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Abstract

While current state of the art MR-PET scanners enable simultaneous MR and PET measurements, 

the acquired data sets are still usually reconstructed separately. We propose a new multi-modality 

reconstruction framework using second order Total Generalized Variation (TGV) as a dedicated 

multi-channel regularization functional that jointly reconstructs images from both modalities. In 

this way, information about the underlying anatomy is shared during the image reconstruction 

process while unique differences are preserved. Results from numerical simulations and in-vivo 

experiments using a range of accelerated MR acquisitions and different MR image contrasts 

demonstrate improved PET image quality, resolution, and quantitative accuracy.
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I. Introduction

Hybrid multi-modality imaging methods exploit the specific strengths of each individual 

modality to complement deficits in the other by delivering joint information that is more 

than the sum of its parts. For example, in the case of MR-PET, the strengths of excellent soft 

tissue contrast and high spatial resolution associated with MR are combined with the 

functional information provided by imaging the distribution of a radioactively labeled 

molecule in PET [1]. Current state-of-the-art MR-PET scanners even allow for simultaneous 

acquisition of PET and MR data. Typically, however, images are then reconstructed 

separately, and, with the exception of the use of the MR-estimated attenuation correction 

map, results are only combined at the visualization stage. PET images are reconstructed 

using the Expectation Maximization (EM) [2] algorithm or one of its variants like Ordered 

Subset Expectation Maximization (OSEM) [3]. MR images are reconstructed using an 

inverse Fourier transform, a non-uniform variant in the case of non-Cartesian imaging [4] or 

a more generalized algorithm for inverse problem solution in cases like parallel imaging (PI) 

[5], [6], [7] or compressed sensing (CS) [8], [9]. When distinct reconstruction algorithms are 

used, of course, the feature of simultaneous data acquisition is not exploited during the 

image reconstruction step.

Methods that use anatomical information obtained from MR during PET image 

reconstruction have been proposed in the literature. It was shown that these so-called 

anatomical-prior based methods allow enhancement of PET resolution and improved 

quantification [10], [11], [12], [13], [14], [15]. However, these methods were not developed 

in the context of integrated MR-PET systems. PET and MR scans are performed 

sequentially on separate scanners and, after co-registration, the MR images are treated as 

anatomical ground truth and are used for improved retrospective PET image reconstruction. 

Initial concepts and ideas for truly simultaneous MR and PET reconstruction were first 

described independently by Ehrhardt et al. [16] and some of the authors of the present paper 

[17], [18]. The work [16] is based on 2D simulations of geometrical phantoms, and the 

authors report improvements for both MR and PET reconstructions when using joint 

reconstruction.

We propose a novel joint reconstruction framework that treats MR and PET data on an equal 

footing, and complements the joint data acquisition of current integrated multimodality MR-

PET systems. Our approach exploits anatomical correlations between MR and PET images 

by using second order Total Generalized Variation (TGV) as a dedicated multi-channel 

regularization functional [19], [20], [21], [22], [23] that couples the two modalities during 

the image reconstruction step. The coupling is carried out on the level of first and second 

order derivatives by using nuclear and Frobenius matrix and tensor norms, respectively. This 

allows a mutual benefit for the reconstruction of each channel that arises from joint 
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structures and is robust against changes of signal intensity and contrast, in particular being 

independent of global intensity shifts and sign flips of image gradients between the two 

channels. Similar approaches have also been considered for Total Variation regularization in 

[24], [25], [26] and [27] for color images and CT reconstruction, respectively, and a 

Frobenius norm coupling for TGV has been considered in [28] for multi-contrast MRI. We 

refer to the Discussion section for more details concerning related work. In the context of 

joint MR-PET reconstruction, it is important that the exchange of information between 

modalities with fundamentally different contrast mechanisms does not compromise 

quantitative signal values. This is especially critical for PET since it is an inherently 

quantitative imaging modality. Additionally, since PET and MR sometimes show 

complementary information and specific structures might only be visible in one of the two 

modalities, such individual structures must be allowed by the coupling. Ideally they should 

neither be dampened nor transferred to the other modality where they are supposed to be 

invisible.

We report on experiments comparing the proposed method to separate reference 

reconstruction approaches for the two modalities and to anatomical-prior-based PET 

reconstruction. We describe the results of numerical simulations, and, to the best of our 

knowledge, this is the first time that a joint MR-PET reconstruction approach is 

demonstrated in-vivo.

II. Theory

A. Joint regularization

The proposed multi-modality reconstruction framework is based on a convex variational 

method, employing a vectorial second order Total Generalized Variation (TGV) functional 

as joint regularization.

The TGV functional has been introduced as regularization for single channel images in [19], 

with the aim of overcoming defects of existing derivative based regularization approaches 

such as Total Variation (TV) [29] or second order Total Variation [30]: The TV functional 

measures an ℓ1-type norm of the derivative of the image, thereby allowing jump 

discontinuities which in practice correspond to sharp edges in the reconstruction. A defect of 

TV regularization, however, is the introduction of artificial edges (the staircasing effect). 
While this can be overcome by penalizing an ℓ1-type norm of the second order derivative 

instead, as done with second order TV regularization, such an approach requires sufficient 

regularity of the first order derivative. This prevents the reconstruction of jump 

discontinuities and in practice leads to a blurring of edges. These defects can be overcome 

by TGV regularization which, in the second order case, uses an auxiliary variable to 

optimally balance between first and second order derivatives of the image. As as 

consequence, TGV does not suffer from the defects of TV while still allowing the recovery 

of sharp edges. This effect can best be understood when considering the minimum 

representation of second order TGV [20], which is for a single channel image u defined as
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The balancing is achieved by subtraction of the vector field w, which in turn is penalized via 

a symmetrized gradient , with Jw being the Jacobian matrix. As w is 

chosen to minimize the sum of the two penalties, it can be expected to be zero in regions 

where the image is already constant, i.e., where ∇u = 0, and to be equal to ∇u in regions 

where the image is almost linear, yielding a penalization of the Hessian matrix . 

The point-wise norms |·| and |·|frob are the standard Euclidean vector norm and the Frobenius 

matrix norm, i.e., the root of the sum of the squares of all entries, respectively. It has been 

shown for instance in [31] that in practice TGV regularization indeed allows for a 

significantly improved reconstruction quality for undersampled MRI compared to classical 

methods as well as TV regularization. This motivates the usage of TGV as image prior for 

our setting.

The extension to multi-modality imaging works as follows: Instead of performing a TGV 

regularized reconstruction for each modality separately, one can regard the two images as a 

single multi-channel image and extend the TGV functional for vector valued data. Doing so, 

the terms ∇u – w and  in the above minimum representations are now matrix and tensor 

fields, respectively, and the point-wise norms need to be adapted accordingly. Comparing to 

the single-channel case, Frobenius norms seem to be natural extensions and indeed, multi-

channel TGV regularization using point-wise Frobenius norms has, for instance, already 

been applied in [21], [22], [23] for color image processing. In the context of MR-PET 

reconstruction, the columns of ∇u – w correspond to the edge information in the gradients of 

the MR and PET images and hence, a Frobenius norm coupling promotes joint sparsity of 

the edge sets. If the assumption of structural similarity of the two components holds, this can 

already be expected to give an improvement upon separate reconstruction, which 

corresponds to summing the Euclidean norm of each column of ∇u – w and adapting the 

point-wise tensor norm accordingly.

To further exploit structural similarities in MR-PET, we propose to choose the nuclear norm, 

i.e., the ℓ1 norm on the singular values of ∇u – w, as point-wise matrix norm (and again the 

point-wise Frobenius tensor norm for ). This is motivated by the goal of aligning image 

edges independent of quantitative signal values. Indeed, one can interpret this choice as 

enforcing sparsity on the singular values, which promotes linear dependence of the gradients 

of the two image channels and, consequently, aligned edges. Alternatively, the nuclear norm 

can also be interpreted as convex relaxation of a penalization of the rank. As such, it is 

independent of sign flips in the gradients but not entirely independent of signal magnitudes. 

