal fever (10). For the purposes of this review, we have used the terms
chorioamnionitis and intra-amniotic infection according to their traditional definitions,
as described above.

Development, Structure, and Function of the Chorioamnion

The amnion develops from the ectoderm of the embryo 8 days after conception and
surrounds the developing embryo to form an amniotic sac, which contains amniotic
fluid. As the amniotic sac expands due to fetal growth and the production of amniotic
fluid, the amnion makes contact with the chorion, which lines the decidua of the
uterine wall, to form the chorioamnion at 10 to 12 weeks of gestation (11). The
avascular chorioamniotic membranes persist until term in healthy pregnancies and
perform critical barrier and container functions (12). The amnion comprises five layers:
(i) a cuboidal epithelium, which is in contact with the amniotic fluid; (ii) an acellular
basement membrane; (iii) a compact layer; (iv) a mesenchymal cell layer; and (v) a
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spongy layer, which is in contact with the chorion (13). The amniotic epithelial cells and
mesenchymal cells possess stem cell and immunomodulatory properties and have
shown promising results for use in regenerative medicine (14). The chorion comprises
four layers: (i) a cellular, fibroblast layer; (ii) a reticular layer; (iii) a pseudobasement
membrane; and (iv) a trophoblast layer (13).

Diagnosis of Chorioamnionitis

The diagnosis of chorioamnionitis is currently based on clinical signs coupled with
histological and microbiological analysis of the placenta after delivery of the newborn.
Histologic grading of the placenta is considered the gold standard for the diagnosis of
chorioamnionitis; however, this retrospective diagnosis is not useful in informing
patient management throughout pregnancy, especially in the absence of clinical signs.
Several studies have investigated the diagnostic value of amniotic fluid and maternal
serum biomarkers for the detection of chorioamnionitis in pregnant women undergo-
ing amniocentesis. Elevated inflammatory markers such as interleukin 6 (IL-6), IL-8,
matrix metalloproteinase 8 (MMP-8), MMP-9, and monocyte chemotactic proteins
within amniotic fluid are positive predictors of intra-amniotic inflammation and/or
clinical chorioamnionitis (15–21); however, these markers may have poor positive
predictive values for the detection of subclinical, histologic chorioamnionitis and may
be variably expressed within the amniotic fluid and fetal membranes during chorio-
amnionitis (22–24). Recently, Liu et al. (25) reported that surface-enhanced laser de-
sorption ionization–time of flight mass spectrometry (SELDI-TOF-MS) for the detection
of human neutrophil defensin 1 (HNP-1) and HNP-2 and calgranulins A and C within
amniotic fluid was highly accurate for the diagnosis of subclinical chorioamnionitis, but
further studies with larger patient cohorts are required to validate these findings.
Noninflammatory markers such as amniotic fluid lactate dehydrogenase and glucose
were also recently investigated for the detection of histologic chorioamnionitis (26), but
the diagnostic accuracy of these assays was low, suggesting that additional amniotic
fluid biomarkers should be investigated for the diagnosis of chorioamnionitis.

CLINICAL PERSPECTIVES ON CHORIOAMNIONITIS AND ITS SIGNIFICANCE TO
THE HEALTH OF THE PREGNANCY AND NEONATE

Clinical chorioamnionitis and histological chorioamnionitis affect 1 to 4% and 23.6%
of term births (37 to 42 weeks of gestation), respectively (5, 27, 28). However, it has
been well established that the frequency (29–31) and severity (31, 32) of chorioamnio-
nitis are inversely related to gestational age at the time of delivery. In a study of 7,505
placentae from singleton pregnancies, Russell (29) reported that the frequency of
chorioamnionitis in patients who delivered between 21 and 24 weeks of gestation was
94.4% (17/18 patients). More recently, Stoll et al. (30) demonstrated that histological
chorioamnionitis was present in 70% (295/421) of pregnancies that delivered at 22
weeks of gestation. The frequency of histological chorioamnionitis was significantly
higher in women who delivered after the spontaneous onset of labor than in those who
had induction of labor at term or delivered via Caesarean section in the absence of
labor (33, 34). Furthermore, the frequency of histological chorioamnionitis increases in
patients with prolonged duration of labor (35) and premature rupture of membranes
(36). Additional risk factors for chorioamnionitis include multiple digital examinations,
nulliparity, bacterial vaginosis, alcohol and tobacco use, group B Streptococcus coloni-
zation, meconium-stained amniotic fluid, and epidural anesthesia (36–39).

Chorioamnionitis: a Major Predictor of Preterm Birth

Preterm birth, defined as delivery at �37 weeks of gestation, is the leading cause of
neonatal death worldwide (40). In addition, complications arising from preterm birth
are a leading cause of death in children under the age of 5, second only to pneumonia
(41). Microbiological studies have demonstrated that intrauterine infection may be
responsible for 25 to 40% of preterm births (42); however, this is likely to be underre-
ported due to difficulties in detecting fastidious microorganisms using conventional
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culture methods. Histological chorioamnionitis complicates 40 to 70% of all preterm
births (5), suggesting that chorioamnionitis may be an important, and potentially
preventable, antecedent of preterm birth.

Parturition in Normal Pregnancy versus Chorioamnionitis

Figure 1 compares the key events that occur during normal parturition and
inflammation-induced preterm delivery. The normal initiation of parturition in humans
is a complex process that involves fetal hypothalamic-pituitary-adrenal (HPA) axis
activation and increased placental synthesis of corticotropin-releasing hormone (CRH)
(Fig. 1). Maternal CRH plasma levels increase throughout the duration of pregnancy and
peak at term (43). Increased CRH levels drive the production of corticotropin and
cortisol in the mother and fetus, which promotes fetal lung maturation and prosta-
glandin (PG) synthesis (e.g., PGE2 and PGF2�) within the amnion (44). PG production is
enhanced by the concomitant downregulation of prostaglandin dehydrogenase
(PGDH) within the chorion (45) and the production of prostaglandin-endoperoxide
synthase 2 (PGS2, formerly cyclo-oxygenase 2) (46). Both CRH and PGE2 stimulate the
release of MMPs (47, 48) (e.g., MMP-2 and MMP-9), which weaken the chorioamnion
and facilitate membrane rupture and cervical ripening. In parallel, activation of the fetal
HPA axis and uterine stretching caused by fetal growth lead to the upregulation of
contraction-associated proteins and myometrial activation (44). Progesterone with-
drawal coupled with increased estrogen production is also a key feature of parturition
and further promotes uterine contractility (49–51).

In patients with chorioamnionitis, parturition may be accelerated by a maternal
and/or fetal inflammatory response, which is thought to be mediated by Toll-like

FIG 1 Comparison of key events involved in normal parturition and inflammation-induced parturition. Normal parturition is
initiated by the increased placental synthesis of CRH at term, which causes the production of cortisol. Cortisol induces the
production of prostaglandin E2 and prostaglandin F2� and works in a positive-feedback loop to further stimulate placental
CRH production. Prostaglandins induce the production of matrix metalloproteases, which facilitate membrane rupture and
cervical remodeling. In concert, activation of the fetal HPA axis leads to a functional progesterone withdrawal and production
of contraction-associated proteins, which cause myometrial activation and uterine contractility. During chorioamnionitis,
inflammatory cytokines and chemokines produced in response to microbial invasion of the chorioamnion and/or amniotic fluid
stimulate prostaglandin production and neutrophil infiltration, leading to the synthesis of matrix metalloproteases and
subsequent membrane weakening. Recognition of pathogen-associated molecular patterns by pattern recognition receptors
(such as TLRs) is critical for the initiation of inflammation-induced parturition. CAPs, contraction-associated proteins; CRH,
corticotropin-releasing hormone; HPA, hypothalamic-pituitary-adrenal; MMPs, matrix metalloproteases; NF-�B, nuclear factor
kappa B; PGDH, prostaglandin dehydrogenase; PGs, prostaglandins; PGS2, prostaglandin-endoperoxide synthase 2; TLR,
Toll-like receptor. The direction of the arrows within boxes represents either an increase or a decrease in expression.
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receptor (TLR) signaling (Fig. 1). A recent prospective study of human pregnancies
demonstrated that the expression of TLR-1 and TLR-2 was significantly increased in
chorion obtained from preterm deliveries with histological chorioamnionitis compared
to chorion from preterm deliveries without histological chorioamnionitis (52). Similar
results were reported in separate studies by Moço et al. (53) and Kim et al. (54),
suggesting that the upregulation of TLRs plays an important role in the pathogenesis
of chorioamnionitis.

