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Abstract

Lysine acetylation is a reversible post-translational modification (PTM) of cellular proteins and 

represents an important regulatory switch in signal transduction. Lysine acetylation, in 

combination with other PTMs, directs the outcomes as well as the activation levels of important 

signal transduction pathways such as the nuclear factor (NF)-κB pathway. Small molecule 

modulators of the ‘writers’ (HATs) and ‘erasers’ (HDACs) can regulate the NF-κB pathway in a 

specific manner. This review focuses on the effects of frequently used HAT and HDAC inhibitors 

on the NF-κB signal transduction pathway and inflammatory responses, and their potential as 

novel therapeutics.

Introduction

Lysine acetylation is a reversible post-translational modification (PTM) of cellular proteins 

and represents an important regulatory switch in signal transduction cascades [1,2]. An 

increasing number of studies highlight the importance of lysine acetylation as a key PTM, 

directing the outcomes as well as the activation levels of important signal transduction 

pathways such as the nuclear factor (NF)-κB pathway. For example, acetylation of NF-κB 

transcription factors p65 and p50 plays an important part in their nuclear localization and 

transcriptional activity [3]. Similar phenomena have been observed for other pathways [4]. 

Next to this, acetylation of histones connected to specific genes has an important role in 

gene-specific transcription in the NF-κB pathway [3]. Furthermore, an increasing number of 

reports describe significant levels of crosstalk between lysine acetylation and other PTMs, 

such as ubiquitinylation, methylation and phosphorylation, in the NF-κB pathway. For 

example, competition between acetylation and ubiquitinylation on the same lysine residues 

is observed for transcription factor p65 [5]. This highlights the fact that acetylation is not a 
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sole determining factor but, rather, is a regulator working in concert with other PTMs at 

multiple levels in signaling cascades.

Lysine acetylations are generally regulated by ‘writers’ and ‘erasers’, which are denoted as 

histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, owing to 

their original discovery as histone-modifying enzymes. An important future challenge is to 

identify and quantify distinct HAT and HDAC activities in distinct signaling pathways such 

as the NF-κB pathway, as well as their aberrations in disease (models). Considering the 

importance of lysine acetylation in the NF-κB pathway (Fig. 1), small molecule modulators 

of HATs and HDACs have great potential to regulate this signaling cascade specifically, 

which is an important aim in drug discovery.

Focusing on the NF-κB pathway, here we summarize the effects of lysine acetylation of the 

p65 transcription factor as well as histones. In addition, we highlight the role of crosstalk 

between lysine acetylation and other PTMs such as methylation and phosphorylation. 

Furthermore, we discuss the effects of frequently used small molecule HAT and HDAC 

inhibitors on the NF-κB signal transduction pathway and inflammatory responses in vitro 
and in vivo.

Lysine acetylation as a regulator of the NF-κB pathway

In 2001, it was discovered that acetylation of p65 inhibits binding to the inhibitory complex 

IκBα, and thus stimulates gene transcription; whereas deacetylation promotes IκBα binding 

and nuclear export [6]. This study triggered intense interest in lysine acetylations of the 

seven lysine residues (122, 123, 218, 221, 310, 314, 315) of p65 that are subject to this 

PTM. These acetylations have specific roles in activation of the NF-κB pathway and have 

been previously reviewed [7,8]. Importantly: acetylation of lysines 122 and 123 decreases 

DNA binding [9]; acetylation at lysines 218 and 221 increases binding to κB enhancers; and 

acetylation at lysine 310 is essential for full transcriptional activity [10]. In addition, 

acetylations of specific lysine residues in histone H3 and H4 play an important part in NF-

κB-mediated gene transcription as reviewed [3].