Nevertheless, besides obvious computational advantages, the relaxation might in fact also be 

beneficial when it comes to unwanted feature transfer. Indeed, when penalizing the rank, 

non-zero PET gradients for example can be introduced in points with non-zero MR gradients 

at no cost, while our approach still puts a cost on the magnitude of the PET gradient.

A particularity of the nuclear-norm based coupling of MR and PET images is also the fact 

that one aims at promoting linear dependence of the gradients of a complex and a real valued 

function. To this aim, the nuclear norm is computed in a complex vector space setting, 

regarding both components as complex signals. The above considerations then naturally 

transfer to this situation, in particular sparsity of the singular values corresponds to linear 
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dependence of the gradients in a complex vector space. Now as the PET image is constraint 

to be real, the linear dependence means that both the real and imaginary part of the MR 

gradient must be a real multiple of the PET gradient. This seems natural as an alignment of 

the edges sets of the MR magnitude image and the PET image induces such a situation.

In summary, we expect a nuclear-norm based coupling of the gradients to benefit from 

structural similarities between PET and MR images, largely independent of the signal 

intensity. A motivating, artificial example for this type of coupling is also provided in Figure 

1. As can be seen there, even though MR and PET contrasts are quite different at first 

glance, the difference in the direction of image gradients (modulo π to visualize linear 

dependence) is only marginal, and hence one can expect a reconstruction method that 

promotes a linear dependence of the gradients to be beneficial.

B. Variational model

Motivated by the considerations above, we formulate joint MR-PET reconstruction with 

nuclear-norm based TGV regularization as the following convex minimization problem:

(1)

In Equation (1), u and v are 3D MR and PET images, u0 and v0 are MR and PET raw data 

and c0 is an additive correction for random events and scattering in PET. M is the MR 

sampling operator consisting of an undersampled Fourier transform and coil sensitivity 

modulation. P models the PET forward operator and comprises a convolution with a 

Gaussian filter (FHWM=4.5cm) in image space for resolution modeling [32], followed by a 

Radon transform along the lines of response connecting two measurement crystals and a 

subsequent, pointwise attenuation correction. We refer to Section III for more details about 

the forward models. The set C defines the set of admissible reconstructions by constraining 

the PET channel to the positive reals. The scalars λ and μ are parameters weighting 

individual MR and PET data fidelity terms. The functional is comprised of three distinct 

terms: Data fidelity to the acquired MR raw data using a squared ℓ2-norm (suitable for 

Gaussian noise in the complex multi-coil MR data), PET data consistency using the 

Kullback-Leibler divergence (suitable for Poisson noise) and the proposed multi-channel 

regularizer TGV, which is for y = (u, v) defined as

(2)

Here, ∇ and  denote a gradient and symmetrized gradient, operating on the vector field y 
and on the matrix field w, respectively, |∇y – w|nuc is the point-wise nuclear norm of the 

matrix field (∇y – w) and  is the point-wise Frobenius tensor norm of the tensor field 

.
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We remark that, as discussed above, simpler alternatives to using the point-wise nuclear 

norm of ∇y – w, whose evaluation requires a point-wise singular value decomposition, 

would be to either use the matrix Frobenius norm for ∇y – w or to use decoupled norms for 

both ∇y – w and . While the former also promotes joint edge sets of the channels, the 

latter is equivalent to an independent reconstruction of each channel and we present 

numerical experiments that compare these alternatives.

C. Numerical solution

Accounting for non-differentiability of the objective functional as well as the large problem 

size due to volumetric image data, we employ the first-order primal-dual algorithm of [33] 

(see also [31], [23]) to approximate a globally optimal solution of Equation (1). To this aim, 

we reformulate the minimization problem to a saddle-point problem in a way that the 

proximal mapping of all involved functions, given as

can be calculated explicitly and fast. In an abstract setting, this can be done as follows: 

Denote by  and  the data fidelity functions for the 

MR and PET component, respectively, define (u, v, w) ↦ R(∇(u, v) – w, ) with R 
accordingly such that

and denote by (u, v) ↦ IC((u, v)) the convex indicator functional corresponding to the 

constraint set C, being 0 if (u, v) ∈ C and ∞ else. Using the notion of convex conjugates, 

i.e.,

the optimization problem (1) can be reformulated as

where F* in the last line summarizes all conjugate functionals of the line above, H (u, v, w) 

= IC (u, v) and
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The iteration steps of algorithm [33] employed to the saddle-point problem are now given as

(3)

As the proximal mapping of F* decouples to component-wise proximal mappings of a 

simple form and the proximal mapping of H is a simple projection, all iterates can be 

calculated explicitly and fast. Furthermore, convergence of (u, v) in the primal iterates to a 

globally optimal solution of Equation (1) can be guaranteed for appropriate, constant 

stepsizes σ and τ. We refer to the Appendix for details about the numerical scheme and an 

implementation-friendly description.

III. Methods

A. Numerical simulations

The proposed approach was first tested in simulations. The goal of this set of experiments 

was quantitative evaluation of the performance of the method in comparison to a known 

ground truth. To show feasibility of the proposed coupling independent of the particular MR 

contrast, three different contrasts were tested. A numerical brain phantom, based on the 

design presented in [34], was used. Tissue parameter values (T1, T2, proton density, PET 

activity) were chosen according to [34] as well. In addition to existing structural differences 

in the PET and MR images that result from the phantom simulation, an individual, very 

distinct object, simulating the contrast of a Glioblastoma Multiforme (GBM) [35] lesion, 

was added to each modality. These spatially separated structures serve as a particularly 

challenging test scenario for the joint reconstruction approach and simulate situations in 

which a particular lesion might be strongly visible in one of the two modalities but not in the 

other. Numerical values of MR and PET parameters for cerebrospinal fluid (CSF), gray 

matter (GM), white matter (WM) and the individual lesions are given in Table I. MR images 

for three widely used sequences in brain protocols (MPRAGE: TR=2569ms, Echo spacing 

6.6ms, TI=900ms, FA=9, T2 weighted spin echo: TR=4140ms TE=90ms and FLAIR: 

TR=10000ms, TE=90ms, TI=1781ms) were then forward simulated according to their 

respective signal equations ([36], [37]). Figure 1 shows the central slices of the ground truth 

MR and PET images that were the basis for the numerical simulations. Additionally, the 

direction of the 2D gradient of MPRAGE, PET and the difference of the gradient directions 

(modulo π) is shown. The phantom is designed so that the majority of edges overlap exactly. 

Notable exceptions are the two individual lesions and some additional fine structures, 

especially around the skull, which only show up as distinct features in MR.
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The simulated matrix size was 190 × 190 × 208 with an isotropic spatial resolution of 1mm3. 

Coil sensitivities were obtained from measurements of a water bottle using a conventional 

12-element head coil array on a clinical 3T MR-PET System (Siemens Biograph mMR). 

Complex Gaussian noise was added to the simulated multi-channel k-space data such that 

the ratio of the standard deviation of the noise to the signal intensity of the DC-peak in k-

space (averaged over slices and coils) was 200. An accelerated acquisition using an 

undersampling factor R=4 with 24 reference lines at the center of k-space to estimate coil 

sensitivities was simulated. PET sinogram data were forward projected according to the 

crystal geometry of a whole body 3T MR-PET system (Siemens Biograph mMR) [38]. The 

sinograms were corrupted using the Poisson noise model. Two situations were simulated: A 

10min Fluorodeoxyglucose (FDG) PET head scan with a total number of 5.04 · 108 counts 

and a shorter 5min scan (total number of counts of 2.52 · 108). These numbers are based on 

the 10 minutes in-vivo measurement described below, where the total number of original 

list-mode prompts was 5.04 · 108. In contrast to the in-vivo modeling, the simplified PET 

model for these simulations does not include additive scatter and random correction (hence 

c0 = 0) or attenuation maps, as those would again depend on the simulated data and their 

inclusion in the forward modeling does not change the ill-posedness of the inversion 

significantly (as opposed to resolution modeling, which is included also in the simulations).