Bacterial endotoxins, such as lipopolysaccharide (LPS) (55), and live microorganisms
(56) have been shown to upregulate placental/chorioamnion TLRs, which are expressed
by amnion epithelial cells, decidual cells, intermediate trophoblasts in the chorion,
macrophages, and neutrophils (54). In vitro studies have demonstrated that human
primary amnion epithelial cells express functional TLR-2, TLR-4, TLR-5, and TLR-6 and
that stimulation with TLR-5 and TLR-2/6 agonists leads to activation of nuclear factor
kappa B signaling and the production of proinflammatory cytokines, MMP-9, and PGS2
(57). These findings are consistent with human studies and animal models of chorio-
amnionitis/intrauterine infection, which demonstrate an increase in IL-1� and IL-6 (58,
59), IL-8 (52), tumor necrosis factor alpha (TNF-�) (60), monocyte chemotactic proteins
(61), and granulocyte colony-stimulating factor (G-CSF) (62) in preterm fetal mem-
branes, amniotic fluid, and/or cord blood. These inflammatory cytokines and chemo-
kines stimulate PG production (63, 64) and neutrophil infiltration and the release of
MMPs (65), thus leading to cervical ripening and weakening/rupture of the fetal
membranes. Indeed, the levels of MMPs (66) and PGs (56, 67) are significantly increased
within the amniotic fluid and fetal membranes during chorioamnionitis.

Neonatal Sequelae of Chorioamnionitis

During chorioamnionitis, the fetus may be directly exposed to microorganisms and
inflammatory mediators within infected amniotic fluid. The fetus inspires, swallows, and
is bathed in amniotic fluid; therefore, the fetal lungs (68, 69), gastrointestinal tract (70,
71), and skin (72) are primary sites of inflammation-mediated injury. Exposure to
inflammatory mediators may also occur via the placental-fetal circulation, resulting in
immunomodulation within the fetal blood (73–75), lymphoid tissues (76–78), and
distant organs such as the brain (79, 80). The systemic response of the fetus to
chorioamnionitis, termed the fetal inflammatory response syndrome (FIRS), is a severe
inflammatory condition that is characterized by elevated inflammatory cytokines within
fetal plasma, particularly IL-6 (81, 82), and increased fetal plasma white blood cell
counts (83). FIRS is associated with multiorgan injury and with severe neonatal mor-
bidity and mortality (82). The fetal immune response to chorioamnionitis has been
reviewed in detail elsewhere (84, 85).

In human studies, chorioamnionitis has been associated with neonatal death (27,
86), early-onset neonatal sepsis (86–88), intrauterine growth restriction (89), poor
neonatal growth (90), neurologic impairment/injury (91, 92), intraventricular hemor-
rhage (86), bronchopulmonary dysplasia (93–95), patent ductus arteriosus (86, 89, 93,
96), retinopathy of prematurity (89, 97, 98), cardiovascular abnormalities (99, 100),
necrotizing enterocolitis (101, 102), and dermatitis (103). However, low gestational age
is often a significant contributing factor (104–106), and therefore, it is difficult to attribute
these sequelae solely to chorioamnionitis. Nonetheless, when controlling for gestational
age in a multivariable analysis, a recent study of 3,082 extremely preterm infants (�27
weeks of gestation) demonstrated that fetal exposure to histological chorioamnionitis and
clinical chorioamnionitis was associated with an increased risk of cognitive impairment at
18 to 22 months of corrected age compared to infants exposed to no chorioamnionitis or
histological chorioamnionitis alone (107). When adjusting for gestational age, other studies
have confirmed that chorioamnionitis is an independent risk factor for early-onset neonatal
sepsis (108, 109), bronchopulmonary dysplasia (95), adverse neurodevelopmental outcome
at 3 years (110), and necrotizing enterocolitis (108). Interestingly, the severity of chorioam-
nionitis has been shown to correlate with an increased frequency of chronic lung disease
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and necrotizing enterocolitis (111) but has an inverse relationship with the development of
respiratory distress syndrome (112).

HOST DEFENSES AND PATHWAYS OF MICROBIAL INVASION OF THE
CHORIOAMNION AND AMNIOTIC FLUID

Traditionally, the normal intrauterine environment is considered to be a sterile site
with the chorioamnion representing the major physical and immunological barrier to
the developing fetus. The chorioamnion expresses TLRs, which detect pathogen-
associated molecular patterns and signal to coordinate cellular immune responses. The
chorioamnion also secretes numerous natural antimicrobial peptides and defensins to
protect against microbial invasion (113). In vitro, human chorion and amnion from
healthy pregnancies that delivered at term inhibited the growth of a wide range of
pathogenic bacteria, including group B Streptococcus, group A Streptococcus, Staphy-
lococcus aureus, and Staphylococcus saprophyticus (114). Parthasarathy et al. also re-
ported that human fetal membranes possess strong antimicrobial effects against
Escherichia coli, Shigella spp., and the fungal pathogens Aspergillus niger and Aspergillus
nidulans (115). Nonetheless, a wide range of microbes are capable of invading the fetal
membranes and amniotic cavity and causing chorioamnionitis. Specific routes by which
microorganisms are thought to access the upper genital tract during pregnancy include
(i) retrograde spread from the peritoneal cavity (via the Fallopian tubes), (ii) hematog-
enous dissemination via the placenta and maternal blood supply, (iii) iatrogenic con-
tamination at the time of invasive medical procedures (such as chorionic villus sampling
or amniocentesis), and (iv) ascending invasive infections from the lower genital tract
(42). While other studies have suggested that bacteria (specifically, Ureaplasma spp.)
may also gain access to the upper genital tract attached to spermatozoa (116, 117), the
most widely accepted route is that microorganisms originating from the lower genital
tract ascend through the cervix into the choriodecidual space and cross the chorioam-
nion membrane, thereby reaching the amniotic fluid and fetus (118).

Recent deep-sequencing studies have demonstrated that the placental parenchyma
harbors a unique microbiome comprising nonpathogenic bacteria from the Firmicutes,
Tenericutes, Proteobacteria, and Fusobacteria phyla, with distinct similarities to the adult
oral microbiota (119). Furthermore, whole-genome shotgun sequencing of placental
membranes (fetal chorion and/or villous placental membranes) from term deliveries
without chorioamnionitis demonstrated the presence of a diverse range of bacteria,
including Enterobacter spp., E. coli, Acinetobacter lwoffii, Acinetobacter johnsonii, and
Lactobacillus crispatus (120). These findings redefine our understanding of the placental
microenvironment and challenge the view that the fetus exists normally within a sterile
compartment. It is therefore possible that the commensal microorganisms of the placental
parenchyma and fetal membranes represent a previously unrecognized source of bacteria,
which, under certain conditions, may initiate an inflammatory response leading to chorio-
amnionitis. This may also be important for the establishment of the fetal/neonate micro-
biota (119) and normal immune development of the fetus (121).

CAUSATIVE AGENTS OF CHORIOAMNIONITIS

A range of microorganisms, including bacteria, viruses, and (less frequently) yeast
and fungi, have been implicated in chorioamnionitis. The bacterial pathogens that are
most frequently isolated in cases of chorioamnionitis include the human Ureaplasma
species (Ureaplasma parvum and Ureaplasma urealyticum), Fusobacterium spp., Strep-
tococcus spp., and, less frequently, Gardnerella spp., Mycoplasma spp., and Bacteroides
spp. (1, 62, 120, 122–124). Other studies have identified that the sexually transmitted
pathogens Chlamydia trachomatis and Neisseria gonorrhoeae, along with the uropatho-
gen E. coli and yeast Candida spp., are also infrequently associated with chorioamnio-
nitis (122, 125–128). Viral etiologies of chorioamnionitis include adenovirus, cytomeg-
alovirus, enterovirus, and, less frequently, respiratory syncytial virus and Epstein-Barr
virus (129–132). Of the microorganisms associated with chorioamnionitis, the human
Ureaplasma spp. are consistently identified as the most common microorganisms
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within the amniotic fluid and placentae of women with chorioamnionitis (1, 62, 123,
133, 134), funisitis (120, 135, 136), and preterm birth (1, 137).

THE HUMAN UREAPLASMA SPP.

The human Ureaplasma spp. were first discovered in 1954 in agar cultures of urethral
exudates from male patients with nongonococcal urethritis (138). Due to their small
colony size (5 to 20 �m) and their resemblance to the human Mycoplasma spp.,
Ureaplasma spp. were initially identified as tiny-form pleuropneuomonia-like organisms
and referred to as T-mycoplasmas (138). However, Ureaplasma can be distinguished
from Mycoplasma spp. (139) by the presence of a urease enzyme, which hydrolyzes urea
to produce 95% of its energy requirements. The hydrolysis of urea produces ammonia,
which leads to an increase in proton electrochemical potential and de novo ATP
synthesis (140). The production of ammonia is a distinguishing feature for the identi-
fication of Ureaplasma spp. in culture, and these tiny bacteria are detected not by
turbidity within broth but by an alkaline shift and pH indicator color change in both
broth and agar culture media (141, 142). Due to this distinctive urease activity, the
Ureaplasma spp. were reclassified into their own genus within the Mycoplasmataceae
family in 1974 (139). As members of the class Mollicutes, Ureaplasma spp. do not
possess a cell wall and are surrounded only by a plasma membrane. Due to this lack of
structural integrity, the Ureaplasma spp. are pleomorphic, and individual organisms can
range in size from 100 nm to 1 �m (143). As such, the Ureaplasma spp. are considered
to be among the smallest self-replicating microorganisms.