Lysine acetylation does not act alone: crosstalk between lysine acetylation 

and other PTMs

The acetylation of lysine residues in the NF-κB transcription factor and in histones (and 

numerous other cellular targets) can be dramatically affected by the PTM state of other 

constituent amino acids. These so-called ‘crosstalk’ mechanisms act, presumably, via 
increasing or decreasing the affinity of the substrate protein for the respective HAT or 

HDAC complexes involved in their acetylation. A recent review nicely illustrates the 

importance of crosstalk between PTMs on the NF-κB transcription factor [8]. In addition, 

previous reviews illustrate the importance of crosstalk between lysine acetylation and other 

PTMs in the histones [11–14]. Here, we highlight some specific examples that demonstrate 

the crucial involvement of crosstalk in NF-κB activation as well as in histones implicated in 

inflammation. The examples described below are limited to known cases of crosstalk within 

the same protein (cis crosstalk). In addition, a growing number of examples make it clear 
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that similar mechanisms also operate in modulating protein–protein interactions including 

those between the peptides tails of different histones (trans crosstalk).

A specific example of crosstalk in the NF-κB pathway involves the phosphorylations of p65 

at serines 276 and 536, which serves to enhance the p300-mediated acetylation of lysine 

310. This, in turn, leads to an overall transcriptional activation of the NF-κB pathway (Fig. 

2a) [15]. In addition, it has been found that phosphorylation of serine 276 is required for 

binding of p65 to the coactivator CREB-binding protein (CBP), which promotes 

proinflammatory gene transcription.

Phosphorylation also has a major role in the crosstalk observed within histone proteins. One 

of the earliest reported and best-studied examples of crosstalk in histones involves the 

phosphorylation of serine 10 in histone 3 (H3S10) and its effect on lysine acetylation (Fig. 

2b). Several kinases are known to phosphorylate H3S10. These include AuroraB and other 

members of the Aurora/Ipl 1 kinase family, as well as kinases implicated in transcriptional 

regulation such as the yeast non-specific serine/threonine protein kinase 1 (Snf1) and 

mammalian Proto-oncogene serine/threonine protein kinase 1 (Pim1), Ribosomal s6 kinase 

(Rsk), Mitogen and stress activated kinase 1 (Msk1), and Mitogen and stress activated kinase 

2 (Msk2) kinases [16–18]. Phosphorylation of H3S10 leads to the stimulation of acetylation 

at lysine 14 (H3K14) with the prototypical histone acetyltransferase general control 

nonderepressible (Gcn)5 displaying an up to tenfold preference for acetylation of H3K14 

when H3S10 is phosphorylated [19,20]. In contrast to the enhancement of acetylation at 

H3K14, phosphorylation of H3S10 completely blocks acetylation at the directly adjacent 

lysine 9 (H3K9) residue [21], clearly illustrating the varying crosstalk effects that the same 

PTM can impart.

In addition to serine phosphorylation, the methylation of lysine and arginine side chains is 

another common PTM known to impact lysine acetylation via crosstalk. The side chain of 

lysine can be mono-, di- or tri-methylated, often with varying crosstalk effects (Fig. 2c). For 

example, lysine methylation at lysine 4 in histone H3 (H3K4) leads to increased acetylation 

of H3K14 and other lysine residues in histone H3 by p300 and other acetyltransferases [22]. 

Further evidence suggests that the degree to which H3K4 is methylated directly influences 

the associated extent of H3 acetylation [23]. As a result, the trimethylation of H3K4 is 

generally seen as a marker for transcriptional activation given its direct role in promoting 

acetylation. Conversely, trimethylation of lysine 9 in histone 3 (H3K9) is linked to 

transcriptional repression and is associated with reduced histone H3 acetylation. In vitro 
studies have revealed that trimethylation of H3K9 leads to inhibition of H3 acetylation at 

lysines 14, 18 and 23 [23]. Given their opposing effects, it is perhaps not surprising that 

methylations of H3H4 and H3K9 appear to be mutually exclusive [22,24,25].