The results were evaluated by calculating global and local region of interest based root mean 

square differences from the MR and PET ground truths, and by comparing the mean 

quantitative signal values of the PET reconstructions for selected tissues.

B. Image reconstruction for numerical simulations

As the first step in the image reconstruction process, coil sensitivity maps were estimated 

from the MR data using the approach described in [31]. In addition to the proposed method, 

MR images were reconstructed iteratively using the conjugate gradient CG SENSE [39] 

algorithm with a tolerance of 10−6 and PET images were reconstructed using an in-house 

implementation [40] of EM with resolution modeling [32] using the system geometry of our 

PET-MR system [38]. While it is known that the resolution of PET scanner varies over the 

field of view, i.e., the further away from the center of the FOV, the worse the resolution, for 

the data used in this work the filter was used with uniform parameters since the brain data is 

assumed to be reasonably close to the center of the FOV. A known issue of the Biograph 

mMR are measurement gaps resulting from to the large distance between adjacent crystal 

blocks. Those gaps were filled using the interpolation approach presented in [41] leading to 

a closed ring and hence to complete sinograms. No OSEM-type acceleration with subsets 

was used in any PET reconstruction (i.e., the number of subsets was 1). TGV-regularized 

reconstructions were performed with the approach described in the theory section. For the 

numerical phantom experiments we also tested joint TGV regularization with the nuclear 

norm coupling as in Equation (2) replaced by a Frobenius norm. Since the proposed 3D 

TGV regularizer, along with the corresponding numerics, is a novel method in itself even 

without the coupling of MR and PET, we also performed experiments in which MR and PET 

image reconstructions were performed separately, but with TGV regularization. This 

corresponds to replacing the nuclear and Frobenius norm of Equation (2) by a separate 

penalization of the two channels. The goal of this comparison was to separate the effects of 
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the shared information between PET and MR from the effects of the regularizer itself. 

Reconstructions were also performed using EM iterations and a well known MR-

anatomical-prior guided PET reconstruction proposed by Bowsher et al. [11], for which the 

separate TGV regularized MR reconstruction was used as the anatomical prior.

Concerning parameter choice for TGV, EM and the Bowsher-prior, an exhaustive parameter 

search was performed based on RMSE to the ground truth for joint PET reconstruction with 

MPRAGE MR contrast. In the case of Bowsher, we used the parameters presented in [14] as 

the starting point of the search. For EM and Bowsher, 1000 iterations were performed and 

the RMSE to the ground truth was calculated in each iteration step. For the primal dual 

method we used a fixed number of 1000 iterations. This large number of iterations was 

chosen to ensure convergence of the reconstruction. In practice, we saw only minor 

differences in the images after 500 iterations (see the Appendix for a more detailed 

explanation).

The following parameter values were identified:

10min PET dataset:

• EM method: 387 iterations.

• Bowsher prior: 3 × 3 × 3 neighborhood using the 16 closest neighbors, 

prior strength β = 100, 795 iterations.

• Separate TGV MR and PET reconstruction: λ = 1, μ = 90.

• Frobenius norm coupled TGV MR and PET reconstruction: λ = 1, μ = 50.

• Nuclear norm coupled TGV MR and PET reconstruction: λ = 1, μ = 90.

5min PET dataset:

• EM method: 243 iterations.

• Bowsher prior: 3 × 3 × 3 neighborhood using the 16 closest neighbors, 

prior strength β = 100, 624 iterations.

• Separate TGV MR and PET reconstruction: λ = 1, μ = 60.

• Frobenius norm coupled TGV MR and PET reconstruction: λ = 1, μ = 30.

• Nuclear norm coupled TGV MR and PET reconstruction: λ = 1, μ = 60.

Regarding Frobenius norm coupling and separate TGV reconstruction, we remark that the 

corresponding norms were also scaled a-priori to yield approximately the same cost as the 

nuclear norm on random data.

In order to test the generalization potential of the individual methods, the parameters 

obtained for the MPRAGE MR contrast were then kept fixed for the reconstructions with the 

other two MR contrasts (T2 weighted and FLAIR). In addition to a single-case evaluation, 

also 30 different realizations with different noise corruption were generated for MPRAGE 

MR and 5min PET. Reconstructions were performed with all methods and maps of the 
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difference of the pixel based mean over the 30 different reconstructions to the ground truth 

(bias) as well as the pixel-by-pixel standard deviations (estimate of noise) were generated.

C. In-vivo measurements

The proposed method was then tested with in-vivo data that were acquired on a clinical 3T 

MR-PET System (Siemens Biograph mMR) with the same 12-element head coil array that 

was used in the simulations. The study was approved by the NYU institutional review board 

(IRB), and written informed consent was obtained from all subjects prior to examination. 10 

mCi 18F-FDG were injected. A standard Dixon sequence was obtained for PET attenuation 

correction prior to the start of a 10min PET acquisition and accelerated MR acquisitions 

were acquired simultaneously with PET. In the first protocol, approximate uptake time was 

150min and a 3D MPRAGE sequence with the following parameters was acquired: 

TR=2300ms, Echo spacing 7.1ms, TI=900ms, FA=9°, 190 × 190 × 208 matrix, voxel 

size=1.15 × 1.15 × 1.2mm3 and BW=240Hz/pixel. Regular Cartesian sampling with an 

acceleration factor of 2 was used. The number of original prompts in the PET raw data after 

resorting to sinograms from listmode, but before axial compression or gap filling was 1.42 · 

108. The number of randoms and the scatter fraction, as estimated by the vendors 

implementation, was 2.94 · 107 and 28%, respectively. The second scan was started after an 

approximate uptake time of 75min. The same 3D MPRAGE sequence was used with 

following sequence parameters: TR=2200ms, Echo spacing 6.6ms, TI=1100ms, FA=12°, 

256 × 256 × 192 matrix, voxel size=0.86 × 0.86 × 1mm3 and BW=260Hz/pixel. An 

acceleration factor of 4 was used. The number of original prompts in the PET raw data was 

5.04 · 108. The number of randoms and the scatter fraction, as estimated by the vendors 

implementation, was 1.75 · 108 and 29%, respectively. This level of acceleration and PET 

counts was also used in the phantom simulations. In both protocols the central 24 lines of k-

space were fully sampled as a reference region to estimate coil sensitivities.

D. Image reconstruction for in-vivo measurements

Coil sensitivity maps were estimated in the same way as for the numerical simulations [31]. 

PET attenuation correction maps were obtained using an offline version of the 

reconstruction pipeline of the vendor together with estimates for scatter and random 

coincidences, and were included in the PET forward model as in Equation (1). Reference 

reconstructions were again obtained with CG SENSE and EM, also including corrections for 

attenuation, scatter and random events in the iterations. Since MR and PET were acquired 

with different resolution, the smaller of the two voxel sizes was used for all reconstructions. 

For the first protocol, reference reconstructions are compared to joint TGV regularized 

reconstructions using Frobenius and nuclear norm coupling as well the anatomical-prior-

based reconstruction method of Bowsher [11], where the TGV regularized reconstruction of 

the MR image was used as anatomical prior. For the second protocol, the reference 

reconstruction is compared to the joint TGV regularized reconstruction using nuclear norm 

coupling. Due to the lack of a ground truth for parameter optimization in the in-vivo case, 

we used the results from the numerical simulation as a starting point and then chose the 

parameters of the different reconstructions based on visual inspection of the results. The 

parameter choices for the in-vivo measurements are given as follows:
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First protocol:

• EM: 250 iterations.