Taxonomic Classification

The human Ureaplasma spp. are divided into two species, which contain at least 14
serovars: U. parvum (serovars 1, 3, 6, and 14) and U. urealyticum (serovars 2, 4, 5, and 7
to 13) (144). U. parvum possesses a smaller genome (0.75 to 0.78 Mbp) than U.
urealyticum (0.84 to 0.95 Mbp) (145), and these two species can also be distinguished
based on restriction fragment length polymorphisms, DNA-DNA hybridization, multi-
locus sequence typing, and sequences of 16S rRNA, multiple-banded antigen (mba),
and urease genes (146–151). While this taxonomic classification was formally accepted
in 2002, it has not been universally adopted within the literature, and often the 14
serovars are still erroneously referred to as U. urealyticum.

Several methods for serotyping Ureaplasma spp. have been described, including
growth inhibition tests (152, 153), immunoperoxidase tests (154), enzyme-linked im-
munosorbent assays (155, 156), and colony indirect epi-immunofluorescence (157),
which utilize rabbit antisera. These tests performed poorly due to a lack of standardized
reagents and the presence of multiple cross-reactions between serovars. These ap-
proaches also poorly discriminate clinical samples containing more than one Urea-
plasma serovar. Therefore, serotyping of Ureaplasma for diagnostic and epidemiological
purposes has historically been technically challenging. Molecular biology-based typing
methods based on sequencing of the upstream region of the mba gene (151), con-
ventional PCR of mba (158–160), and random amplified polymorphic DNA PCR (158)
have also been described. However, these methods do not fully discriminate all 14
Ureaplasma serovars. In addition, the mba gene was recently shown to be part of a
phase-variable gene superfamily (145), suggesting that its use as a diagnostic target
may be limited.

Following the release of full genome sequences of Ureaplasma American Type
Culture Collection (ATCC) strains, Xiao et al. designed 14 separate monoplex real-time
PCR assays, which successfully typed all 14 ATCC type strains without cross-reactivity
between serovars (161). However, when these real-time PCRs were used to type clinical
human Ureaplasma isolates, 6% of isolates failed to amplify and could not be typed
according to any of the known 14 serovars (162). Whole-genome shotgun sequencing
of a selection of these isolates revealed that the gene targets for real-time PCR were
completely absent or had been significantly modified, such that one of the primers was
unable to bind. Even more intriguing was that following filtering and subculture of
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single Ureaplasma colonies isolated from samples thought to contain mixtures of
multiple serovars, several isolates continued to express loci from more than one
serovar. DNA sequencing revealed that these isolates were in fact hybrids or genetic
mosaics that carried multiple serovar markers. Screening of 271 clinical samples initially
believed to contain multiple serovar mixtures demonstrated that 75 (28%) were
hybrids, which carried markers of up to 4 different serovars (162). These data, in
combination with recent comparative genome sequencing studies, demonstrate that
there is extensive evidence of horizontal gene transfer (HGT) in Ureaplasma spp.,
suggesting that typing these microorganisms into defined serovar groups may be of
limited value for diagnostic purposes (162) and that Ureaplasma organisms exist as
quasispecies (145). On the other hand, it is possible that there are more-stable gene
targets that have yet to be identified, which could be utilized for the discrimination of
Ureaplasma serovars or pathogenic versus commensal subtypes. Large-scale compar-
ative genome sequencing studies are required to clarify this issue.

Ureaplasma spp. Are Commensals of the Female Lower Genital Tract

Ureaplasma can be isolated from the mucosal surfaces of the vagina or cervix from
40 to 80% of sexually active females (163). U. parvum is isolated more frequently from
the lower genital tract of females than U. urealyticum (158, 159, 164–166), and serovar
3 is the most common serovar isolated from females in the United States and Australia
(116, 158, 163). Ureaplasma colonization of the female lower genital tract has been
associated with numerous factors, including ethnicity (particularly African-American,
Central/West African, and Indigenous Australian women) (123, 167, 168), age (most
prevalent in the 14- to 25-year age group; carriage declines with increasing age) (165,
167), the number of recent sexual partners (123, 168), the use of nonbarrier contra-
ceptives (123), level of education (167), age of first sexual intercourse (123), and
intrauterine devices (167, 169). Ureaplasma spp. are considered to be commensal
organisms within the female lower genital tract due to (i) their high prevalence and (ii)
studies demonstrating no differences in the rates of endocervical Ureaplasma coloni-
zation between women of reproductive age with and those without symptoms of
genital infection (165, 166). However, others have reported that Ureaplasma spp. can
cause lower urogenital tract infections, such as symptomatic vaginitis (170, 171),
cervicitis (172), bacterial vaginosis (173), pelvic infections (174, 175), and urinary tract
infections (176–178).

Lower Genital Tract Ureaplasma Colonization Association with Chorioamnionitis
and Adverse Pregnancy Outcomes

It has been proposed that the presence of Ureaplasma spp. in the female lower
genital tract may be a risk factor for chorioamnionitis and adverse pregnancy outcomes,
such as preterm birth (179–184). A prospective study of 2,471 women attending an
antenatal clinic demonstrated that Ureaplasma spp. were isolated from vaginal swabs
from 52/97 women (53.6%) who delivered preterm and that vaginal Ureaplasma
colonization was an independent risk factor for preterm birth (odds ratio, 1.64; confi-
dence interval, 1.08 to 2.48; P � 0.02). Despite this statistical association, it should be
noted that, in the same study, Ureaplasma was also isolated from the lower genital tract
of 783/1,891 women (41.1%) who delivered at term. Similarly, Kataoka et al. (179)
demonstrated that U. parvum was detected in 16/21 women (76.2%) who delivered
preterm and also in 440/856 women (51.4%) who delivered at term (P � 0.024). Other
authors have reported equally high carriage rates in women who deliver at term, and
the majority of studies conclude that lower genital tract Ureaplasma colonization is not
a significant predictor of preterm birth or chorioamnionitis (185–190).

Ureaplasma Can Cause Ascending Asymptomatic Infections of the Upper Genital
Tract

Although Ureaplasma spp. are (in most instances) considered to be commensals
within the lower genital tract, these microorganisms are capable of causing ascending
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asymptomatic infections of the upper genital tract. A recent study of fertile and infertile
women undergoing diagnostic laparoscopy (who had no symptoms of genital tract
infection) demonstrated that lower genital tract Ureaplasma colonization can lead to
asymptomatic infection of the pouch of Douglas (191). Furthermore, Ureaplasma spp.
have been isolated from the endometrium and Fallopian tubes of nonpregnant women
in the absence of clinical symptoms or abnormal pathology (192, 193). While it was
historically thought that the Ureaplasma spp. were of low virulence and that their
presence in the upper genital tract might be of little consequence, there is now
increasing evidence that these microorganisms are not simply innocent bystanders. The
presence of Ureaplasma spp. in the upper genital tract of nonpregnant women sug-
gests that these microorganisms may infect the embryo at the time of implantation
(163). Moreover, they are capable of inducing chorioamnionitis, which can adversely
affect the health of the pregnancy and neonate. Here, we discuss the role of the human
Ureaplasma spp. as causative agents of chorioamnionitis.

UREAPLASMA SPP. AS ETIOLOGICAL AGENTS OF CHORIOAMNIONITIS

The first study to identify an association between Ureaplasma spp. and chorioam-
nionitis was published in 1975 and identified a link between carriage of Ureaplasma
spp. in the lower genital tract and an increased incidence of chorioamnionitis (194).
While the majority of studies since have demonstrated that lower genital tract coloni-
zation with Ureaplasma is not predictive of adverse outcomes during pregnancy, the
role of Ureaplasma spp. in chorioamnionitis has remained controversial. Attempts to
correlate infection with Ureaplasma spp. with the presence of chorioamnionitis have
been made by a variety of studies and utilizing amniotic fluid, cord blood, or placental
samples. These studies have demonstrated that Ureaplasma spp. are habitually found
in placentae with chorioamnionitis (Table 1). Despite the fact that up to 100% of
placentae infected with Ureaplasma spp. have evidence of histological chorioamnionitis
(Table 1), a causative role for these microorganisms has not been satisfactorily ex-
plained and is complicated by a number of factors.

A factor which complicates the role of Ureaplasma spp. in chorioamnionitis is that
not all women who are infected with these microorganisms develop chorioamnionitis
or experience adverse pregnancy outcomes. Gerber et al. tested the amniotic fluid from
254 asymptomatic pregnant women at 15 to 17 weeks of gestation by PCR and
detected Ureaplasma spp. in 29/254 (11.4%) subjects (137). Significantly, this study
identified that 24% of women infected/colonized with Ureaplasma spp. delivered
preterm, compared to 4.4% of women who were not infected with Ureaplasma spp.
However, this study failed to comment on the vast majority (76%) of women in the
study who were infected/colonized with Ureaplasma who went on to deliver at term
with no apparent adverse outcomes. Similarly, Horowitz et al. detected intra-amniotic
Ureaplasma infections in six pregnant women (2.8%), but only three (50%) of these
women experienced preterm birth (195). Numerous studies have identified that the
severity of upper genital tract Ureaplasma infection/inflammation in pregnant women
is highly variable. Some studies have demonstrated that there may be immunological
evidence of severe inflammation (196, 197), while in others there may be only moderate
inflammation (198), or there may be no correlation between infection with Ureaplasma
spp. and inflammation (199) (Fig. 2).