Likewise, the arginine side chain can be either mono-methylated or, more commonly, di-

methylated to yield either asymmetric or symmetric dimethyl arginine. Interestingly, 

numerous examples of crosstalk between arginine methylation and lysine acetylation are 

known. A specific example involves the asymmetric dimethylation of arginine 3 in histone 4 

(H4R3) by protein arginine N-methyltransferase (PRMT)1, which leads to increased histone 

4 acetylation by p300, with the largest enhancement observed for acetylation at lysine 8 and 
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12 (Fig. 2d) [26]. Given its role in promoting H4 acetylation, the asymmetric dimethylation 

of H4R3 by PRMT1 is generally associated with the activation of gene transcription. In a 

striking example of the subtleties at play in histone crosstalk, it has also been found that 

symmetric dimethylation at H4R3, as performed by PRMT5, antagonizes the crosstalk 

effects induced by PRMT1 (Fig. 2d). Counter to asymmetric dimethylation at H4R3, the 

PRMT5-mediated symmetric dimethylation of the same arginine residue is associated with 

deacetylation of H4 and leads to repressed transcription [27,28]. In addition, a recent report 

by Zheng and colleagues has shown that the acetylation of lysine 5 in histone 4 differentially 

affects methylation at H4R3 [29]. Acetylation of H4K5 was found to deactivate the 

asymmetric dimethylation of H4R3 by PRMT1 while enhancing symmetric dimethylation at 

the same arginine by PRMT5. From this, it is clear that crosstalk mechanisms play a 

significant part in acetylation of the p65 transcription factor and histones. Exploiting such 

mechanisms could provide avenues for the development of novel therapeutics designed to 

affect acetylation.

HATs in the NF-κB pathway

On the basis of their primary structure homology, HATs have been divided into five families. 

Three families that have been studied extensively are the Gcn5-related N-acetyltransferase 

(GNAT) family, represented by p300/CBP-associated factor (PCAF) and Gcn5; the 

p300/CBP family, including CBP and p300; and the MYST (the acronym MYST derives 

from the four founding members of this HAT family: mammalian MOZ, yeast Y bf2/Sas3 

and Sas2, and mammalian Tip60) family including males absent on the first (MOF) and 

TAT-interacting protein 60 (Tip60) [30]. The HATs p300 and PCAF acetylate lysines 122 

and 123 of p65 [9] and p300 has been described to acetylate lysines 310, 314 and 315 [31]. 

The role of HATs in acetylation of the NF-κB transcription factor as well as acetylation of 

the histones connected to κB promoters has been reviewed [3]. Interestingly, a recent study 

demonstrates that Tip60 is a co-activator of several NF-κB target genes and exerts its action 

via protein–protein interactions with p65. It appears that Tip60 binds earlier to the κB 

promoters than p65 and simultaneously promotes histone acetylation, which indicates that 

Tip60 could serve as a platform to promote NF-κB-mediated gene transcription [32].

HAT inhibitors mainly lead to inhibition of the NF-κB pathway

Several inhibitors of histone acetyltransferases are known and have been previously 

reviewed [3,33]. The natural product anacardic acid (Fig. 3, Table 1) is a small molecule 

inhibitor of HATs such as p300 and PCAF [34] and inhibits NF-κB-mediated gene 

transcription [35]. This inhibitor has been used as a starting point for the development of 

novel inhibitors such as the alkylidene malonates [36]. The novel anacardic acid derivative 

MG149 (Fig. 3, Table 1) demonstrates selectivity toward the MYST type of HATs: Tip60 

and MOF [37], and this molecule effectively suppresses suberanilohydroxamic acid 

(SAHA)-induced hyperacetylation [38]. In addition, DNA microarrays demonstrated that 

MG149 inhibits the p53 and the NF-κB pathways, as well as a very limited number of other 

pathways [38].

Dekker et al. Page 4

Drug Discov Today. Author manuscript; available in PMC 2017 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Next to this, HTS identified the isothiazolones as HAT inhibitors [39]. However, attempts to 

optimize this class failed to give inhibitors with higher potency and selectivity [40–42], 

which could mainly be attributed to the exceptionally high reactivity of isothiazolones for 

thiolates [43]. Fortuitously, virtual screening enabled the identification of C646 (Fig. 3, 

Table 1) as the first potent, selective and cell-permeable p300 HAT inhibitor (Ki 0.4 μM) 

[44]. In addition, another recent virtual screening study describes the identification of a 

novel cell-permeable inhibitor (compound 2, Fig. 3, Table 1) of p300, which is active at the 

same concentrations as C646 [45]. This demonstrates the strength of virtual screening as a 

strategy for identification of novel inhibitors for challenging targets such as HATs.