• Bowsher prior: 3 × 3 × 3 neighborhood using the 16 closest neighbors, 

prior strength β = 0.5, 500 iterations.

• Frobenius norm coupled TGV MR and PET reconstruction: λ = 10, μ = 

120.

• Nuclear norm coupled TGV MR and PET reconstruction: λ = 10, μ = 130.

Second protocol:

• EM: 250 iterations.

• Nuclear norm coupled TGV MR and PET reconstruction: λ = 10, μ = 300.

IV. Results

A. Numerical simulations

The proposed MR-PET TGV reconstruction is shown with Frobenius and nuclear norm 

coupling, as well as separate penalization of the two modalities. CG SENSE parallel 

imaging MR [39], PET EM [2] and MR-anatomical-prior PET reconstructions [11] using the 

separate TGV MR reconstruction as the prior, are shown as well. Figure 2 shows PET 

RMSE values of the results of the parameter optimization process for prior strength of the 

Bowsher prior (β) and PET data fidelity (μ) for separate, Frobenius norm and nuclear norm 

TGV. Figure 3 shows numerical phantom MPRAGE contrast results. Results with the other 

two MR contrasts are shown in Figs. 4 and 5. Sharpness and visibility of fine image features 

is improved for the PET images with the multi-channel TGV reconstruction and the 

Bowsher prior. The experiments also demonstrate that the improvements are consistent over 

a range of MR contrasts. It can also be noticed that some structures have an inverted MR and 

PET contrast. For example, while FDG uptake is higher in gray matter and signal intensities 

are higher than in white matter for T2w and FLAIR, the contrast is inverted in an MPRAGE 

scan. Since information exchange is only performed on the level of the gradient and 

symmetrized gradient fields, the proposed multi-channel regularizer is unaffected by this. 

RMSEs with respect to the ground truth images are also displayed next to the corresponding 

reconstructions and confirm the visual impressions of the reconstructions. The two joint 

TGV reconstructions result in substantially lower errors than separate TGV, which in turn 

outperforms EM for all three MR contrasts and both PET scan durations. The RMSE of the 

Bowsher prior is close to the nuclear norm reconstruction for MPRAGE contrast, which was 

used in the parameter search. For the other two contrasts (T2 weighted and FLAIR) Bowsher 

is outperformed by both Frobenius and nuclear norm coupling in terms of RMSE, while 

itself outperforming the separate TGV regularized PET reconstruction and EM. Overall the 

nuclear norm resulted in the lowest RMSEs for all experiments. In addition to global RMSE 

evaluation over the whole FOV presented in the figures, Table II gives region-of-interest 

specific RMSE values for gray matter in the head of the caudate nucleus (bilaterally), the left 

insula, and the PET-only GBM lesion.
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Assessment of MR- and PET-specific features provides additional insight in the behavior of 

the different methods and coupling norms. It can be seen that an edge appears subtly in the 

joint TGV and Bowsher prior PET reconstruction in the area of the MR-only lesion 

(highlighted by red arrows in Fig. 3). This transfer is slightly stronger for the Bowsher prior 

and the Frobenius-norm coupled TGV than for the nuclear-norm coupled TGV, in particular 

for the 5 minutes measurements. It can also be observed that comparable artifacts appear in 

regions where no individual MR-lesions are present (blue arrows). This effect is strongest in 

the separate PET TGV reconstruction but also visible in the other methods with the 

exception of EM. The strongest difference between the Bowsher prior and all TGV 

reconstructions can be observed in the area of the PET only lesion (cyan arrows, only added 

for 10min PET). For all Bowsher reconstructions, the unique PET lesion is heavily smoothed 

out and the signal intensity is decreased. In contrast, lesion sharpness and visibility is almost 

identical for the TGV reconstructions with and without MR coupling. This can also be 

observed in the corresponding GBM lesion RMSE values in Table II, which show 

pronounced deviations for the Bowsher prior. In the skull region the nuclear norm shows no 

transfer of MR-specific features (orange arrows). In contrast, the Bowsher reconstruction 

includes several small structures that are found in the MR-, but not the PET ground truth. 

Finally, no transfer of edges or contrast of PET-only features is visible in MR at all (yellow 

arrows in Fig. 3) in the two simultaneous MR-PET reconstructions with coupling (TGV 

Frob and TGV Nuc). A more detailed explanation of this behavior is presented in the 

discussion.

For EM, Bowsher, separate TGV and nuclear norm TGV, cross-sectional plots are drawn 

along a cortical section of the PET slice shown in Fig. 3 to visualize separation of gray and 

white matter as well as fidelity of the quantitative PET signal in comparison to the 

underlying ground truth (Fig. 6). They demonstrate that the fidelity of the quantitative PET 

signal to the ground truth is higher for nuclear norm coupling with MR than for EM and the 

PET reconstruction using separate TGV. The Bowsher reconstruction shows a distinctive 

artificial outlier in the signal from the cortex (far right peak in the plot) that corresponds to 

transfer of MR-specific features (highlighted by orange arrows in Figure 3).

The principal improvement observed in MR images is a reduction of parallel imaging noise 

amplification due to TGV in comparison to CG SENSE, which also results in pronounced 

reductions in RMSE for all investigated contrasts. The differences between coupled and 

separate TGV are minor. We provide a more detailed explanation of this behavior and the 

relation to the reported improvements for the MR-side of the reconstruction in [16] in the 

discussion section. We also found only minor differences between the MR reconstruction 

quality of the joint reconstructions with 10min and 5min PET scans. In particular, the RMSE 

values for the MR images coupled with the 5 minute PET scan were identical to those 

coupled with the 10min scans.

Overall quantitative PET signal values were evaluated in CSF, gray matter, white matter, 

caudate, left insula and the PET-only GBM lesion. The results are given in Table III and they 

confirm the findings from the cross sectional plots. For each combination of PET duration 

and MR contrast, the result closest to the ground truth is depicted bold faced. EM in general 

underestimates uptake in gray matter and overestimates uptake in white matter and CSF. 
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While the PET reconstruction with the separate TGV constraint already reduces these 

deviations, the differences are further reduced substantially when a coupling norm to MR is 

used. The Bowsher prior performs best for the reconstructions with MPRAGE contrast, 

which was used for parameter optimization, while for the other cases, nuclear-norm based 

TGV performs best. With the exception of the 5min data PET-only GBM lesion, joint 

reconstruction resulted in the value closest to the ground truth for each experiment. The 

caudate has a simple structure and the results of the joint reconstruction are already very 

close to the ground truth. Due to the more complex interfaces between gray matter, white 

matter and CSF in the insula, partial voluming effects and therefore signal deviations of all 

methods are stronger there. The strongest deviations can be observed for the PET-only GBM 

lesion with the Bowsher prior.

Bias and noise maps from the multiple replica experiment are shown in Figure 7 for 

MPRAGE and 5min PET datasets. The signal energy (squared sum of the map intensity 

values, normalized by the squared sum of the signal of the corresponding ground truth) is 

displayed next to each map. Standard deviation maps for MRI CG SENSE reconstructions 

show characteristic g-factor based noise amplification generated by the parallel imaging 

reconstruction. This effect is reduced substantially with all TGV reconstructions. The bias of 

EM-PET and separate TGV indicates loss of sharp edges, an effect that is reduced in all 

methods that use MR-information during the reconstruction (Bowsher, TGV Frob and TGV 

Nuc). The Bowsher reconstruction shows a pronounced spot of high bias in the area of the 

unique PET lesion (indicated by red arrow). PET standard deviation maps are comparable 

between EM and all TGV methods. In contrast, Bowsher reconstructions lead to a number of 

high intensity single pixel deviations that are visible in both standard deviation and bias 

maps.