Although it remains unclear why some women infected with Ureaplasma spp.
experience adverse pregnancy outcomes while others do not, some researchers have
attributed these differences in sequelae to the virulence of the infecting serovar (200),
the bacterial load present (201, 202), or genetic background/ethnicity (203, 204).
However, these findings are not always consistent, with a recent study by our group
demonstrating no correlation between the numbers of Ureaplasma present within
placentae, the species/serovar present, or the ethnicity of women infected with Urea-
plasma and the incidence or severity of histological chorioamnionitis (62). Furthermore,
animal model studies in which Ureaplasma infections have been established with the
same strain and dose of U. parvum resulted in divergent inflammatory responses within
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the chorioamnion (59, 205, 206) and within other genital tract tissues (207), suggesting
that the development or magnitude of host immune responses may contribute to the
severity of chorioamnionitis. Indeed, we have demonstrated that the human Urea-
plasma spp. can undergo immune evasive behavior in vivo by varying the expression of
their surface-exposed antigens and that the severity of chorioamnionitis is inversely
related to the number of antigenically distinct subtypes detected within amniotic fluid
(reviewed in detail below). Therefore, we hypothesize that the ability of some Urea-
plasma strains to hide from the immune system may be an important predictor of
outcomes and may potentially explain why some women do not develop chorioam-
nionitis despite high bacterial loads within the amniotic fluid and chorioamnion.

Table 1 summarizes human studies which have investigated the role of Ureaplasma
spp. in chorioamnionitis. These studies showed that the rates of Ureaplasma-associated
inflammation within the chorioamnion may vary between 0 and 100%, further high-
lighting the diversity of histological chorioamnionitis and why it is so difficult to confirm
the role of these microorganisms as causative agents of chorioamnionitis. Additionally,
the pathogenic role of Ureaplasma spp. is often unclear as the majority of these
infections are clinically silent. Ureaplasma infections of the chorioamnion can persist
asymptomatically for up to 2 months in humans (208), and Ureaplasma-infected
placentae cannot be distinguished macroscopically from normal placentae (although
there may be histological evidence of chorioamnionitis that is detected following
delivery). Due to the predominantly asymptomatic nature of Ureaplasma infections,

TABLE 1 Incidence of Ureaplasma infection, polymicrobial infections, and chorioamnionitis in women delivering preterm, late preterm, or
at termg

Author(s) of reference
(yr)

Reference
no.

GA
(wk)

Specimen
type n

Incidence, no. positive/no. total (%)

Ureaplasma
infection

Polymicrobial
infection

Ureaplasma spp.

With
chorioamnionitis

Without
chorioamnionitis

Viscardi et al. (2008) 222 �33 S/CSF 313 74/313 (23.6) —a 30/46 (65.0) 16/46 (35.0)
Hassanein et al. (2012) 310 �35 CB 30 13/30 (43.3) No polymicrobial

infections
7/13 (53.8) 6/13 (46.2)

Gray et al. (1992) 311 �28 AF 2,461 8/2,461 (0.4) —b 8/8 (100.0) 0/8 (0.0)
Yoon et al. (1998) 60 �36 AF 120 25/120 (20.8) 11/120 (9.0) 5/25 (20.0)
Yoon et al. (2003) 312 �35 AF 252 23/252 (9.1) —c

Park et al. (2013) 136 �34 AF 56 35/56 (62.5) 7/56 (12.5) 26/47 (55.31)f 0/3 (0.0)
Kacerovsky et al. (2014) 16 24–36 AF 124 26/124 (21.0) 5/124 (4.0)d

Romero et al. (2015) 313 �35 AF 59 6/24 (25.0) 10/24 (41.7) 3/6 (50.0) 2/6 (33.3)f

Stepan et al. (2016) 314 24–34 AF 122 33/122 (27.0) 8/122 (6.6) 29/33 (87.9) 4/33 (12.1)
Musilova et al. (2015) 315 24–36 AF 166 40/166 (24.1) 19/166 (11.4) 26/40 (65.0) 14/40 (35.0)
Stepan et al. (2016) 316 24–36 AF 386 103/386 (26.7) 32/386 (8.3) 70/103 (68.0)f 16/103 (15.5)f

Berger et al. (2009) 317 �33 AF/PL 114 32/114 (28.1) —a 11/25 (44.0)f 14/25 (66.0)f

Hillier et al. (1988) 1 �37 PL 112 32/112 (28.6) —c 19/29 (65.5)f 10/65 (15.4)f

Stein et al. (1994) 318 Any GA PL 182 21/182 (11.5) —e 11/16f 5/16f

Van Marter et al. (2002) 319 �36 PL 206 58/155 (37.4) —e 51/77 (66.2) 7/78 (9.0)
Miralles et al. (2005) 320 �33 PL 14 5/14 (35.7) 5/14 (35.7) 4/5 (80.0) 1/5 (20.0)
Egawa et al. (2007) 135 �32 PL 83 4/83 (4.8) 5/83 (6.0)b 4/4 (100.0) 0/4 (0.0)
Olomu et al. (2009) 321 �28 PL 866 52/866 (6.0) 21/52 (40.4) 34/52 (65.4) 18/52 (34.6)
Kasper et al. (2010) 202 �34 AF 118 32/118 (27.1) —a 5/19 (26.3)f 14/19 (73.7)f

Namba et al. (2010) 134 �32 PL 151 63/151 (41.7) 13/151 (8.6) 52/63 (82.5) 11/63 (17.5)
Roberts et al. (2012) 4 �37 PL 195 2/195 (1.0) 1/195 (0.5) 0/2 (0.0) 2/2 (100.0)
Kundsin et al. (1984) 322 Various PL 801 156/801 (19.5) 18/801 (2.2)b 32/53 (60.4)f 21/53 (39.6)
Sweeney et al. (2016) 62 �32 PL 535 42/535 (7.9) 4/57 (7.0) 26/38 (68.4) 12/38 (31.6)
Cox et al. (2016) 133 �37 PL 57 13/57 (22.8) 9/24 (37.5) 4/33 (12.1)
aOnly Ureaplasma spp. were tested for within the study.
bOnly genital mycoplasmas (Ureaplasma spp. and Mycoplasma hominis) were tested for within this study.
cStudy states that �1 organism may have been isolated, but prevalence of polymicrobial infections not stated.
dOnly Ureaplasma spp., Mycoplasma hominis, and Chlamydia trachomatis tested for within this study.
eNo comment on polymicrobial infections.
fNot all placentae in study were tested.
gThe incidence of chorioamnionitis in Ureaplasma-infected women is frequently high, indicating that these microbes are associated with chorioamnionitis.
Abbreviations: AF, amniotic fluid; CB, cord blood; CSF, cerebrospinal fluid; GA, gestational age; PL, placenta; S, serum.
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coupled with the fastidious growth requirements of these microorganisms, pregnant
women are not routinely screened for Ureaplasma spp., and therefore, these tiny
bacteria are not always suspected (and are, therefore, likely to be underreported) as
causative agents of chorioamnionitis.

One of the major reasons why the role of Ureaplasma spp. in chorioamnionitis has
remained unconfirmed is due to the polymicrobial nature of chorioamnionitis (5, 209).
The majority of studies investigating chorioamnionitis focus specifically on very pre-
term (�28 weeks) and early preterm (28 to 32 weeks) pregnancies, and these studies
have demonstrated that up to 67% of amniotic fluid or placental samples with
chorioamnionitis contained at least two detectable microorganisms (often Ureaplasma
spp. and another microorganism) (Table 1). Because of this, researchers have not been
able to confidently claim that Ureaplasma spp. are true etiological agents of chorio-
amnionitis. However, a recent study by our research group demonstrated that infec-
tions within late preterm (32 to 36 weeks) and term (�37 weeks) placentae typically
harbored only a single microorganism (90.5%) and that the presence of Ureaplasma

FIG 2 Differences in the presence of chorioamnionitis in Ureaplasma-infected women. Hematoxylin-and-eosin-
stained chorioamnion tissue demonstrates that some women whose placentae are colonized with Ureaplasma spp.
have no evidence of chorioamnionitis (A and B), while other women have mild/moderate (C and D) or severe (E
and F) evidence of inflammation (demonstrated by neutrophil influx [arrows]) within their chorioamnion, despite
high numbers of Ureaplasma spp. present within the tissue. Images are shown at �200 (A, C, and E) and �400 (B,
D, and F) total magnifications; boxed areas in panels A, C, and E are shown in panels B, D, and F, respectively.
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spp. alone was significantly associated with histological chorioamnionitis, at any ges-
tational age (62). Further investigations confirmed the finding that placental infections
with Ureaplasma spp. are strongly associated with chorioamnionitis, using whole-
genome shotgun sequencing of late preterm and term placentae (120). Similarly,
another study has reported that preterm placentae infected with Ureaplasma spp. alone
are independently associated with inflammation of the chorioamnion membranes. This
study demonstrated that there were no differences in the incidence of chorioamnionitis
in placentae infected with Ureaplasma spp. and other microorganisms compared to
placentae infected with Ureaplasma spp. alone (210). Taken together, these recent data
not only suggest that Ureaplasma spp. are likely to be a key etiological agent of
chorioamnionitis in the absence of other microorganisms but also support a causal role
for Ureaplasma in chorioamnionitis throughout pregnancy.

