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ABSTRACT
Our aims were to summarize the clinical pharmacokinetics and pharmacodynamics of the
dipeptidyl-peptidase-4 inhibitor, linagliptin, and to consider how these characteristics
influence its clinical utility. Differences between linagliptin and other dipeptidyl-peptidase-4
inhibitors were also considered, in addition to the influence of Asian race on the pharma-
cology of linagliptin. Linagliptin has a xanthine-based structure, a difference that might
account for some of the pharmacological differences observed with linagliptin versus
other dipeptidyl-peptidase-4 inhibitors. The long terminal half-life of linagliptin results from
its strong binding to dipeptidyl-peptidase-4. Despite this, linagliptin shows a short
accumulation half-life, as a result of saturable, high-affinity binding to dipeptidyl-peptidase-
4. The pharmacokinetic characteristics of linagliptin make it suitable for once-daily dosing
in a broad range of patients with type 2 diabetes mellitus. Unlike most other dipeptidyl-
peptidase-4 inhibitors, linagliptin has a largely non-renal excretion route, and dose adjust-
ment is not required in patients with renal impairment. Furthermore, linagliptin exposure
is not substantially altered in patients with hepatic impairment, and dose adjustment is
not necessary for these patients. The 5-mg dose is also suitable for patients of Asian
ethnicity. Linagliptin shows unique pharmacological features within the dipeptidyl-pepti-
dase-4 inhibitor class. Although most clinical trials of linagliptin have involved largely
Caucasian populations, data on the pharmacokinetic/pharmacodynamic properties of
linagliptin show that these features are not substantially altered in Asian populations. The
5-mg dose of linagliptin is suitable for patients with type 2 diabetes mellitus irrespective
of their ethnicity or the presence of renal or hepatic impairment.

INTRODUCTION
The global burden of type 2 diabetes mellitus continues to
grow1, and is becoming an increasingly urgent health issue
across the world, particularly in low- and middle-income coun-
tries; almost one-fifth of people with diabetes live in Southeast
Asia1. As a result of the growing burden of type 2 diabetes
mellitus, there remains a need for effective, well-tolerated thera-
pies, and a range of treatment options is available for the

management of hyperglycemia2. However, some of the com-
monly used therapies for type 2 diabetes mellitus have limita-
tions as a result of troublesome side-effects, such as risk of
hypoglycemia and weight gain (e.g., sulfonylureas, thiazolidine-
diones, insulin), the possibility of gastrointestinal side-effects
(e.g., metformin, a-glucosidase inhibitors), or are contraindi-
cated in patients with moderate or severe renal impairment
(e.g., metformin, sulfonylureas)2.
An important advance in the management of type 2 diabetes

mellitus has been the development of incretin-based therapies,
including the dipeptidyl-peptidase (DPP)-4 inhibitors. TheseReceived 8 March 2016; accepted 28 March 2016
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agents are being increasingly incorporated into clinical practice,
and are listed as treatment options in the latest joint guidelines
from the American Diabetes Association and the European
Association for the Study of Diabetes2, and guidelines from the
American Association of Clinical Endocrinologists3 for diabetes
management. The mechanism of action of DPP-4 inhibitors is
distinct from that of other antidiabetes agents: their glucose-
lowering efficacy is based on an effect on the incretin hor-
mones, active glucagon-like peptide (GLP)-1 and gastric inhibi-
tory peptide (also known as glucose-dependent insulinotropic
polypeptide [GIP]), which are secreted from the intestine after
a meal4. In the presence of hyperglycemia, these hormones are
secreted in response to food intake, and exert a key role in the
control of glucose levels by enhancing glucose-dependent insu-
lin release and reducing glucagon secretion. Both active GLP-1
and GIP are rapidly inactivated through cleavage by DPP-45,
and thus, the antihyperglycemic activity of DPP-4 inhibitors
results from enhancement of the incretin effect. Importantly,
DPP-4 inhibitors have been shown to improve glycemic control
with a low risk of hypoglycemia (when used without insulin
secretagogues) or weight gain6.
Linagliptin is a selective and potent DPP-4 inhibitor with a