B. In-vivo measurements

A comparison of CG-SENSE/EM, Bowsher using separate TGV MR as the image prior and 

multi-channel joint MR-PET TGV reconstruction with Frobenius and nuclear norm coupling 

for the first patient data set (R=2) is shown in Figure 8. PET reconstruction results were 

corrected for patient weight, injected dose and injection time, and are displayed as 

standardized uptake values. A general overview of the respective image qualities is given in 

the two top rows, which show overlays of MR and PET in a single transversal plane and in 

coronal and sagittal reformats. As in the phantom case, FDG uptake is higher in gray matter, 

which has lower signal intensity in an MPRAGE MR contrast. It can also be observed that 

features like the high signal intensity of subcutaneous fat in the MR image are not falsely 

imposed on the PET in the joint TGV reconstructions. The bottom row shows a zoom to a 

region in the transversal plane depicting ocular muscles and orbital fat. This region is 

interesting for evaluation of the joint reconstruction approach because the ocular muscles 

(highlighted by four small arrows) have a high glucose metabolism and therefore show a 

strong FDG uptake. The surrounding orbital fat can be assumed to have very little FDG 

uptake and therefore a strong contrast and sharp edge can be expected in PET. On the other 

hand, the MPRAGE sequence shows an inverted contrast, with hyper-intense fat signal. A 

line profile plot was generated across the orbits and is shown in Figure 8.b). The orbital 

muscles show up as four distinct peaks (again highlighted by arrows), which show sharper 
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separation from the surrounding fat region in the Joint TGV reconstructions. In line with the 

findings in the phantom experiments, the peak signal values are higher for Joint TGV, while 

fat signal is higher for EM and, to a lesser extent, Bowsher. Visual differences between 

Nuclear norm and Frobenius norm joint TGV are hardly noticeable for this data set.

Two transversal slices of EM/CG-SENSE and TGV with nuclear norm coupling from the 

second patient data set are shown in Figure 9. Since the MR acquisition was performed with 

higher acceleration here (R=4), it is not possible to obtain artifact-free images with a 

conventional reconstruction. Therefore the difference in MR image quality is more obvious 

than in the R=2 case (Figure 8). An interesting feature of this particular dataset is that the 

MR scan shows a distinct hyper intense lesion in the cranial slice (highlighted by arrow), 

which is invisible in PET. The joint PET reconstruction is completely unaffected by this.

V. Discussion

In comparison to EM, our results demonstrate improved sharpness and visibility of fine 

structures for PET when using the proposed TGV method. The phantom experiments also 

show that the joint reconstructions outperform separate TGV reconstructions in terms of 

image sharpness, RMSE and quantitative PET signal values. Overall, the nuclear norm 

yielded the best results and therefore was selected for both in-vivo experiments. The 

quantitative evaluations of the PET signal values in the phantom experiments demonstrate 

that the jointly reconstructed signal values show smaller deviations from the true values than 

the EM reconstructions. The reason for this is the reduced signal spillover to spatially 

adjacent structures. This is evident in the signal from CSF, which was simulated to have zero 

FDG uptake. The signal spillover to CSF was reduced substantially in the joint MR-PET-

TGV reconstruction in comparison to regular EM. In contrast, EM results showed systematic 

under-estimation in high-uptake regions like gray matter. These were also reduced with the 

proposed joint reconstruction approach. It should be noted that the main contribution to the 

standard deviations of the PET activity in Table III is not noise, but systematic errors from 

signal spill over at the tissue boundaries. When removing the border-voxels from the 

evaluation, CSF activity (ground truth 0 Bq/cm3) drops from 6358 ± 5048 Bq/cm3 to 

3236±2674 Bq/cm3 for EM (10min dataset) and 4089±4881 Bq/cm3 to 1391±1956 Bq/cm3 

for nuclear norm TGV (10min dataset, joint reconstruction with MPRAGE). GM activity 

(ground truth 22990 Bq/cm3) changes from 18812 ± 4977 Bq/cm3 to 21663 ± 3718 Bq/cm3 

for EM (10min dataset) and 20056 ± 3119 Bq/cm3 to 21628 ± 1966 Bq/cm3 for nuclear 

norm TGV (10min dataset, joint reconstruction with MPRAGE). The in-vivo experiments 

demonstrate that the standardized uptake values obtained with our approach are in line with 

findings in the literature [42].

When comparing the TGV PET reconstructions to an anatomical prior method [11], two 

interesting observations can be made: The proposed TGV method is substantially more 

robust with respect to preserving unique features. The anatomical prior led to severe 

degradation of the unique PET lesion, and, consequently, substantial deviations of the signal 

values. In addition, the overall performance (global RMSE values, signal values and RMSE 

values of structures where corresponding features in MR are present) of the anatomical prior 

was comparable to the joint TGV reconstructions for the MPRAGE contrast, which was 
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used to optimize the parameters for the individual methods. However, while TGV results 

were entirely robust with respect to variations in MR contrast (overall RMSE values for 

nuclear norm coupling were actually lower for joint reconstructions with T2 weighted and 

FLAIR contrasts than for MPRAGE), the performance of the anatomical prior dropped 

substantially.

Having a ground truth available, our numerical phantom experiments allow systematic 

assessment of reconstruction artifacts as well as the behavior of the individual coupling 

norms in areas where joint and individual features are present. Most notably, some 

additional lump-like structures are visible in particular in the separately regularized PET 

reconstructions (blue arrows in Fig. 3). This effect can be understood when considering the 

properties of a variational regularizer like TGV in the context of PET reconstruction. The 

regularization functional penalizes structures with high incoherence, like noise. However, 

our PET reconstruction operator includes resolution modeling with a Gaussian filter in each 

iteration. This increases intervoxel covariance [43] and allows the noise to form structures 

that fit to the image model promoted by the regularizer. As a result, with decreasing quality 

of the original PET signal, noise structures are clustered together as larger lumps and, 

depending on the trade-off between data fidelity and regularization, might be preserved in 

the regularized reconstruction. For the joint reconstruction, when MR-unique features are 

present at the same location as a noise cluster, lumps with a structure similar to the MR 

feature might appear (red arrows in Fig. 3). In phantom experiments, this effect was slightly 

stronger with Frobenius norm coupling and the Bowsher prior, but also appeared with the 

nuclear norm coupling. It is worth noticing, however, that the latter effect of the joint 

reconstruction is much weaker than the unstructured lumps that appear in the separate 

reconstruction and also seems to be a consequence of the particularly challenging, sharply 

separated small structure that we added in our simulations. Indeed, as marked by the orange 

arrow in Fig. 3, other MR-unique features of the phantom are not transferred to the PET 

signal at all and, as highlighted in Fig. 9, this behavior did not occur with MR-only features 

in real data. Unlike the PET operator, the MR forward mapping does not include resolution 

modeling and, consistent with the explanation above, the separately regularized MR 

reconstruction does not suffer from the generation of lump-like structures. For the joint 

reconstruction, no transfer of PET-only features to the MR component has been observed 

(yellow arrows in Fig. 3).

While our findings in terms of the improvement of the PET component of the reconstruction 

are in line with the numerical simulation study by Ehrhardt et al. [16], the authors of that 

study report much stronger improvements for MR. Our TGV results show clear 

improvements over CG SENSE for both phantom and in-vivo experiments. The difference 

between the coupling norms in the phantom study was less obvious. One difference of our 

approach compared to [16] is that our MR reconstruction also incorporates parallel imaging, 

which already increases reconstruction quality. Therefore our method does not completely 

rely on the regularizer to remove aliasing artifacts. For consistency of phantom and in-vivo 

experiments, our phantom study was based on moderately accelerated protocols that are 

currently used in clinical practice in our institution. In this setting the proposed separate 3D 

MR TGV reconstruction already resulted in almost ground truth image quality. We plan to 

investigate the use of joint reconstruction in MR acquisitions that are severely accelerated 
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such that even a state of the art nonlinear PI-CS reconstruction breaks down (see below for 

more details). In addition, our MR acquisition followed a parallel imaging protocol, with 

regular Cartesian undersampling. In order to unleash their full potential, nonlinear L1-based 

MR image reconstruction methods usually require incoherent aliasing artifacts generated by 

pseudo random [8] or non-Cartesian [9], [31] sampling patterns. However, these acquisition 

methods are in general only available in research settings and the vast majority of clinical 

scans is performed with regular Cartesian sampling and conventional PI. Therefore we chose 

to perform all our experiments according to protocols that are available on all MR-PET 

systems, even though they are an especially challenging scenario for our proposed method.