ANIMAL MODELS HAVE HELPED TO ELUCIDATE THE PATHOGENESIS OF
UREAPLASMA CHORIOAMNIONITIS

Studies in experimental animal models have confirmed that Ureaplasma spp. can
cause chorioamnionitis and fetal inflammation following intrauterine inoculation. Using
a nonhuman primate model, Novy et al. (211) inoculated 107 CFU of U. parvum serovar
1 into the amniotic fluid of pregnant rhesus macaques at day 132 to 147 of gestation
(term � 155 to 172 days) via an indwelling catheter. Intra-amniotic U. parvum caused
a significant influx of leukocytes into the amniotic fluid and significant increases in the
amniotic fluid levels of (i) TNF-�, IL-1�, IL-1ra, IL-6, and IL-8; (ii) PGE2 and PGF2�; and
(iii) latent (92-kDa) and active (83-kDa) MMP-9 compared with preinoculation baseline
values. A progressive increase in uterine activity was also observed following U. parvum
intra-amniotic inoculation, and the mean inoculation-to-labor onset period was signif-
icantly reduced in U. parvum-infected animals compared to those inoculated with
sterile medium or saline. Histological examination of fetal membranes revealed acute
chorioamnionitis that was characterized by edematous thickening of the chorioamnion,
neutrophil infiltration, denudation of amnion epithelial cells, and necrosis and micro-
abscess formation in chorion trophoblast cells (211). Similarly, intra-amniotic injection
of U. parvum serovar 1 into the amniotic cavity of pregnant baboons at day 122 to 123
of gestation (term is 185 days) resulted in elevated levels of amniotic fluid IL-6 and IL-8
at the time of preterm delivery (125 days) and histological evidence of acute chorio-
amnionitis (212). In contrast, more-recent studies in rhesus macaques demonstrated
that despite the presence of high numbers (3.9 � 107 CFU/ml) of U. parvum serovar 1
within the amniotic fluid, no chorioamnionitis was detected after acute durations (3
days and 7 days) of infection (213).

While nonhuman primate models exhibit the closest resemblance to humans with
respect to gestational length, uterine anatomy, and parturition, experimental intrauter-
ine infection causes preterm delivery (211, 214), and therefore, it is only possible to
study acute chorioamnionitis in these models. In contrast, sheep do not experience
inflammation-induced preterm birth, as intra-amniotic infection/inflammation does not
cause significant activation of the fetal HPA axis, cortisol production, and subsequent
progesterone withdrawal, which are required for the initiation of labor in many species
(215–217). This enables the study of chronic, asymptomatic intrauterine infection and
chorioamnionitis, which is not possible using other animal models. In addition, fetal
sheep are similar in size to human fetuses, which enables instrumentation of the ewe
and fetus (217), and thus makes the ovine model very useful for the study of fetal
development and neonatal outcomes following chorioamnionitis exposure.

We have demonstrated that human U. parvum clinical isolates injected into the
amniotic cavity of pregnant sheep at 55 days (term is 150 days) can chronically colonize
the amniotic fluid and fetus (59, 205, 215, 218). Following an intra-amniotic injection of
2 � 104 CFU of U. parvum serovar 6 at 55 days of gestation, temporal analysis
demonstrated that the peak of amniotic fluid infection occurred between 87 days and
101 days of gestation and that the number of CFU per milliliter remained high
(approximately 107 CFU/ml) until the time of surgical delivery at 140 days (59). These
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data demonstrate that Ureaplasma can chronically colonize the amniotic fluid for at
least 85 days and suggest that amniotic fluid, a rich source of urea, can support the
long-term growth of these microorganisms. We further demonstrated that U. parvum
was consistently isolated from the chorioamnion and fetal lung following chronic
intra-amniotic infection (205, 215, 218–220) and was also isolated from the umbilical
cord and other fetal tissues, including cerebrospinal fluid, gut, kidney, liver, and spleen
(205). These findings are consistent with human studies that have reported that
Ureaplasma spp. may systemically infect the fetus, leading to neonatal morbidity and
mortality (221–228).

Both chronic and acute intrauterine Ureaplasma infections were capable of causing
histological chorioamnionitis in pregnant sheep (59, 205, 206, 218, 219). Intra-amniotic
U. parvum infection was also associated with increased expression of IL-1�, IL-6, and
IL-8 mRNA within the chorioamnion (59, 219) and an influx of neutrophils, monocytes/
macrophages, and lymphocytes (59, 205, 218), compared to medium (vehicle) controls.
Generally, the severity of chorioamnionitis correlated with increased duration of intra-
amniotic Ureaplasma exposure (206); however, variability in the severity of inflammation
was a notable feature of these sheep studies (205, 206), consistent with findings from
human pathological investigations. Despite 100% of chorioamnion samples being infected
with U. parvum, the severity of chorioamnionitis ranged from moderate (characterized by
inflammatory cell infiltrate, fibrosis, scarring, sloughing of the amnion epithelium, and
disruption of the normal tissue architecture) to no histological evidence of chorioamnionitis
(205). The severity of chorioamnionitis was not related to the bacterial load within the
chorioamnion at the time of delivery, the inoculating serovar, or the initial dose of U.
parvum (205).

In an attempt to explain the differences in severity of Ureaplasma chorioamnionitis
and address whether some Ureaplasma isolates are inherently more virulent than
others, we infected the amniotic cavity of pregnant sheep with clonal U. parvum serovar
6 isolates (59), derived from placental isolates, which had caused severe histological
chorioamnionitis (virulent strain-derived strain) or no chorioamnionitis (avirulent strain-
derived strain) in a previous ovine study (205). Regardless of the inoculating clonal
strain, moderate to severe chorioamnionitis was observed in experimentally infected
animals and there were no differences in the chorioamnion expression of TLR-1, TLR-2,
TLR-6, IL-1�, IL-6, IL-8, IL-10, and TNF-� between animals infected with the avirulent
strain-derived strain and those infected with the virulent strain-derived strain. Similarly,
there were no differences in the numbers of U. parvum isolated from the amniotic fluid,
chorioamnion, cord, or fetal lung at 140 days (59). In the same study, we demonstrated
that only a subpopulation of infected ewes from each group generated a serum IgG
response to intrauterine U. parvum infection. When cytokine expression was compared
between animals with and without anti-Ureaplasma serum IgG, the expression of IL-1�,
IL-6, and IL-8 was significantly increased in the chorioamnion of anti-Ureaplasma IgG�

animals. In addition, maternal anti-Ureaplasma serum IgG was associated with a sig-
nificant increase in meconium-stained amniotic fluid (59). These findings are also
consistent with human studies that have demonstrated that patients with anti-
Ureaplasma antibodies are at a higher risk for adverse pregnancy and neonatal out-
comes than are those who do not develop a humoral immune response (229, 230).
Taken together, this suggests that Ureaplasma strains are not likely to be inherently
virulent or avirulent but that the host response to infection may affect the pathogenesis
of chorioamnionitis.

The Immune Response to Ureaplasma Chorioamnionitis: Harmful or Helpful?

Studies in BALB/c and C57BL/6 mice have provided unique insights into the poten-
tially harmful immune responses that may occur during Ureaplasma chorioamnionitis.
BALB/c mice typically display a Th1/M1-dominant immune profile, whereas the immune
profile of C57BL/6 mice is consistent with a Th2/M2 bias (203). These differences have
enabled researchers to examine the immunopathogenic role of a skewed Th1/M1 or
Th2/M2 response in Ureaplasma chorioamnionitis. In a model of experimental intra-
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uterine infection, von Chamier et al. injected 107 CFU of U. parvum into the uterine
horns of pregnant BALB/c and C57BL/6 mice at 14 days (203). Examination of the fetal
membranes at 72 h postinfection demonstrated that C57BL/6 mice exhibited mild-
moderate chorioamnionitis, whereas BALB/c mice displayed severe necrotizing chorio-
amnionitis and extensive neutrophil infiltration. These differences could not be attrib-
uted to differences in bacterial load; however, the placental expression levels of
cytokines and calgranulins were markedly different between the strains (203). In a
separate study, it was demonstrated that intrauterine U. parvum infection increased the
expression of TLR2 and CD14 on neutrophils in BALB/c but not C57BL/6 mice (56).
TLR/CD14-mediated signaling triggered by bacterial lipoproteins has been shown to
extend the survival of apoptotic neutrophils in infected tissues, thereby increasing the
duration of inflammation (231). It is therefore possible that TLR2/CD14 signaling plays
a role in the extensive neutrophil infiltration and severe chorioamnionitis observed in
BALB/c mice. Interestingly, increased levels of soluble CD14 are also observed in the
amniotic fluid of women with intrauterine Ureaplasma infection (232), suggesting that
CD14 signaling may be an important area for future research. Combined, these studies
demonstrate that the host immune response may be a key factor that modulates the
pathogenesis of acute Ureaplasma chorioamnionitis. Further studies using genetically
modified/knockout mouse lines may significantly improve our understanding of pro-
tective versus pathogenic immune responses to intrauterine Ureaplasma infection.