Regarding the use of C646 in cellular models, one study on prostate cancer cell lines 

demonstrated that siRNA-mediated and C646-mediated inhibition of p300 increase 

apoptosis, which is, among other things, caused by inhibition of the androgen receptor and 

the NF-κB pathway [46]. Another group demonstrated that p300 binds to the 

cyclooxygenase (COX)-2 promoter, and that inhibition of p300 activity by C646 diminished 

the p300 promoter binding and the expression of COX-2. Interestingly, this study was done 

in animal models in which C646 was administered via a lumbar intrathecal catheter, which 

demonstrates that HAT inhibitors can be administered locally in animal models [47]. Taken 

together these data demonstrate that C646 performs very well in cell-based studies and upon 

local administration in animal models. Inhibition of p300 by siRNA and the chemical 

inhibitor C646 leads to subsequent inhibition of, among others, the NF-κB pathway.

HDAC classes

The HDACs are a highly homologous group of enzymes that are classified based on their 

primary and secondary structure. The zinc-binding HDACs are denoted class I (HDAC 1, 2, 

3 and 8), class IIa (HDAC 4, 5, 7 and 9), class IIb (HDAC 6 and 10) and class IV (HDAC 

11). In addition, there is a group of NAD+-dependent HDACs, which are denoted class III 

(sirtuin 1–7) [48].

Inhibitors of zinc-dependent HDACs have ambiguous effects on the NF-κB 

pathway

Although HDAC inhibitors were initially discovered as anticancer agents, many studies 

indicate their ability to suppress inflammatory responses. In this respect, early evidence 

stems from a study demonstrating that phenylbutyrate and trichostatin A (Fig. 3, Table 1) 

inhibit tumor necrosis factor (TNF)α expression in inflamed tissues in a rheumatoid arthritis 

animal model [49]. Another early study demonstrates that HDAC inhibitor SAHA (Fig. 3, 

Table 1) inhibits lipopolysaccharide (LPS)-induced cytokine release in vitro and in vivo 
[50]. Interestingly, this anti-inflammatory effect was observed at much lower concentrations 

than tumor suppressive effects in vitro. The anti-inflammatory potency of HDAC inhibitors 

has been described in several reviews [51–53]. It was observed that HDAC inhibitors such as 

SAHA and Trichostatin A (TSA) delay and reduce NF-κB nuclear translocation and gene 

expression upon TNFa stimulation [54]. The potential of HDAC inhibitors to suppress 

inflammation is also nicely illustrated by compound 1, recently described by Lee et al. (Fig. 

3, Table 1) [55]. This novel HDAC inhibitor exhibits nanomolar HDAC inhibitory potency 

Dekker et al. Page 5

Drug Discov Today. Author manuscript; available in PMC 2017 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and demonstrated a strong suppressive effect on inflammatory mediator expression in animal 

models. Most interestingly, a recent study applied the HDAC inhibitor givinostat (Fig. 3, 

Table 1) in a relatively small patient group suffering from systemic-onset juvenile idiopathic 

arthritis, and demonstrated a clear therapeutic benefit and excellent safety profile [56].

In contrast to inhibiting inflammation, other studies have also demonstrated that certain 

HDAC inhibitors can also lead to the stimulation of proinflammatory gene transcription. 

Initial studies on NF-κB acetylation reported that HDACs 1–3 (class I) can deacetylate p65 

and negatively regulate gene transcription [6,57]. In addition, HDAC activity leads to histone 

deacetylation, which is generally associated with inhibition of gene transcription. Both 

factors imply that HDAC inhibitors stimulate proinflammatory gene transcription, which is 

supported by several studies. Indeed, it was demonstrated that SAHA [58], TSA [59,60], 

MS275 [58,61,62] and LBH589 [61] enhance NF-κB activation (Fig. 3, Table 1).

Toward elucidation and selective modulation of specific HDACs in the NF-

κB pathway

Such contradictory findings can be explained by applications of different cell types and the 

lack of selectivity of the employed HDAC inhibitors. Most frequently, applied HDAC 

inhibitors target all zinc-dependent HDACs, because most rely on the strongly zinc-

coordinating hydroxamic acid functionality (carried by pan-HDAC inhibitors; Fig. 3, Table 

1) [62]. This hampers elucidation of the relevance of HDAC activity in specific disease 

models. However, over the past few years, more selective inhibitors have become available. 