A. Relations to comparable work

The main principle of using the redundancies from multiple image series during the image 

reconstruction step is already well known. Joint reconstruction of multiple MR contrasts of a 

single acquisition protocol was recently described by several groups (e.g. [28], [44], [45], 

[46], [47], with [28] being the closest match to our proposed approach). Other examples for 

MR applications are Non-Proton MR [48], hyper polarized imaging [49] and diffusion 

imaging [50].

To the best of our knowledge, Ehrhardt et al. [51], [16] is the only other work that 

investigates joint image reconstruction in the context of MR-PET. The authors propose to 

exploit structural similarity between PET and MR images by either using a joint Total 

Variation with a Frobenius norm coupling of the image gradients, or by a parallel level set 

approach. The latter is motivated geometrically by the intention of aligning image gradients. 

Results in [16] show an improvement compared to non-regularized reconstruction for both 

settings, with superior results being obtained with the level set approach. In practice, [16] 

uses smoothed versions of the objective functionals and a quasi-Newton type method for the 

numerical solution.

While also being motivated by the idea of aligning image gradients, our method differs from 

[16] in various aspects. Most importantly, we use the second order TGV functional with 

nuclear norm based gradient coupling as image prior. From the numerical viewpoint, this 

results in an optimization problem comparable with the one arising from joint TV 

regularization. Conceptually, however, the nuclear norm coupling is in fact more closely 

related to the idea of aligning image gradients since, as mentioned in the theory section, the 

nuclear norm enforces sparsity of the singular values of the Jacobian, and hence, aligned 

edges. An important difference to the parallel level set method of [16], however, is the fact 

that our approach is convex and hence, independently of the initialization, always 

approximates globally optimal solutions.

Nuclear norm based regularization has already been proposed in [26] for TV regularization 

of color images and, in the context of medical imaging, in the work on reconstruction of 

tissue density maps from spectral CT data by Rigie et al. [27]. There, the authors also use a 

nuclear norm multi-channel vector valued total variation functional to exploit the 

correlations between the individual energy level channels of a spectral CT system. They also 

find that the nuclear norm is robust regarding unwanted transfer of individual features to 

other channels. An interesting parallel of their application is that individual energy channels 
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of a spectral CT system often have significantly different noise levels. The main difference 

from MR-PET is that the channels are still subject to the same imaging physics. As a 

consequence the same types of mathematical operations are performed in the evaluation of 

the system matrices. This is a very different situation than for MR-PET, where the contrast 

mechanisms of our individual channels are fundamentally different, as well as the noise 

statistics and the imaging resolution.

B. Extensions and future work

This work describes the combination of a single MR-contrast with PET. However, in a 

typical MR-PET scan, multiple MR image contrasts are acquired during the PET 

acquisition. Therefore the MR component is usually the time limiting factor in an MR-PET 

scan, as it is not possible to obtain a full range of MR contrasts in the time that is required to 

obtain a single FDG-PET bed position. This basically renders the PET component of the 

system idle for a significant fraction of the total examination time. As a consequence further 

acceleration of the MR acquisition is of particular interest in the context of MR-PET.

Our current work is targeted at the integration of multiple contrasts in the proposed joint 

reconstruction framework. It is expected that this will further improve the redundancies in 

the multi-channel data and therefore lead to further improvements. A very interesting new 

MR data acquisition scheme in this context is MR fingerprinting [52]. In this approach the 

traditional procedure of multiple sequential MR sequences, each encoding a different 

contrast, is replaced by a single continuous data acquisition. For each voxel, the biophysical 

MR contrast parameters (T1 and T2 relaxation and spin density) are then estimated by fitting 

the temporal signal behavior to simulated properties of the spin system using the Bloch 

equations. When combined with concepts like fingerprint compression [53] to reduce the 

computational workload and demands on memory, this approach provides interesting 

synergies with a joint MR-PET reconstruction because it yields a time series of several 

image volumes, each with a slightly different image contrast and extremely high 

undersampling. This has the potential to reduce the MR data acquisition process to a single 

≈10 minutes continuous measurement from which the desired contrasts can then be 

synthesized retrospectively [54].

At the moment our proof of concepts implementation in Matlab and C++ takes about 30s per 

iteration on a computing workstation configured to be similar to the image reconstruction 

workstation of our 3T PET-MR system (Two 8-core Intel Xeon 2.4Ghz processors with 

hyper-threading, 64GB of memory, Ubuntu 14.04 and Matlab R2015b). The total 

reconstruction times for 1000 iterations of the proposed primal-dual method are roughly 8 

hours for the 3D volumes that were processed in the experiments in this work, independent 

of the used coupling norm. More than 95% of the computational burden is taken up by the 

evaluation of our in-house-implementation of the PET operator. In comparison, even the 

reconstruction times of our EM experiments were around 3 hours. We therefore expect a 

pronounced reduction of computation time when replacing the PET operator with 

implementations that are more optimized for computational efficiency, as used by the 

scanner vendors. This is obviously a prerequisite for clinical translation of the approach.
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One advantage of the proposed framework is its flexibility. Because the only input is the raw 

data from both modalities, with proper adjustment of the forward operators, additional 

modules like motion correction or kinetic modeling can be incorporated. While the examples 

shown in this manuscript were taken from neurological applications, the potential for 

increased acceleration of MR acquisitions should have even greater impact in body 

applications. Whole body MR-PET places significantly higher time constraints on the MR 

acquisition of multiple bed positions. With 5-10min time slots available for each bed 

position, it is extremely challenging to acquire the needed range of MR contrasts 

simultaneously. Furthermore, we expect that the combination of joint image reconstruction 

with highly accelerated dynamic acquisitions and motion correction [55] will be particularly 

valuable for cardiac applications. Finally, the clinical impact of the observed improvements 

using the proposed approach remain to be evaluated in larger clinical studies.
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Appendix: Numerical Implementation

This section details the numerical implementation for the solution of the convex 

optimization problem associated with TGV regularized joint MR-PET reconstruction. We 

denote by U = ℂN the space of vectorized 3D PET or MR image sets at the joint resolution, 

by C = ℂN × [0, ∞]N the set of admissible reconstructions, by u0 and v0 the given PET and 

MR data, respectively, and by c0 a given additive correction term for scattering and random 

events in PET. In a discrete setting, we we aim at solving

(4)

with ∥ · ∥2 being a discrete ℓ2 norm and Σ discretizing the integral appearing in the Kullback-

Leibler divergence. The discrete vector-  functional is defined according to Equation 

(2) with the ℓ1, nuclear and Frobenius norms defined in a standard way. The discrete gradient 

∇ : U2 → U2×3 and symmetrized gradient  are defined as

for a = (a1, a2) ∈ U2, and
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for , c = 1, 2, with

being standard forward and backward finite difference operators with respect to the 1st, 2nd 

and 3rd coordinate, respectively, using symmetric boundary extension.