xanthine-based molecular structure, and is indicated for the
treatment of type 2 diabetes mellitus7. The efficacy of linagliptin
has been shown in a range of clinical trials of patients with
type 2 diabetes mellitus, both as monotherapy8–10 and in com-
bination with other antidiabetes agents11–18. The safety and tol-
erability of linagliptin has also been shown during its clinical
development; a recent pooled analysis of 22 randomized, dou-
ble-blind trials of linagliptin showed that the frequency of
adverse events was similar for linagliptin- and placebo-treated
patients across a wide range of patients, including elderly sub-
jects and individuals with declining renal function19.
The aim of the present review is to provide a summary of

the clinical pharmacokinetics (PK) and pharmacodynamics
(PD) of linagliptin, and to show how the PK/PD profile of lina-
gliptin influences its clinical utility. The features of linagliptin
will be compared with other drugs in its class. In view of the
high prevalence of type 2 diabetes mellitus in Asian
populations, consideration will be given to how the PK/PD of
linagliptin compare between Caucasian and Asian populations.

METHODS
The Medline database was searched through PubMed to
retrieve relevant references from the past 10 years. Search terms
included: linagliptin, DPP-4 inhibitors, PK, PD, Japanese, Chi-
nese, Asian, renal, hepatic and interactions. Other relevant liter-
ature was obtained based on personal knowledge and
experience. A narrative overview of the literature was then syn-
thesized based on manual assessment of the retrieved literature.

Pharmacology of linagliptin
In contrast with other DPP-4 inhibitors, linagliptin has a xan-
thine-based chemical structure20,21. This structural difference

might account for some of the pharmacological differences
observed with linagliptin compared with other drugs in its
class22. Linagliptin is a potent and selective inhibitor of DPP-4,
with >10,000-fold selectivity for DPP-4 compared with the
enzymes DPP-8 and DPP-922. In clinical studies, linagliptin
administration has been shown to produce dose-dependent
DPP-4 inhibition in healthy volunteers23,24 and in patients with
type 2 diabetes mellitus25–27. In healthy subjects, linagliptin
doses of up to 600 mg (120 times higher than the 5-mg dose)
have been shown to be well tolerated24, and this wide
therapeutic window might, at least in part, be related to the
high selectivity of linagliptin for DPP-422. For clinical use, lina-
gliptin has an oral route of administration21,22 and is indicated,
as an adjunct to diet and exercise, to improve glycemic control
in adults with type 2 diabetes mellitus, either alone or in com-
bination with other oral antidiabetes agents7,28.

CLINICAL PK
Absorption
After oral administration of linagliptin 5 mg, the drug is rapidly
absorbed, and geometric mean values for the maximum plasma
concentration are approximately 6–10 nmol/L after a single
dose24,27, and 11–12 nmol/L at steady state25,27. The time taken
to achieve maximum plasma concentration is approximately
1.5–2.0 h24,25,27. After multiple oral doses of linagliptin
1–10 mg, two studies have shown the mean area under the
plasma concentration–time curve at steady state (AUCs,ss) to be
approximately 81.7–207 nmol h/L in patients with type 2 dia-
betes mellitus25,27. The absolute bioavailability of linagliptin has
been estimated to be approximately 30%29. Administration of
linagliptin with food has been shown to have no clinically rele-
vant effect on its absorption30.

Distribution
In a study of healthy men, the apparent volume of distribution at
steady state after intravenous infusion of linagliptin 0.5–10 mg
was shown to be 380–1,540 L29. After a single intravenous dose
of 5 mg, the volume of distribution at steady state was 1,110 L29.
This large apparent volume of distribution indicates extensive
distribution of linagliptin in the tissues. In addition, linagliptin
has been shown to bind extensively to plasma proteins (70–80%)
in a concentration-dependent manner31. This high-affinity bind-
ing of linagliptin to DPP-4 in the plasma and tissues contributes
to its long terminal half-life (>100 h)25,27, short accumulation
half-life (approximately 10 h)25,27 and non-linear PK profile, as
shown in both animal31–33 and human20 studies. Furthermore,
the saturable binding of linagliptin to DPP-4 results in less than
dose-proportional increases in exposure to linagliptin within the
therapeutic dose range, and thus, a non-linear relationship
between linagliptin dose and drug exposure24,25.