Immune Effects of Ureaplasma spp. on the Fetus

Animal model studies from our research group have investigated the fetal immune
responses to U. parvum exposure during gestation. In a series of experiments in
pregnant sheep, it was demonstrated that chronic (69 days), but not acute (7 days), in
utero infections with U. parvum suppressed innate immune responses in fetal sheep.
Fetuses were challenged with E. coli LPS 2 days prior to delivery, and the fetuses that
were chronically exposed to intra-amniotic Ureaplasma spp. demonstrated significant
decreases in pro- and anti-inflammatory cytokine expression, as well as fewer CD3� T
lymphocytes and myeloperoxidase� cells within the fetal lung, compared to the fetuses
that were intra-amniotically exposed to sterile culture medium (vehicle). Blood mono-
cytes obtained from these same animals also had a significantly decreased response to
LPS in vitro (121), demonstrating that fetal exposure to U. parvum in utero can markedly
alter the neonatal immune responses following delivery. Similarly, chronic exposure to
U. parvum alone (with no LPS challenge) was sufficient to augment the presence of
transforming growth factor beta (TGF-�) within the fetal lung, which may also contrib-
ute to the development of lung pathologies, such as bronchopulmonary dysplasia
(233).

In both rhesus macaque and sheep models, intra-amniotic U. parvum infections
decreased the populations of CD4� FOXP3� regulatory T cells (Tregs) in the preterm
fetus, in both the thymus and the periphery (213, 234). Furthermore, a gamma
interferon response was seen in Tregs exposed to U. parvum during gestation, and this
response was absent in Tregs of fetuses exposed to control (medium) intra-amniotic
injections. Since it is well established that Tregs are potent anti-inflammatory T cells
(235), these results suggest the existence of a subset of Tregs that can develop a Th1
phenotype early in life and suggest that this response may be increased in the presence
of inflammation (e.g., chorioamnionitis).

MANIPULATION OF HOST CELLS BY UREAPLASMA SPP.

Compared to other Mycoplasma spp., the cytadherence of Ureaplasma has not been
investigated in detail. In vitro studies have demonstrated that Ureaplasma spp. are
adherent to erythrocytes (236), placental endothelial cells (237), and human epithelial
cells (238); however, the adhesion mechanisms are unknown. Pretreatment of HeLa
cells and erythrocytes with neuraminidase significantly reduced ureaplasmal adherence
(238), suggesting that Ureaplasma may bind to receptors containing sialic acid. In
contrast, the adhesion of Ureaplasma to spermatozoa is thought to be mediated by
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sulfogalactoglycerolipid, which is expressed by the mammalian male germ cell mem-
brane (239).

The human Ureaplasma spp. have been shown to alter/manipulate host cells in
several ways. Allam et al. reported that U. parvum significantly increased filamin A
phosphorylation at serine 2152 in human benign prostate cells and altered its intra-
cellular distribution (240). Filamin A is an actin-binding protein that regulates the
cytoskeleton and is involved in antimicrobial signaling pathways (241). Further inves-
tigation into the upstream and downstream signaling events may therefore reveal
novel insights into Ureaplasma-host interactions. In endothelial cells isolated from
normal and preeclamptic placentae, U. urealyticum significantly reduced cell viability,
altered the expression of heat shock protein 70, and significantly increased the intra-
cellular concentration of calcium and iron. It was suggested that these events occurred
as part of the cellular stress response to infection and may indicate that cells are
progressing toward apoptosis (237). Additional studies have demonstrated that U.
urealyticum induces apoptosis in other cell types, including human lung epithelial cells
(A549) and THP-1-derived macrophages (242). Ureaplasma-infected cells demonstrated
an altered morphology and underwent DNA fragmentation and translocation of phos-
phatidylserine to the outside surface of the cell (as determined by annexin V staining
and flow cytometry) (242). Ureaplasma spp. further manipulate host cells by suppress-
ing innate host defense pathways. A recent study demonstrated that Ureaplasma
infection decreased the expression of antimicrobial peptide genes in THP-1 cells in vitro,
in association with a significant decrease in histone H3K9 acetylation (243). These
findings suggest that Ureaplasma may downregulate antimicrobial/host defense genes
via epigenetic modifications (243), which may be an important factor contributing to
the ability of these microorganisms to cause persistent infections. Further studies using
a combination of ex vivo and in vivo approaches are required to elucidate the host-
pathogen interactions that occur during Ureaplasma chorioamnionitis.

UREAPLASMA VIRULENCE FACTORS

While Ureaplasma spp. were traditionally portrayed as microorganisms of low
virulence, they are now recognized as the cause of serious disease. As such, Ureaplasma
spp. have evolved specific virulence mechanisms that contribute to their survival and
disease pathogenesis. Five proposed virulence factors have been identified: the
multiple-banded antigen (MBA), phospholipases A and C, IgA protease, and the urease
gene of Ureaplasma spp. Genetic manipulation of these microorganisms has remained
elusive, and thus definitive roles for these proposed virulence factors have not been
determined. Furthermore, recent genome sequencing studies have questioned the
presence of some of these proposed virulence factors.

Multiple-Banded Antigen (MBA)

The MBA was first described by Watson et al. (244) and has since been identified as
one of the major virulence factors of the human Ureaplasma spp. The mba gene, which
encodes the MBA protein, contains no homology to any other known prokaryotes and
is unique to Ureaplasma spp. (245). The MBA protein is the major antigen that is
recognized by the host during infection and elicits the production of cytokines by
activating nuclear factor kappa B via TLR-1, -2, and -6 (246–248). The MBA protein
consists of three major domains: a typical prokaryotic signal peptide, an N-terminal
transmembrane domain that is conserved among all 14 serovars of Ureaplasma spp.,
and a C-terminal (surface-exposed) variable domain that is composed of multiple
repeating units, with both serovar-specific and cross-reactive epitopes (249, 250). The
C-terminal region of the MBA has been shown to alter by switching on/off the gene
(antigenic phase variation) and more commonly to vary in size (antigenic size variation)
(59, 205, 249–252). U. urealyticum serovar 13 is the only Ureaplasma serovar that does
not contain any tandem repeat units in the C-terminal variable domain of mba (145).

While some studies demonstrated differences in the size of the MBA protein (giving
rise to the name of the protein itself as the multiple-banded antigen) (244, 252), the first
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study to characterize MBA size variation demonstrated that differences in the size of the
MBA protein directly correlated with the number of tandem repeating units within the
mba gene (149, 253). More recently, Knox et al. identified mba/MBA size variation in vivo
using an ovine model (205). Pregnant ewes were chronically infected for 69 days with
a nonclonal U. parvum isolate, and the size of mba/MBA was assessed. This study
demonstrated that the number of mba/MBA size variants was inversely correlated with
the severity of inflammation within the chorioamnion: when �9 mba/MBA size variants
were identified, there was little or no chorioamnionitis; however, when �5 mba/MBA
size variants were identified, there was severe histological chorioamnionitis (205). Other
ovine studies have identified that variation in the size of the mba/MBA was not
seen after 3 days of intra-amniotic infection, while some slight variation was seen
after 7 days of infection (206) and significant mba/MBA size variation was seen after
69 days of chronic intra-amniotic U. parvum infection (59, 205, 206). Dando et al.
(59) also demonstrated the ability of Ureaplasma spp. to vary their mba/MBA size
throughout the course of gestation and suggested that size variation of mba/MBA
(presumably by slipped-strand mispairing) may be a mechanism by which Urea-
plasma spp. evade host immune recognition, allowing chronic asymptomatic infec-
tions to develop (59).

More recently, we have demonstrated for the first time that Ureaplasma clinical
isolates from human placentae were also able to vary the size of their mba/MBA (E. L.
Sweeney, S. Meawad, S. G. Kallapur, C. A. Chougnet, T. Gisslen, S. Stephenson, A. H. Jobe,
and C. L. Knox, unpublished data). Clinical isolates that varied the size of their mba/MBA
were associated with a reduced incidence of histological chorioamnionitis and significantly
lower levels of the cord blood cytokines G-CSF and IL-8. In contrast, Ureaplasma spp.
isolated from placentae that demonstrated no mba/MBA size variation were associated
with severe histological chorioamnionitis and elevated cord blood cytokines. Further in vitro
investigations using recombinant MBA (rMBA) proteins of differing sizes (i.e., different
numbers of tandem repeat units) and human macrophage cell lines demonstrated immune
responses that varied depending on the size of the rMBA. These results were confirmed by
Western blot analysis; the expression of nuclear factor kappa B fragment p65 (an activator
of transcription) varied when stimulated with the different-size rMBA proteins (Sweeney et
al., unpublished). Combined, these results confirm the ability of Ureaplasma spp. to vary
their surface-exposed MBAs in vivo and confirm that this variation is associated with the
modulation of the host immune response both in vivo and in vitro.