An example includes entinostat/MS275 (Fig. 3, Table 1), which is HDAC1–3 (class I) 

selective [62]. Also, the first HDAC class IIa (HDAC 4, 5, 7 and 9) selective inhibitors with 

a trifluoromethyloxadiazole scaffold (TFMO; Fig. 3, Table 1) were recently identified [63]. 

Interestingly, this novel class of inhibitors lacks the usual hallmark of class I and class IIb 

inhibition: cell death or apoptosis. This is beneficial for applications in non-oncology areas 

such as inflammation.

Several studies have already shed more light on the role of specific HDACs in the NF-κB 

pathway. A noteworthy recent study reports that HDAC3 deacetylates p65 on lysines 122, 

123, 314 and 315, and that it is a positive regulator of inflammatory gene expression [64], 

which might seem contradictory to the previously mentioned initial studies [6,57] and 

studies using MS275 [58,61,62]. However, note that these concern not only HDAC3 but also 

HDAC1 and 2. This indicates that future studies should be aimed at developing more 

selective HDAC inhibitors that target, for example, HDAC3. Additionally, there have also 

been interesting reports on the role of SIRT type HDACs in the NF-κB pathway [65]. For 

example, HDAC SIRT1 deacetylates p65 at lysine 310 and thus inhibits the NF-κB 

transcriptional activity [66]. Interestingly, the small molecule SIRT1 activator SRTCX1003 

(Fig. 3, Table 1) inhibits NF-κB activation in vitro and LPS-induced production of 

proinflammatory cytokines in BALB/c mice [67]. Also, SIRT2 interacts with p65, and 

deacetylates lysine 310, thereby inhibiting NF-κB transcriptional activity. Sirt2 knockdown 

results in increased expression of a subset of NF-κB target genes, indicating involvement of 

Sirt2 in the expression of a subset of NF-κB target genes [68]. This suggests that SIRT 
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activators have a good potential for further development into molecules that suppress NF-κB 

activation in inflammation.

Concluding remarks

Lysine acetylation is a key regulator of the NF-κB pathway, which works in concert with 

other PTMs via complex crosstalk mechanisms to determine the signaling output. 

Importantly, small molecule modulators of its writers (HATs) or erasers (HDACs) have been 

demonstrated to regulate NF-κB signaling, suggesting that these are potential drugs for 

inflammatory diseases. An ongoing challenge toward regulation of the NF-κB pathway is 

the development of highly potent molecules that selectively target specific HATs or HDACs. 

Fortuitously, this field has seen remarkable progress over the past few years. Several 

inhibitors now demonstrate specific effects in distinct disease models in cellular systems and 

animal studies, which is very promising for drug discovery. A noteworthy example is HAT 

inhibitor C646. Owing to its high selectivity and potency for p300, this inhibitor mainly 

leads to inhibition of pathways that are connected to NF-κB, the androgen receptor and the 

glucocorticoid receptor in cellular and animal models. Another promising example is HAT 

inhibitor MG149, which mainly inhibits expression related to the NF-κB and p53 pathways.

Additionally, some currently described HDAC inhibitors show encouraging effects in animal 

models and even patients; pan-HDAC inhibitor givinostat displayed promising therapeutic 

benefits in patients suffering from juvenile idiopathic arthritis. An important consideration in 

the development of such agents is the capacity for HDAC inhibitors to show either activation 

or inhibition of inflammatory responses. We presume that a main cause of these ambiguities 

is that different reports employed different cell types. In addition, we speculate that they 

could also be explained by HDAC (non) selectivity of the inhibitors used. In the light of this, 

it is interesting that a recent study demonstrated that HDAC3 is a positive regulator of 

inflammatory gene expression, which deacetylates p65 on four specific lysines. This 

suggests that HDAC3-specific inhibitors, and perhaps more specific inhibitors for other 

HDACs, could unambiguously suppress inflammatory responses. Also, the role of studied 