Metabolism
Metabolism is a minor contributor to the overall disposition
and elimination of linagliptin, which is mainly eliminated
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unchanged through feces. Its main metabolite (CD 1790)
accounts for approximately 18% of the molar linagliptin plasma
exposure (AUC24) after a single oral 10-mg dose of linagliptin,
and is pharmacologically inactive34.

Elimination
Linagliptin has a mainly non-renal route of excretion, with
84.7% of an orally administered 10-mg dose being eliminated
through bile and the gut, and 5.4% excreted in urine (Fig-
ure 1)34. Experiments in rats have shown that the bioavailability
of orally administered linagliptin is enhanced by inhibition of
intestinal P-glycoprotein, indicating that this transport system
can decrease the intestinal absorption of linagliptin. Although
the potent, reversible binding of linagliptin to DPP-4 in the
plasma and tissues means that a proportion of the administered
dose is not directly available for elimination, these studies
showed that the systemically available linagliptin is mainly
excreted with bile, with a minor proportion (12% of an intra-
venous dose) being secreted directly into the gut35. It is there-
fore possible that, in the presence of hepatic or renal
impairment, the direct excretion of linagliptin into the gut
could provide an alternative route of excretion of the drug.

CLINICAL PD
DPP-4 inhibition
The inhibition of DPP-4 is an attractive strategy for the man-
agement of type 2 diabetes mellitus, in particular because the

associated stimulation of insulin release is glucose-dependent
and, therefore, DPP-4 inhibitors have a low risk of hypo-
glycemia36. Linagliptin provides sustained inhibition of DPP-4
activity in a dose-dependent manner. A once-daily 5-mg dose
of linagliptin has been shown to achieve >80% inhibition of
DPP-4 in healthy volunteers23 and patients with type 2 diabetes
mellitus25. This level of DPP-4 inhibition is considered to be
the threshold for glycemic control for DPP-4 inhibitors, with
maximum glucose-lowering efficacy being achieved with DPP-4
inhibitors that achieve at least 80% inhibition of DPP-437. In a
study of linagliptin doses of 2.5, 5 and 10 mg, inhibition of
DPP-4 was shown to be rapidly achieved; the mean maximum
DPP-4 inhibition ranged from 86% for the 2.5-mg dose to 93%
for linagliptin 10 mg, after a single dose27. At steady state, the
mean maximum inhibition of DPP-4 was 91–93% across all
linagliptin doses. Therefore, it would be expected that
maximum glucose-lowering efficacy can be achieved with the
evaluated linagliptin doses.

Effects on GLP-1 and blood glucose
The antihyperglycemic effect of linagliptin arises from its effect
on the incretin hormones, active GLP-1 and GIP. In response
to hyperglycemia, these hormones stimulate glucose-dependent
insulin secretion, and inhibit the secretion of glucagon38–40.
DPP-4 is the main enzyme involved in the breakdown of both
GLP-1 and GIP41, and DPP-4 inhibition, therefore, prolongs
the activity of GLP-1 and potentiates its antihyperglycemic

Absorption:

Tablet intake: 5 mg once daily,
independent of food

Absolute bioavailability:
~30%, with or without food

~70–80% bound to plasma proteins 
(in essence DPP-4)

Metabolism:

~18%
(inactive)

metabolite

~82%
transferred
unchanged

Excretion: ~85% of orally administered 
linagliptin is excreted via the bile 

and gut

~5% of orally administered 
linagliptin is excreted via the 

kidneys

Figure 1 | The absorption, metabolism and excretion of linagliptin after oral administration. The percentages shown for the excretion of linagliptin
are based on data obtained up to 120 h after the oral administration of a 10-mg dose of linagliptin34. DPP-4, dipeptidyl-peptidase-4.
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effects. For example, in a study of linagliptin administration to
patients with type 2 diabetes mellitus, marked increases in
plasma levels of GLP-1 were observed after 28 days of linaglip-
tin dosing27. After a meal tolerance test, carried out 24 h after
the last linagliptin intake, there were statistically significant
reductions in the AUC of the plasma glucose concentration–
time graph27. Because both GIP and GLP-1 promote glucose-
dependent insulin secretion42,43, linagliptin therapy is associated
with a low risk of hypoglycemia. This is supported by the find-
ings of clinical trials of linagliptin, both alone9 and in combina-
tion with other non-sulfonylurea oral antidiabetes agents11,14,18,
and by an exploratory analysis of data from a 2-year random-
ized, double-blind study of linagliptin versus glimepiride in
patients with type 2 diabetes mellitus and inadequate glycemic
control despite metformin therapy44.

SPECIAL POPULATIONS
Renal impairment
The development of moderate-to-severe renal impairment
(defined as an estimated glomerular filtration rate [eGFR]
below 60 mL/min/1.73 m2) is a frequent complication of type 2
diabetes mellitus, and some degree of renal disease is estimated
to be present in up to 40% of patients45–47. As a result, the
impact of renal disease on antidiabetes therapies is an impor-
tant consideration. The effect of various degrees of renal
impairment on exposure to linagliptin has been evaluated
under single-dose and steady-state conditions in subjects with
or without type 2 diabetes mellitus, and mild, moderate or sev-
ere renal impairment, or end-stage renal disease48. The findings
showed that the renal excretion of unchanged linagliptin did
not exceed 7%, regardless of renal function status. Although
exposure to linagliptin was slightly increased (20–60%) among
patients with renal impairment versus subjects with normal
renal function, renal impairment was shown to have only a
minor effect on the PK of linagliptin. These results were further
confirmed in a pooled analysis of three randomized studies
from the global phase III program for linagliptin; mean trough
levels of linagliptin over time were similar for patients with
normal renal function (eGFR ≥90 mL/min) and those with
mild (eGFR 60 to <90 mL/min), moderate (eGFR 30 to
<60 mL/min) or severe (eGFR <30 mL/min) renal impair-
ment49. Therefore, no dose adjustment of linagliptin or drug-
related monitoring of eGFR is deemed necessary on the basis
of renal function7,28,48.

Hepatic impairment
In addition to renal dysfunction, patients with type 2 diabetes
mellitus frequently show evidence of hepatic disease, including
non-alcoholic fatty liver disease50 and cirrhosis51. Despite the
largely hepatic route of elimination of linagliptin, the presence
of hepatic impairment has been shown to have no clinically
important effect on the PK, PD or tolerability of linagliptin52.
In a study of subjects with mild, moderate or severe hepatic
impairment, exposure to single or multiple doses of linagliptin

5 mg was not shown to be affected to a clinically relevant
extent by the presence of hepatic impairment52. The degree of
DPP-4 inhibition was similar for all patient groups, with med-
ian DPP-4 inhibition values of >80% for all patients regardless
of the degree of hepatic impairment. These results show that
dose adjustment is not required for patients with hepatic
impairment7,28.

DRUG INTERACTIONS
Linagliptin is a weak-to-moderate inhibitor of cytochrome P450
enzymes7,21. Because of the small proportion of linagliptin that
is metabolized by these enzymes, changes in exposure to lina-
gliptin by inhibition or induction of P450-dependent pathways
by concomitantly administered drugs are considered to be unli-
kely. Importantly, linagliptin has shown no clinically relevant
PK interaction with commonly prescribed antidiabetes drugs,
such as metformin53, pioglitazone54 and glyburide55.
Linagliptin is a P-glycoprotein substrate, and full efficacy of

linagliptin might not be achieved when administered in
combination with strong inducers of P-glycoprotein (such as
rifampicin), particularly if these drugs are administered long
term7,28,34,56. As a consequence, alternative treatment is recom-
mended in these circumstances.