Other studies have also demonstrated that mba/MBA can undergo phase (on/off-
switching) variation. Three studies have identified that selective antibody pressure
directed against the MBA can result in the generation of MBA-negative variants
(Ureaplasma isolates that do not express their MBA protein) in serial passage
experiments (59, 251, 254). In these studies, MBA-negative Ureaplasma isolates were
detected following two to three serial passages in culture medium containing
MBA-specific antibodies (59, 251). More recently, phase variation of the MBA
occurred in the absence of any selective (antibody) pressures (255), indicating that
this antigen is capable of rapid phase variation. Zimmerman et al. (254) hypothe-
sized that the expression of the mba gene (locus UU375) is alternated with
expression of an adjacent locus (UU376), which encodes a Ureaplasma-specific
conserved hypothetical protein. Utilizing polyclonal rabbit antisera generated
against the conserved (N-terminal, nonrepetitive) regions of MBA and UU376, these
authors identified that antibody treatment led to the emergence of escape variants,
which expressed the protein that had not been the target of selective pressure.
Following this, it was hypothesized that DNA inversion events—presumably occur-
ring at short inversion sequences—were responsible for the switching-on/off ex-
pression of these genes (254). Zimmerman and colleagues further investigated the
role of DNA inversion sites within the Ureaplasma genome and demonstrated
experimentally that the mba paralogues UU171 and UU172 and the orthologue
UU144 were also involved in site-specific DNA inversion/recombination (256). Fur-
thermore, it was shown that the XerC tyrosine recombinase gene of U. parvum is the
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most likely mediator of these DNA inversion events (257). Subsequent experimental
investigation into the ability of XerC to process the recombination event proved
successful, indicating that this tyrosine recombinase is able to induce DNA inversion
events (258), representing the first evidence of a mechanism which may govern
antigenic phase variation in Ureaplasma spp.

In a separate series of investigations, whole-genome sequencing was carried out on
Ureaplasma ATCC strains and a range of clinical isolates and revealed the presence of
multiple additional tandem repeat domains within the mba locus of all Ureaplasma
isolates tested (145). Remarkably, it was shown that mba was part of a large gene
superfamily, comprising 183 genes in U. parvum and U. urealyticum and 22 gene sub-
families. This study also identified the presence of putative recombination sites sur-
rounding tandem repeating domains, consistent with the theory that Ureaplasma spp.
may undergo significant antigenic phase and size variation, dependent on which
sequences within the genome are expressed. While there is convincing molecular
evidence that the mba gene is part of a complex phase-variable system, it should be
noted that, to the best of our knowledge, MBA-negative Ureaplasma variants have not
been isolated from human clinical material or experimental animal studies. Rather,
there is significant evidence of MBA size variation in vivo.

Phospholipases A and C

The pathogenesis of phospholipases results from the production of membrane-
destabilizing compounds and degradation of the host cell membrane phospholipids
(259). Endogenous phospholipase A1, A2, and C activity has been previously identified
in U. parvum serovar 3 and U. urealyticum serovars 4 and 8 (260–262). These phospho-
lipases demonstrated higher activity in Ureaplasma during their exponential growth
phase, suggesting that the Ureaplasma phospholipases were membrane bound and
were not being secreted (261). It was further identified that phospholipase A2 activity
was 3-fold higher in U. urealyticum serovar 8 than in U. urealyticum serovar 4 and U.
parvum serovar 3 (260). However, subsequent whole-genome sequencing of U. parvum
serovar 3 could not identify any genes of significant similarity to any known sequences
of phospholipase A1, A2, or C (245). These findings indicated that Ureaplasma may
encode phospholipases that are evolutionarily distinct from other phospholipase genes
or that these phospholipases may not exist within Ureaplasma spp. Interestingly, more
recent studies by the same research group revealed that whole-genome sequencing of
the 14 Ureaplasma serovars and four Ureaplasma clinical isolates was again unable to
detect any phospholipase A1, A2, or C genes; however, a phospholipase D domain-
containing protein was identified in all Ureaplasma spp. (145). These researchers further
investigated the presence/activity of these enzymes experimentally and were unable to
detect any significant phospholipase C or D activity in U. parvum serovar 3 and U.
urealyticum serovar 8 (145). Further investigations into the presence and activity of
phospholipases within Ureaplasma spp. are required to elucidate if these enzymes are
potential virulence factors of these organisms.

Immunoglobulin A (IgA) Protease

One of the primary defense mechanisms of the mammalian immune system is the
production of IgA at mucosal sites (263), and the ability of an organism to degrade IgA
antibodies allows the microorganism to evade this host defense mechanism. Robertson
et al. published the first evidence of an IgA protease in U. urealyticum that was capable
of cleaving IgA1 (264). While it was subsequently determined that all 14 Ureaplasma
serovars possess an IgA protease with proteolytic activity against IgA1 (but no proteo-
lytic activity against IgA2, IgG, or IgM antibodies) (265, 266), more recent evidence has
questioned the presence of an IgA protease in Ureaplasma spp. Initial genome se-
quencing studies of U. parvum serovar 3 were unable to identify any genes with
similarity to known IgA proteases (245), and more recent whole-genome analyses were
unable to identify any IgA protease genes within the 14 Ureaplasma serovars, nor
were they found to be present in any of the Ureaplasma clinical isolates tested
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(145). Recently, an IgG binding protein and IgG serine protease were identified
within Mycoplasma mycoides subsp. capri. This study provided evidence that both
U. parvum and U. urealyticum contain genes that encode an IgG binding protein and
an IgG serine protease within their genomes (267). Based on these recent findings,
further studies are warranted to determine if these IgG binding/IgG protease genes
are active in cleaving IgG and therefore may be a previously unrecognized virulence
factor of the human Ureaplasma spp.

Urease

The ability of Ureaplasma spp. to hydrolyze urea was first identified in 1966, and the
production of ATP via this mechanism appears to be unique within Ureaplasma (141,
268). The urease enzyme is a key virulence factor of many ureolytic bacteria, and the
ureaplasmal urease gene cluster has a genetic organization similar to that of E. coli,
Proteus mirabilis, Klebsiella pneumoniae, and Klebsiella aerogenes (269). The urease
complex constitutes a major component of the ureaplasmal cytoplasm (270), and
Takebe et al. demonstrated that the urease of U. urealyticum serovar 8 was responsible
for urolithiasis in humans (271). The Ureaplasma urease has a significantly higher
specific activity than other bacterial ureases (272) and was responsible for lethal toxicity
in mice following intravenous injection (273). Interestingly, the Ureaplasma spp. are
some of the few bacterial species which encode a urease enzyme but lack the ability to
assimilate ammonia into glutamine or glutamate (274), potentially explaining the very
high intracellular ammonia concentration of these microorganisms (140).

Our recent studies suggest that Ureaplasma infection, and a subsequent increase in
ammonia due to urease metabolism, can alter the pH of amniotic fluid and fetal lung
fluid in an ovine model (206). This study also identified that the increased pH within the
fetal lung was associated with lung damage, even in the absence of inflammatory
responses, and provides the first evidence that increased pH in vivo may be due to
Ureaplasma infections. Other studies have demonstrated that Ureaplasma infections
can result in hyperammonemia (275). Clinical reports describe that patients who
underwent lung transplantation and subsequently developed hyperammonemia (ab-
normally high levels of ammonia within the blood) were found to be infected with
Ureaplasma spp. within their blood or bronchoalveolar lavage fluid. When these
patients received antibiotic treatment to eradicate the Ureaplasma spp., their syn-
dromes resolved, and only one relapse was identified, in a patient colonized with an
antimicrobial-resistant Ureaplasma strain (275). Taken together, these findings suggest
that the activity of the Ureaplasma urease enzyme can result in an alkaline environment
in both fetal and adult lungs and also within amniotic fluid.

HORIZONTAL GENE TRANSFER (HGT) AND THE ABILITY OF UREAPLASMA SPP.
TO RAPIDLY ADAPT TO HOST MICROENVIRONMENTS

HGT is an important mechanism used by microorganisms to acquire genetic mate-
rial. Although Ureaplasma spp. maintain minimal genomes that have undergone sig-
nificant degenerative evolution (245), recent evidence has identified that HGT is likely
to occur within these microorganisms and may be an important determinant of
virulence. As previously discussed, the identification of genetic hybrids (162) suggests
that the Ureaplasma spp. may be genetically promiscuous. Comparative genome
sequencing studies have provided further evidence of this and identified integrase-
recombinase genes, transposases, and phage-related proteins in Ureaplasma genomes
(145), which are highly indicative of HGT events. Interestingly, U. urealyticum genomes
generally contained a higher number of these genes, suggesting that this species may
be more capable of acquiring genes horizontally than U. parvum (145).

Early attempts to define the phylogeny of Mycoplasma suggested that Mycoplasma
spp. with the smallest genomes have high mutation rates and undergo rapid evolution
(276, 277). Dando et al. provided evidence of the ability of the human Ureaplasma spp.
to rapidly adapt to their microenvironment in a sheep model of intrauterine infection
(278). Following injection of a nonclonal U. parvum serovar 3 isolate into the amniotic
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fluid of pregnant sheep at 55 days, significant genetic variability within the 23S rRNA
gene was detected between U. parvum isolated from the amniotic fluid and chorio-
amnion at the time of preterm surgical delivery (125 days). While U. parvum isolated
from amniotic fluid showed 100% 23S rRNA domain V sequence homology to the
original strain injected, highly polymorphic sequences (containing only 64 to 82%
sequence homology to the inoculating strain) were detected within Ureaplasma iso-
lates from the chorioamnion. Furthermore, chorioamnion Ureaplasma isolates demon-
strated the presence of macrolide resistance genes, which were not evident in amniotic
fluid isolates. While this study did not investigate the presence of potential genetic
transfer elements flanking these variable gene sequences, these data support the
concept that Ureaplasma spp. may undergo significant HGT in vivo. Furthermore, this
study suggests that different anatomical sites (amniotic fluid versus chorioamnion) may
select for different Ureaplasma subtypes within nonclonal populations and thus influ-
ence the sociomicrobiological structure of the bacterial population (278). Taken to-
gether, there is increasing evidence that Ureaplasma spp. undergo significant genetic
variation, allowing them to diversify their populations, and this is likely to contribute to
the overall pathogenicity of the Ureaplasma spp.