For the derivation of the primal-dual solution scheme as outlined in Section II we define the 

functionals

where we set (v0)i log(0) = −∞ if (v0)i > 0 and 0 log(0) = 0. Now by convex duality [56], we 

can rewrite

with  and

if si < μ for all i such that (v0)i ≠ 0 and si ≤ μ for all i such that (v0)i = 0, and 

otherwise, and
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with A1 := {p | ∥|p|spec∥∞ ≤ α1} and A0 := {q | ∥|q|frob∥∞ ≤ α0}, where | · |spec and | · |frob 

denote the point-wise spectral and Frobenius norm, respectively, and ∥ · ∥∞ the supremum 

norm over all points in space. The functional IS again denotes the convex indicator function 

of a set S. Following the lines of Section II, the minimization problem (4) can then be 

rewritten as

(5)

with

and

Application of the iterations steps (3) together with an adaptive stepsize choice as in [22] to 

the saddle-point problem in the last line of Equation (5) then yields the iterative scheme 

given in Algorithm 1.

There, projα1(p) and projα0(q) denote the projections to the sets A1 and A0, respectively. 

The former requires a point-wise computation and projection of the singular values, for 

which we use a fast custom implementation tailored to large arrays of 3 by 2 matrices. The 

latter requires the computation of the point-wise Frobenius tensor norm followed by a point-

wise division and can hence also be computed explicitly and fast. Further, , and 

, are the proximal mappings of the convex conjugates of the data fidelity maps, 

and are given as

and
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where all operations are understood point-wise. The operator projC is the proximal mapping 

of the indicator function that restricts the reconstruction to C and corresponds to a projection 

of the PET channel to the non-negative reals. The operators div and div2 denote discrete 

divergence operators

Algorithm 1

TGV regularized MR-PET reconstruction

1: function TGV-MR-PET(u0, v0, c0, λ, μ)

2:  M ← rescale_operator(M, ζM)

3:  P ← rescale_operator(P, ζP)

4:  u0 ← rescale_data(M*u0) · u0

5:  (v0, c) ← rescale_data(P*(v0 – c0)) · (v0, c0)

6:  u ← M*u0, v ← P*(v0 – c0), (ū, v̄) ← (u, v)

7:  w → 0, w̄ ← 0, p ← 0, q ← 0, r ← 0, s ← 0

8:  choose η > 0, σ > 0, τ = σ/η2

9:  repeat

10:   p ← projα1 (p + σ(∇(ū, v̄) – w̄))

11:   q ← projα0 (q + σℰw)

12:   r ← prox( DMR
λ ∗

),σ(r + σMū – σu0)

13:   s ← prox( DPT
μ ∗

),σ(s + σPv̄ + σc0)

14:   (u+, v+) ← (u, v) – τ(−div p + (M*r, P*s))

15:   (u+, v+) ← projc((u+, v+))

16:   w+ ← w – τ(−p − div2 q)

17:   (ū, v̄, w̄) ← 2(u+, v+, w+) – (u, v, w)

18:   σ+ η𝒮 στ,
∣ ∣ u+, v+, w+ − u, v, w ∣ ∣

∣ ∣ K u+, v+, w+ − u, v, w ∣ ∣

19:   τ+ ← σ+/η2

20:   (u, v, w) ← (u+, v+, w+)

21:  until Stopping criterion fulfiled

22:  return (u+, v+)

23: end function

and are defined as the negative adjoints of ∇ and , respectively. The parameter η defines a 

fixed ratio of the dual and primal stepsizes and σ and τ the mapping S realizes an adaptive 

stepsize choice that ensures convergence of the algorithm (see [22]). For θ ∈ (0, 1), it is 

defined as
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(6)

Empirically we have observed that this reduces the stepsize only during the first 10 iterates 

and hence, to save computational cost, S is evaluated only during the first 50 iterations and 

after that every 50th iteration. Alternatively, as K needs to be evaluated once on each iterate 

anyway, it would also be possible to re-formulate the algorithm in such a way that the 

stepsize criterion does not require additional evaluations (at the cost of using slightly more 

memory).

Initialization

Regarding the initialization of the algorithm, we stress that prior to starting our method, the 

operators M and P are re-scaled to have operator norm approximately 1. This is done once 

for a particular setup by estimating their norm via power iteration [57]. Furthermore, the 

normalized operators are rescaled (as in lines 2 and 3 of the algorithm), which in practice 

accelerates convergence. Also the given data u0, v0 and c0 is rescaled to be approximately at 

the same scale. This is done by the function rescale_data, which is designed to robustly scale 

the range to approximately [0,100] and in detail returns a scalar given as 100 divided by the 

mean of all entries of the input that are above 80% of the maximal entry.

Parameter choice

A list of the chosen values for all parameters (except for the regularization parameters which 

are discussed in Section III) is provided in Table IV. We stress that those are all parameter 

entering the method (mostly algorithmic parameters) and the procedure is rather robust 

against their choice. In particular, the values σ and θ are only shown for the sake of 

completeness and should only be chosen reasonably, i.e., σ should be not too small and θ 
close to one. Also the rescaling of the MR and PET operator as well as the ratio between the 

primal and dual stepsize are algorithmic parameters and have been chosen empirically to 

accelerate convergence. The choice of the TGV weights can be seen as default value that has 

already been used in diverse applications and has not been tuned.

Stopping criterion

To ensure a proper implementation and convergence of our method we have evaluated an 

approximation of the primal-dual gap (similar to [22]), which is zero only for optimal 

solutions to the saddle-point problem in the last line of Equation (5). For an iterate (u, v, w, 
p, q, r, s), the normalized primal-dual gap is defined as
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The definition of  contains indicator functions of set constraints. Some of those, such as 

the positivity constraint on the PET variable, are satisfied at each iteration and hence can be 

skipped. Others are fulfilled only in the limit of the iterates, and we replace such indicator 

functions by a penalization of the deviation from these constraints. In concrete, this yields 

the following modified primal-dual gap:

As the evaluation of this quantity comprises significant computational cost, and as it 

comprises a rather conservative estimate of optimality in practice, we did not employ the 

modified primal-dual gap as stopping criterion, but rather used a fixed number of 1000 

iterations for the proposed experiments. Empirically, we have observed that this is sufficient 

to ensure proper convergence of the algorithm and reduces modified primal-dual gap by 

three orders of magnitude.
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Fig. 1. 
a) Ground truth MPRAGE, T2w, FLAIR and PET numerical brain simulation. The 

additional separated structures in MR and PET are indicated by arrows, as well as the 

position of the cross-sectional plot that was used during evaluation of the PET signal values. 

b) 2D visualization of the direction of the image gradient for a single slice of MPRAGE and 

PET, and difference of the directions (modulo π). The color-circle indicates the angle of the 

gradient vector in polar coordinates. The phantom is designed so that the majority of edges 

overlap exactly. Notable exceptions are the two individual lesions (again indicated by 

arrows) and some additional fine structures, especially around the skull, which only show up 

as distinct features in MR.
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Fig. 2. 
10min PET RMSE values of the results of the parameter optimization process for prior 

strength of the Bowsher prior (β) and PET data fidelity (μ) for separate, Frobenius norm and 

nuclear norm TGV.

