Skip to main content
. Author manuscript; available in PMC: 2018 Jan 1.
Published in final edited form as: IEEE Trans Med Imaging. 2017 Jan;36(1):1–16. doi: 10.1109/TMI.2016.2564989

Algorithm 1.

TGV regularized MR-PET reconstruction

1: function TGV-MR-PET(u0, v0, c0, λ, μ)
2: M ← rescale_operator(M, ζM)
3: P ← rescale_operator(P, ζP)
4: u0 ← rescale_data(M*u0) · u0
5:  (v0, c) ← rescale_data(P*(v0c0)) · (v0, c0)
6: uM*u0, vP*(v0c0), (ū, v̄) ← (u, v)
7: w → 0, ← 0, p ← 0, q ← 0, r ← 0, s ← 0
8:  choose η > 0, σ > 0, τ = σ/η2
9: repeat
10:   p ← projα1 (p + σ(∇(ū, v̄) – ))
11:   q ← projα0 (q + σEw¯)
12:   r ← prox((DMRλ)),σ(r + σMūσu0)
13:   s ← prox((DPTμ)),σ(s + σPv̄ + σc0)
14:   (u+, v+) ← (u, v) – τ(−div p + (M*r, P*s))
15:   (u+, v+) ← projc((u+, v+))
16:   w+wτ(−p − div2 q)
17:   (ū, v̄, w̄) ← 2(u+, v+, w+) – (u, v, w)
18:   σ+ηS(στ,(u+,v+,w+)(u,v,w)K((u+,v+,w+)(u,v,w)))
19:   τ+σ+/η2
20:   (u, v, w) ← (u+, v+, w+)
21: until Stopping criterion fulfiled
22: return (u+, v+)
23: end function