TREATMENT OF UREAPLASMA CHORIOAMNIONITIS AND THERAPEUTIC
CONSIDERATIONS

The major difficulty in treating chorioamnionitis is that a large proportion of cases
are clinically asymptomatic and therefore are not diagnosed until retrospective analysis
of the placenta and fetal membranes. This is particularly problematic for the human
Ureaplasma spp., which can cause chronic, asymptomatic intrauterine infections that
modulate the host immune response to prevent significant pathological events but are
still associated with adverse outcomes. While antibiotics are recommended for women
with preterm prelabor rupture of membranes (279) to prevent ascending invasive
infections from the lower genital tract, the timing of administration may be too late to
have beneficial effects against chronic Ureaplasma infections that were established
in early/midgestation. It has been suggested that the administration of appropriate
antibiotics before 22 weeks of gestation (or before inflammation and maternal-fetal
damage occur) could significantly decrease the incidence of preterm birth (280). This is
supported by a meta-analysis which demonstrated that the administration of macro-
lides and clindamycin during the second trimester of pregnancy was associated with a
reduced risk of preterm delivery (281). However, due to concern about antibiotic
resistance, widespread antimicrobial treatment is not recommended unless there is
evidence of intra-amniotic infection. Culture and/or PCR detection of Ureaplasma spp.
within amniotic fluid remains the gold standard for diagnosis; however, amniocentesis
is an invasive procedure that is not routinely performed, and it is likely that high
numbers of Ureaplasma infections during pregnancy remain undetected and therefore
untreated.

An additional complicating factor for the treatment of Ureaplasma chorioamnionitis
includes the often polymicrobial nature of this disease, which suggests that more than
one antimicrobial agent may be required to successfully eradicate infection. Further-
more, treatment options for pregnant women are limited due to potential teratogenic
and harmful effects associated with the use of some antimicrobials during pregnancy.
Even fewer options are available for the treatment of intrauterine Ureaplasma infec-
tions, as these microorganisms are inherently resistant to beta-lactam and glycopeptide
antibiotics (due to their lack of a cell wall), as well as trimethoprim and sulfonamides
(as Ureaplasma spp. do not synthesize folic acid) (282). Antimicrobials that are poten-
tially active against Ureaplasma include the tetracyclines, fluoroquinolones, and mac-
rolides; however, resistance to these antimicrobial classes has also been well described
(283–287).

Erythromycin, a 14-membered lactone ring macrolide, is the most common antibi-
otic used for the treatment of neonatal Ureaplasma infections and is routinely used in
clinical obstetrics. Large randomized controls and meta-analyses have demonstrated
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that erythromycin administration for preterm prelabor rupture of membranes can
reduce the risk of chorioamnionitis and neonatal morbidity and delay preterm birth
(288–290). However, it is less clear if maternal erythromycin can eradicate existing
human intrauterine infections due to conflicting reports within the literature (291–293).
In pregnant sheep, maternal intramuscular erythromycin treatment (30 mg/kg of body
weight/day for 4 days) failed to eradicate an erythromycin-susceptible strain of U.
parvum from the amniotic fluid, chorioamnion, and fetal lung (218), presumably due to
poor transplacental passage (218, 294–296). In a follow-up study, it was again demon-
strated that intra-amniotic Ureaplasma infection was not eradicated following (i) single
intra-amniotic and repeated maternal intramuscular erythromycin or (ii) single maternal
intramuscular and repeated intra-amniotic erythromycin injections (297). These data
suggest that erythromycin may not be beneficial for the treatment of intrauterine
Ureaplasma infections.

Azithromycin is a 15-membered semisynthetic macrolide with superior tissue pen-
etration, a prolonged half-life, and broader antimicrobial coverage than erythromycin
(298). Azithromycin is well tolerated during pregnancy and achieves peak concentra-
tions of 151 � 46 ng/ml within human amniotic fluid and 2,130 � 340 ng/ml within
human placentae at 6 h postinjection, before rapidly declining (298). In pregnant sheep,
a single intra-amniotic injection of azithromycin achieved therapeutic concentrations
that were sustained for 48 h; however, there was poor maternal-fetal transfer (296). Despite
this, a single maternal intravenous azithromycin injection or a single maternal intravenous
azithromycin injection combined with an intra-amniotic azithromycin injection completely
eradicated an established U. parvum infection from the amniotic fluid, chorioamnion, and
fetal lung in pregnant sheep (299). Similarly, studies in rhesus macaques demonstrated that
maternal intravenous azithromycin (25 mg/kg/day for 10 days) administered 6 to 8 days
after intra-amniotic U. parvum inoculation successfully eradicated Ureaplasma from the
amniotic fluid (300, 301). It should be noted that in both of these sheep (299) and monkey
(301) studies, histological evidence of chorioamnionitis was still observed at the time of
delivery, suggesting that azithromycin treatment alone is not sufficient to reduce/eliminate
inflammation within the fetal membranes.

Recent research efforts have evaluated a new, broad-spectrum fluoroketolide, soli-
thromycin, in pregnant sheep and demonstrated that a single maternal dose can
deliver therapeutic concentrations to both the fetus and the amniotic fluid (302). The
transplacental transfer of solithromycin was significantly higher than that reported for
other macrolides, including azithromycin, and a maternal intravenous infusion resulted
in sustained therapeutic concentrations within maternal plasma, fetal plasma, and
amniotic fluid for �12 h (302). In vitro, solithromycin has potent activity against human
clinical Ureaplasma isolates (303, 304), in addition to a range of other important
pathogens (305–309). Both maternal intravenous solithromycin and maternal intrave-
nous solithromycin combined with intra-amniotic solithromycin effectively eradicated
U. parvum from the amniotic cavity of pregnant sheep but, similarly to azithromycin,
failed to reduce inflammation of the chorioamnion and fetal lung (299). These findings
suggest that solithromycin may not accumulate in high-enough concentrations to exert
anti-inflammatory effects and that coadministration of immune modulators should be
investigated. To date, solithromycin is the most potent antimicrobial for the treatment
of genital mycoplasmas and has several pharmacokinetic advantages over older mac-
rolides, suggesting that it may be useful for the treatment of intrauterine infections.
Human studies are required to further examine the effectiveness and safety of soli-
thromycin in pregnancy and chorioamnionitis.

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

In conclusion, the findings of both human and animal studies have now demonstrated
that infection with Ureaplasma spp. alone can cause chorioamnionitis, demonstrating a true
causal role for these microorganisms in disease. Furthermore, the ability of Ureaplasma spp.
to vary the expression and size of their major surface-exposed antigen, the MBA, indicates
that these pathogens have evolved specific virulence mechanisms to avoid immune
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detection by the host. Despite the lack of genetic manipulation studies, both animal and
human research has now shown the involvement of the MBA in modulating the host
response to chorioamnionitis, and our most recent study has demonstrated that recombi-
nant MBA proteins of different sizes elicit different immune responses, potentially as a
consequence of altered nuclear factor kappa B activation. We predict that this highly
variable surface antigen expression facilitates immune evasion, enabling these microorgan-
isms to cause chronic in utero infections, and further research is required to elucidate the
mechanisms of antigenic variation in Ureaplasma spp. This may also assist in understanding
the progression of disease during Ureaplasma infections and provide unique insights into
the host-microbe interactions that occur in vivo. Furthermore, the development of genetic
tools to create isogenic deletion mutants would enable researchers to assign definitive roles
to proposed ureaplasmal virulence factors.

Due to the difficulties associated with identifying and diagnosing Ureaplasma
infections and chorioamnionitis, additional research should be undertaken to iden-
tify biomarkers for the rapid diagnosis of Ureaplasma in order to detect subclinical
infections and clinically silent chorioamnionitis. Due to the unique metabolism of
the Ureaplasma spp., “omics” profiling of Ureaplasma-infected amniotic fluid may
identify unique molecular signatures that could be used for diagnostic purposes, in
combination with conventional Ureaplasma culture/PCR identification. This is a
critical area of research that may lead to the improved identification and treatment
of in utero inflammation, which will ultimately lead to improved maternal and neonatal
outcomes. We also propose that amniotic fluid collected from pregnant women
undergoing amniocentesis should be routinely tested for Ureaplasma spp., even in the
absence of clinical signs/symptoms of chorioamnionitis. Additionally, further studies are
required to identify effective and targeted therapies that eradicate intrauterine Urea-
plasma infections and reduce inflammation. Continued research investigating the
pharmacokinetics and anti-Ureaplasma activity of new-generation drugs, potentially in
combination with immunomodulatory agents, may lead to the development of more
effective treatment options for Ureaplasma chorioamnionitis.
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