PK/PD IN ASIAN VS CAUCASIAN PATIENTS
The presentation of type 2 diabetes mellitus can differ between
patients of Asian and Caucasian origin; in Asian patients, the
condition generally starts at a younger age in individuals with a
relatively low body mass index57. Asian individuals tend to
show greater adiposity and a higher percentage of body fat for
a given body mass index compared with Western popula-
tions57,58. This feature is probably linked to the higher fre-
quency of insulin resistance observed in Asian versus Caucasian
populations58. Asian patients with type 2 diabetes mellitus are
also at heightened risk of comorbidities, such as renal complica-
tions and cardiovascular disease59. In addition to these clinical
factors, there is evidence to show that ethnic differences in
dietary habits result in variations in glucose regulation between
different Asian populations. For example, one study showed
that Japanese subjects, with or without type 2 diabetes mellitus,
demonstrated higher fasting insulin levels compared with
Korean or Chinese participants60. These differences based on
ethnicity could affect the PK and PD characteristics of
antidiabetes therapies and, therefore, are an important
consideration.
In a study of Japanese patients with type 2 diabetes mellitus,

linagliptin showed a non-linear PK profile, low accumulation
and low (<7%) urinary excretion rate, all of which were consis-
tent with findings in healthy Japanese subjects and Caucasian
populations26. After 4-week administration of multiple doses of
linagliptin (0.5, 2.5, 10 mg), a long terminal half-life
(223–260 h) was reported, in contrast with a shorter accumula-
tion half-life (10.0–38.5 h), resulting in a moderate accumula-
tion ratio of <2.9 that decreased with rising doses. As with

22 J Diabetes Investig Vol. 8 No. 1 January 2017 ª 2016 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

R E V I EW A R T I C L E

Ceriello and Inagaki http://onlinelibrary.wiley.com/journal/jdi



other populations, this observation reflects the saturable high-
affinity binding of linagliptin to DPP-4 at the evaluated doses,
leading to slow dissociation of the drug from its target. Similar
findings have been reported from another study of multiple doses
of linagliptin (1, 2.5, 5, 10 mg) given to healthy Japanese men23.
Although exposure to linagliptin at steady state is increased by
approximately 30% in Japanese versus Caucasian subjects, this is
not considered to be clinically relevant because of the wide thera-
peutic window of linagliptin24. Furthermore, data obtained from
Japanese patients with type 2 diabetes mellitus have shown that
the efficacy and safety of linagliptin is not substantially altered by
the presence of renal impairment, indicating that, as in Western
populations, dose adjustment in these patients is not required on
the basis of renal function61. The 5-mg and 10-mg doses of lina-
gliptin have been shown to inhibit DPP-4 by >80% at 24-h post-
dose in Japanese subjects23,26, which is comparable with the effi-
cacy that has been observed in Caucasian populations. The PK
profile of linagliptin in healthy Chinese volunteers62,63 has also
been shown to be similar to that in other populations, including
Japanese and Caucasian subjects (Table 1)23–27,29,34,62–64.
Data from two studies on the bioequivalence of linagliptin

fixed-dose combination treatments versus administration of the
individual drugs can provide some insight into the comparative
PK characteristics of linagliptin in Chinese and Caucasian pop-
ulations. Although the total exposure to linagliptin (AUC0–72

and maximum plasma concentration) was approximately 40%
higher among Chinese participants63 than previously reported
in a similar study of Caucasian subjects65, this is in line with
the findings reported above for Japanese subjects, and is not
considered to be clinically relevant63.
Mean bodyweight in some Asian populations can be lower

than in Caucasians. However, bodyweight has been shown to
have no clinically meaningful impact on the PK or PD of lina-
gliptin66, and so dose adjustment is not required on the basis
of bodyweight7.