Knoll et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Reconstruction results from the numerical simulations of R=4 MPRAGE-MR acquisitions 

and two PET scan durations (10min and 5min). RMSEs to respective ground truths are 

displayed next to the reconstructed images. CG SENSE MR and PET EM reference 

reconstructions are shown together with separate, Frobenius and nuclear norm TGV and a 

Bowsherprior PET reconstruction using the separate TGV MR reconstruction as the MR 

prior. 10min PET data was used for the joint MR reconstructions shown here. RMSE values 

for MPRAGE jointly reconstructed with 5min PET are identical to those reconstructed 

jointly with 10min PET: 0.188 for Frobenius norm and 0.186 for nuclear norm. The 

strongest difference between the Bowsher prior and all TGV reconstructions can be 

observed in the area of the PET only lesion (cyan arrows, only added for 10min PET). For 

all Bowsher reconstructions, the unique PET lesion is heavily smoothed out and the signal 

intensity is decreased. In contrast, lesion sharpness and visibility is almost identical for the 

TGV reconstructions with and without MR coupling. Subtle sharp edges appear in the 

Bowsher and Frobenius norm 5min PET reconstruction in the area of the MR-only lesion 

(red arrows). Comparable artifacts appear in regions where no individual MR-lesions are 

present (some examples highlighted by blue arrows). In the skull region the nuclear norm 

shows no transfer of MR-specific features while small MR-only features start to appear in 

the Bowsher reconstruction (orange arrows). No transfer of edges or contrast of PET-only 

features occurs to MR (yellow arrows).
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Fig. 4. 
Reconstruction results from the numerical simulations of R=4 T2w-MR acquisitions with 

10min and 5min PET.
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Fig. 5. 
Reconstruction results from the numerical simulations of R=4 FLAIRMR acquisitions with 

10min and 5min PET.
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Fig. 6. 
Cross sectional plots across the left insula for PET EM, Bowsher, separate TGV and nuclear 

norm TGV reconstruction results from the R=4 MPRAGE numerical simulation and 5min 

PET, as shown in Figure 3.
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Fig. 7. 
Bias and noise maps from the multiple replica experiment. R=4 MPRAGE and 5min PET 

datasets. The signal energy (squared sum of the map intensity value, normalized by the 

squared sum of the signal of the corresponding ground truth) is displayed next to each map. 

The Bowsher reconstruction shows a pronounced spot of high bias in the area of the unique 

PET lesion (indicated by red arrow).
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Fig. 8. 
a) Overlays of MR and PET in a single transversal plane and coronal and sagittal reformats 

for the R=2 MPRAGE and 10min PET scan, comparing reference CG SENSE MR and a 

PET EM reconstruction (first row), Bowsher using separate TGV MR as the image prior 

(second row) and multi-channel joint MR-PET TGV reconstruction with Frobenius (third 

row) and nuclear (fourth row) norm coupling. A zoomed view of a region in the transversal 

plane depicting ocular muscles and orbital fat is shown in the third row. Sharpness and 

visibility of fine image features is clearly improved for the PET images with a multi-channel 
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TGV regularizer. b) A line profile plot along the dashed arrow in the MR image of the 

orbital region. The orbital muscles show up as four distinct peaks (again highlighted by 

arrows), which show sharper separation from the surrounding fat region in the Joint TGV 

reconstructions.
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Fig. 9. 
Two transversal slices for the R=4 MPRAGE and 10min PET scan. The MR scan shows a 

distinct hyper intense lesion in the cranial slice (highlighted by arrow), which is completely 

invisible in PET.
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TABLE I

Tissue parameters for the numerical brain phantom simulation

T1 (ms) T2 (ms) PD (a.u.) PET activity (Bq/cm3)

CSF 2569 329 1 0

GM 833 83 0.86 22900

WM 500 70 0.77 8450

MR GBM lesion 1970 101 0.77 -

PET GBM lesion - - - 25799
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TABLE II

REGION-OF-INTEREST SPECIFIC PET RMSE values for gray matter in the head of the caudate nucleus (bilaterally), 

the left insula and the unique PET GBM lesion (a.u). FOR EACH COMBINATION OF PET DURATION AND MR contrast, 

the reconstruction result closest to the ground truth is depicted bold faced.

10min PET dataset 5min PET dataset

Caudate Insula GBM lesion Caudate Insula GBM lesion

EM 0.243 0.250 0.203 0.248 0.269 0.196

TGV Sep 0.206 0.257 0.139 0.207 0.255 0.193

Joint MPRAGE

Bowsher 0.090 0.192 0.369 0.111 0.203 0.374

TGV Frob 0.124 0.217 0.138 0.139 0.220 0.191

TGV Nuc 0.126 0.202 0.147 0.148 0.206 0.190

Joint T2

Bowsher 0.187 0.238 0.366 0.195 0.239 0.373

TGV Frob 0.133 0.212 0.135 0.146 0.214 0.199

TGV Nuc 0.133 0.191 0.136 0.148 0.198 0.190

Joint FLAIR

Bowsher 0.144 0.212 0.355 0.152 0.215 0.367

TGV Frob 0.145 0.214 0.141 0.155 0.217 0.185

TGV Nuc 0.145 0.194 0.145 0.157 0.201 0.188
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TABLE III

Quantitative analysis of the numerical brain simulations: PET SIGNAL ACTIVITY LEVELS (BQ/CM3) ± STANDARD 

DEVIATION. FOR EACH COMBINATION OF PET DURATION AND MR contrast, the reconstruction result closest to the 

ground truth is depicted bold faced.

(a) 10min PET dataset

CSF GM WM Caudate Insula GBM lesion

Ground truth 0±0 22990±0 8450±0 22990±0 22990±0 25799±0

EM 6358±5048 18812±4977 10648±3366 20620±5057 18704±3817 22288±3776

TGV Sep 5838±5932 18993±4096 10719±3383 20718±4159 18605±3932 26472±2285

Joint MPRAGE

Bowsher 4489±4585 20292±3590 9804±2721 21959±1809 19794±3031 16307±629

TGV Frob 4746±5313 19709±3295 10375±2887 21422±2374 19239±3294 24602±2089

TGV Nuc 4089±4881 20056±3119 10228±2773 21553±2509 19506±3066 25932±2920

Joint T2

Bowsher 5244±4869 19748±4360 10107±2984 21234±3922 19096±3858 16370±532

TGV Frob 4215±5301 19643±3143 10624±2941 21210±2503 19250±3144 24476±2008

TGV Nuc 3469±4591 20066±3018 10420±2901 21397±2606 19646±2860 25980±2616

Joint FLAIR

Bowsher 5215±5159 19101±3139 10817±2994 20358±2012 18981±2789 16678±928

TGV Frob 3702±5369 19711±3294 10719±3120 21206±2822 19322±3265 24762±2284

TGV Nuc 2910±4481 20081±3114 10605±3129 21324±2889 19678±2984 25907±2838

(b) 5min PET dataset

CSF GM WM Caudate Insula GBM lesion

Ground truth 0±0 22990±0 8450±0 22990±0 22990±0 25799±0

EM 6819±5078 18483±4861 10817±3461 19713±4681 18175±3898 23291±4090

TGV Sep 6214±5958 18743±4142 10850±3522 20114±3794 18403±3637 23550±4061

Joint MPRAGE

Bowsher 4872±4845 20026±3708 9950±2969 21654±2189 19461±3068 16154±693

TGV Frob 5169±5488 19409±3337 10553±3022 20901±2419 18937±3043 21693±2233

TGV Nuc 4488±5088 19780±3258 10388±2987 21006±2756 19275±2942 23052±3721

Joint T2

Bowsher 5628±5047 19464±4421 10266±3185 20823±3934 18864±3636 16189±591

TGV Frob 4630±5494 19334±3163 10817±3050 20767±2518 18980±2855 21314±2135

TGV Nuc 3836±4844 19803±3139 10575±3086 20939±2727 19384±2770 23066±3715

Joint FLAIR

Bowsher 5429±5236 19015±3204 10827±3032 20244±2183 18841±2679 16360±1020

TGV Frob 4034±5590 19431±3323 10897±3215 20751±2779 19005±3010 21996±2393

TGV Nuc 3188±4706 19854±3215 10746±3286 20847±2900 19360±2867 23169±3678
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TABLE IV

LIST OF FIXED PARAMETERS

Parameter Value Meaning

(ζM, ζP) (3,10) Rescaling of MR and PET operator

η 10 Ratio between primal and dual stepsize

σ 10/ 12 Initialization of primal stepsize

θ 0.95 Stepsize reduction factor

(α0,α1) ( 2, 1) TGV weights
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