SIRT type HDACs seems to be mainly inhibition of NF-κB gene transcription and, in line 

with this, SIRT1 activator SRTCX1003 encouragingly reduced inflammatory responses in 

mice. This indicates that activators of SIRT type HDACs could be also be effective in 

suppressing inflammatory responses. However, it often remains unclear which specific 

HDACs need to be targeted by inhibitors or activators. Thus, a challenge lies ahead in 

determining whether specific HDACs target specific lysine acetylations in specific signaling 

cascades, or if their effects are (much) broader (a challenge which also still applies to 

HATs). Finally, in addition to the current approaches of pursuing modulators of HDACs and 

HATs, agents capable of inhibiting (or enhancing) the various enzymes that install PTMs 

that crosstalk with acetylation could also find use as drugs for modulating histone 

(de)acetylation.

Appendix A. Supplementary data

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of the diverse roles of lysine acetylation in the activation of the 

nuclear factor (NF)-κB pathway. Lysine acetylations of the transcription factors as well as 

their co-activators play an important part in the duration of the response and the signaling 

output. Lysine acetylation status of the histones works in concert with acetylation status of 

the transcription factors to enable or disable transcription of specific genes. Crosstalk of 

acetylation with other PTMs is an important component in the NF-κB pathway. 

Abbreviations: HATs, histone acetyltransferases; HDACs, histone deacetylases.
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Figure 2. 
Examples of various post-translational modifications (PTMs) and their crosstalk interactions 

with lysine acetylation in the p65 transcription factor and histone proteins. Abbreviation: 

NF-κB, nuclear factor κB.
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Figure 3. 
Structures of small molecules that interact with writers (histone acetyltransferases; HATs) or 

erasers (histone deacetylase; HDACs) of lysine acetylations.
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Table 1
Small molecules that interfere with writers (HATs) or erasers (HDACs) of lysine 
acetylations, and their selectivity and effects on disease models for NF-κB-mediated 
inflammation

Compound Selectivity Effects in disease models Refs

HAT inhibitors

Anacardic acid p300 and PCAF inhibitor Inhibits the NF-κB pathway [35]

MG149 Tip60 and MOF selective inhibitor Inhibits SAHA-induced hyperacetylation [37,38]

Inhibits the NF-κB and p53 signaling pathways

C646 p300 selective inhibitor (Ki 0.4 μM) Increases apoptosis by inhibition of the androgen receptor and 
NF-κB pathway

[44,46,47]

Repression of gene expression

Inhibition of COX-2 expression

Compound 2 (Fig. 3) p300 HAT inhibitor (IC50 3.4 μM) – [45]

HDAC inhibitors or activators

SAHA Pan-HDAC inhibitor Suppression of LPS-induced cytokine release in vitro and in 
vivo

[50,62]

Trichostatin A (TSA) Pan-HDAC inhibitor Inhibition of TNFα in vitro [49,62]

LBH580 (panobinostat) Pan-HDAC inhibitor Enhances NF-κB activation [61,62]

ITF2357 (givinostat) Pan-HDAC inhibitor Therapeutic benefit in patients suffering from juvenile 
idiopathic arthritis

[56,62]

Compound 1 (Fig. 3) Unknown Inhibition of IL6, PGE2, TNFα and NO in RAW 264.7 
macrophages

[55]

Anti-inflammatory in paw edema mouse model

MS275 (Entinostat) HDAC1-3 selective inhibitor Enhances NF-κB activation [58,62]

TFMO 1 Class IIa selective inhibitor – [63]

SRTCX1003 SIRT1 activator Inhibits NF-κB activation [67]

COX, cyclooxygenase; HDAC, histone deacetylase; IL, interleukin; LPS, lipopolysaccharide; MOF, males absent on the first; NF-κB, nuclear 
factor κB; NO, nitric oxide; PCAF, p300/CBP associated factor; PGE, prostaglandin E; RAW, Abelson murine leukemia virus transformed; SAHA, 
suberanilohydroxamic acid; SIRT, Sirtuin; Tip60, TAT-interacting protein 60; TNF, tumor necrosis factor.
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