COMPARISON WITH OTHER DPP-4 INHIBITORS
Although the DPP-4 inhibitors share a common mode of
action, they are structurally heterogeneous, and linagliptin has a
unique chemical structure and pharmacological profile com-
pared with the other agents in its class (Table 2)7,20,22,28,67–83.
In vitro studies of the inhibition of DPP-4 activity have

shown that the potency of linagliptin was higher than that of
other DPP-4 inhibitors (vildagliptin, sitagliptin, saxagliptin and
alogliptin; based on half maximal inhibitory concentration
values)22. Furthermore, the non-linear PK profile of linagliptin
is not shown by other DPP-4 inhibitors. In addition, linagliptin
shows a much higher binding to plasma proteins than other
DPP-4 inhibitors, with a very long terminal half-life22,68. From
a clinical perspective, an important difference between linaglip-
tin and other DPP-4 inhibitors is its mainly non-renal route of
elimination35, which means that unlike several other DPP-4
inhibitors, linagliptin does not require dose adjustment in the
presence of renal impairment48.

CONCLUSIONS
Linagliptin has unique pharmacological properties within the
DPP-4 inhibitor class. The long terminal half-life of linagliptin
is related to its non-linear PK profile that results from strong
binding to its primary target, DPP-4. Despite having a long ter-
minal half-life, linagliptin also exhibits a short accumulation
half-life, which can be attributed to the saturable, high-affinity
binding to DPP-4. When DPP-4 is saturated, unbound

Table 1 | Comparison of the main pharmacokinetic parameters of
linagliptin (5 mg, unless otherwise indicated) in mixed and Asian
patient populations

Parameter Estimate
(mixed
populations)

Estimate (Asian population)

Japanese Chinese

Cmax (nmol/L) 5.724

8.325

9.627

9.023 6.863†

10.462

Tmax (h) 1.524

1.825

2.027

1.526‡ 4.063†

AUC0–24 (nmol h/L) 10024

11825
15923 15062

T½ (h) 69.724

12729
10523 58.0–75.663†

82.462

CL/F (mL/min) 23123 163–20463†

Cmax,ss (nmol/L) 11.125

12.327
5.0–44.026‡

11.923
14.162

Tmax,ss (h) 1.027

1.525
1.3–1.526‡ –

AUCs,ss (nmol h/L) 14827 89.4–37326‡

19323
20462

T½ ss (h) 13125

19427
14323

223–26026‡
10362

Accumulation T½ (h) 9.527

11.425
10–1523

10.0–38.526‡
11.562

CL/Fss (mL/min) 1,19027

1,33064
197–94526‡ –

Renal elimination (%) <124,25

3.264

5.434

6.225

1.2–4.923, <726‡ 1.9–7.962

Values are geometric mean. Superscript numbers refer to source refer-
ences. †In the pharmacokinetic study by Pichereau et al.63, data are
shown for subjects who received linagliptin 2.5 mg daily. ‡In the study
of Japanese patients with type 2 diabetes mellitus by Horie et al.26,
data shown are for subjects receiving linagliptin 0.5–10 mg daily.
AUC0–24, area under the plasma concentration–time curve from zero
to 24 h; AUCs,ss area under the plasma concentration–time curve at
steady state; CL/F, apparent total clearance; CL/Fss, apparent clear-
ance at steady state; Cmax, maximum plasma concentration; Cmax,ss,
maximum plasma concentration at steady state; PK, pharmacokinetic;
T½, half-life; T½ ss, half-life at steady state; T2DM, type 2 diabetes
mellitus; Tmax, time to reach maximum plasma concentration; Tmax,ss,
time to reach maximum plasma concentration at steady state.
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linagliptin is rapidly cleared from the body through bile and
the gut. The PK characteristics of linagliptin have an impact on
its clinical utility, such that an oral dose of 5 mg once daily is
suitable for a broad range of patients with type 2 diabetes

mellitus84. In contrast with most other DPP-4 inhibitors, the
largely non-renal route of excretion of linagliptin allows treat-
ment to be administered to patients with renal impairment,
without the need for dose adjustment. Although linagliptin is

Table 2 | Main pharmacological differences between currently available dipeptidyl-peptidase-4 inhibitors

Characteristic Sitagliptin69,82 Vildagliptin70 Saxagliptin71,81 Alogliptin72,80 Linagliptin7,28

Therapeutic dose (mg) 100 50 5 25 5
Relative (fold) in vitro
selectivity for
DPP-4 vs DPP-8
or DPP-9

>2,60073 <30074 <45075 >10,00076 >10,00022

Fraction bound
to plasma protein

Intermediate Low Low Low High

Renal excretion
route

Major Intermediate Major Major Minor

Need for dose
adjustment for
renal impairment

Yes (moderate or severe) May be required
(limited experience)

Yes (moderate
or severe)

Yes (moderate or severe) No

Need for dose
reduction with
hepatic impairment
(mild/moderate)

No (No experience in
patients with severe
hepatic impairment)

Not recommended for
patients with hepatic
impairment

No (Not recommended
for patients with
severe hepatic
impairment)

No (No experience in
patients with severe
hepatic impairment)

No

Drug interaction
potential

Low Low Intermediate Low Low

Efficacy – HbA1c
lowering

Similar efficacy Similar efficacy Similar efficacy Similar efficacy Similar efficacy

Overall safety† Good

• Most frequent AEs
‡

:
URTI, nasopharyngitis,
headache

• Risk of hospitalization
for HF, HR: 1.00 (95%
CI, 0.83 to 1.20) vs
placebo77

• Postmarketing reports
of acute pancreatitis,
acute renal failure,
hypersensitivity reac
tions, exfoliative skin
conditions; also
reports of arthralgia

Good

• Common AEs
§

:
dizziness

• Risk of HF
unknown

• Postmarketing
reports of hepatitis,
urticaria, pancreati-
tis, skin lesions;
also reports of
arthralgia

Good

• Most frequent AEs
‡

:
URTI, UTI, headache

• Risk of hospitaliza-
tion for HF, HR: 1.27
(95% CI, 1.07 to
1.51) vs placebo78

• Postmarketing
reports of pancreati-
tis, hypersensitivity
reactions, and
severe arthralgia

Good

• Most frequent AEs
‡

:
Nasopharyngitis,
headache, URTI,
abdominal pain,
gastroesphageal
reflux, rash

• Risk of hospitalization
for HF, HR: 1.07
(95% CI, 0.79 to
1.46)79

• Postmarketing reports
of acute pancreatitis,
hypersensitivity
reactions, and
hepaticfailure; also
reports of arthralgia

Good

• Most frequent AEs
‡

:
Nasopharyngitis,
cough,
rash, raised blood
enzyme amylase,
diarrhea

• Risk of HF
unknown;
data from pooled
analysis show
hospitalization for
HF, HR: 1.04
(95% CI, 0.43 to
2.47)83

• Postmarketing
reports of acute
pancreatitis and
hypersensitivity
reactions, exfoliative
skin conditions;
also reports
of arthralgia

†For all dipeptidyl-peptidase-4 (DPP-4) inhibitors listed, hypoglycemia is reported more frequently with concomitant sulfonylurea (SU) or insulin ther-
apy. ‡Most frequent adverse event (AEs) are those listed in prescribing information to occur in ≥5% of patients and more frequently than with pla-
cebo. §Common AEs defined as a frequency of ≥1/100 to <1/10. CI, confidence interval; HbA1c, glycated hemoglobin; HF, heart failure; HR, hazard
ratio; URTI, upper respiratory tract infection; UTI, urinary tract infection.
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largely metabolized in the liver, dose adjustment is not required
for patients with hepatic impairment. This feature might be
related to its wide therapeutic window and the fact that expo-
sure to linagliptin is not substantially altered by the presence of
hepatic impairment. The 5-mg dose is also suitable for patients
of Asian ethnicity; small changes in PK parameters observed
when linagliptin is given to Japanese and Chinese patients have
not been shown to have clinically relevant effects. Despite the
fact that many clinical trials of linagliptin have been carried
out in largely Caucasian populations, these findings provide
reassurance that the PK/PD properties of linagliptin are not
altered to a clinically relevant extent in patients of Asian
ethnicity.
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