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Abstract

For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac 

structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue 

perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), 

fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, 

we explain some fundamental principles of fractal geometry and place it in a familiar medical 

setting. We summarize studies in the cardiovascular sciences in which fractal methods have 

successfully been used to investigate disease mechanisms, and suggest potential future clinical 

roles in cardiac imaging and time series measurements. We believe that clinical researchers can 

deploy innovative fractal solutions to common cardiac problems that might ultimately translate 

into advancements for patient care.

Introduction

Fractal patterns are everywhere: in mathematics1, industry2, the stock market3, climate 

science4, galaxies5, trees6, and even in the films we watch and games we play7, 8 (Fig. 1). 
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Fractal theory has a major role in biology, including in the human heart. As in the 

entertainment industry, the role of fractals in biology has gone beyond helping us to 

formulate theoretical abstractions, and has reached a practical level that expands the 

boundaries of the field. Indeed, one of the first lessons learned from studying the fractal 

nature of the cardiovascular system was that it strives to preserve not stability, but adaptive 

variability — a discovery that redefined canonical notions of cardiac homeostasis9, 10. 

Today in cardiology, we face a new frontier in translating lessons learned from fractal theory 

to care at the bedside11, 12. In this Perspectives article, we update the field with relevant 

results from the studies in the cardiovascular sciences that have successfully used fractal 

analyses to investigate disease mechanisms, and we outline their potential future clinical role 

in measuring the complex biological processes of the human heart.

The link between fractal theory and practical applications to cardiovascular medicine is the 

fractal dimension (FD), a unitless number that measures nontrivial, self-similar scaling. A 

phenomenon is self-similar if the whole resembles its scaled parts, and its self-similarity is 

'nontrivial' if, in essence, the design detail and repetitive arrangement creates a pattern too 

'rough' or 'irregular' to be defined by Euclidean geometry. For example, a simple line is self-

similar, but only trivially so. By contrast, a branching line that sprouts four branches each 

two-fifths the size of, but otherwise identical to, the parent is nontrivially self-similar. 

Moreover, this branching line is infinitely self-similar if every branch forever sprouts new 

branches using that same four to two-fifths scaling rule13 (Fig. 2).

In fractal parlance, the FD measures a phenomenon's 'complexity', which is the logarithmic 

ratio of the change in detail to the change in scale. The changes in detail and scale are 

related by the fundamental fractal relation N ∝ εFD, from which the FD is found by taking 

the log of each side and solving for the exponent: FD = log N/log ε (Ref. 13). The change in 

detail in our hypothetical pattern is the number of sprouts per branch (N = 4), and the change 

in scale is the factor relating sprout size to parent size (ε = (2/5)−1 = 5/2). Its FD, then, is log 

4/log (5/2) = 1.51. This number describes a phenomenon existing between the bounds of the 

familiar notion of dimension: a simple line, for instance, has an FD of 1, and a plane has an 

FD of 2 (Fig. 3), but the length of the branching line described above falls between these. 

This example illustrates a general rule that separates the FD from traditional notions of 

dimension: whereas the familiar dimension must adopt only integer values, fractal 

dimensions can be integer or fractional1, 13.

The FD can be calculated for other types of patterns. One type is the classic example of a 

theoretical contour, analogous to the classic example of a coastline13 or — relevant to 

cardiology — the edge of an infarction scar. If the pattern of a contour scales as a fractal, the 

boundary appears equally invaginated regardless of the magnification with which it is 

examined or, in other words, it never resolves into a smooth curve lacking detail. Measuring 

the changes in detail and scale for a contour can be understood through the mental exercise 

of measuring it by laying sticks of a fixed length, end to end, along the contour and counting 

the sticks, then reiterating the process using shorter and shorter sticks. The number of sticks 

at any size is the detail (N) and the length of the measuring stick relative to its previous 

length is the scale (ε−1) in the fundamental fractal relation. If the pattern scales as a fractal, 

the number of sticks required increases as shorter and shorter sticks are used. For an 
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infarction, decreasing the size of the measuring stick is analogous to zooming in with a 

microscope or increasing the resolution of a digital image.

The essential principles inherent in the fundamental fractal relation can be applied to 

virtually any pattern type or number set. In cardiology, this means, in addition to the 

branching patterns and contours discussed above, textures, 2D and 3D spaces, and time 

series data. In practice, fractal analysis is usually done with automated, user-friendly 

software that rapidly analyses patterns obtained from a variety of digital signal recording 

methods, bioinformatics tools, and imaging modalities.

The empirical FDs thus determined differ from theoretical FDs in particular ways. One is the 

limit of scaling, which manifests in two important ways: in the phenomenon itself and in the 

methods of determining the FD. The limits of natural spatial phenomena relevant to 

cardiology rest in the body not allowing infinite self-similarity over progressively smaller 

distances, because organs are composed of cells, solutions, and embedding matrices, all of 

which are in turn made up of components that at some point reach a finite size. Just as 

spatial fractal behaviour can be seen in anatomical structures, temporal fractals can be seen 

in physiological signals such as blood pressure or heart rate, characterized by fluctuations 

that show equivalence across a range of timescales (cf. space-scales)14. Again, these 

parameters are limited at short timescales because heart rate is observable only once per 

heart beat.

The second factor — scaling limits attributable to methodology — rests in the resolution of 

the method used to obtain and then analyse temporal and spatial signals. In cardiology, 

examples include low-resolution versus high-resolution echocardiography for temporal 

signals and the resolution available in magnetic resonance versus X-ray versus light 

microscopy for spatial signals. Further methodologically imposed limits exist in the process 

of obtaining a pattern: for digital images of cardiovascular fractals, for instance, pixel and 

image size limits of the software and particular computer hardware used superimpose limits 

on the original signal-gathering methods.

Another way in which empirical FDs differ from theoretical FDs is that phenomena in nature 

generally do not reproduce the identical pattern, but statistically similar patterns. As an 

example, the branching coronary tree (Fig. 4a) differs from our hypothetical branching 

model (Fig. 2) by sprouting not in a strictly repeated pattern relative to parent branches, but 

in an essentially similar repeating pattern. This general feature of natural scaling is not an 

error of imprecision; rather, in biology it supports adaptive variability15 and is likely to be 

determined by different recursive generative processes that operate across space-scales 

within systems (for example, the 'rules' responsible for generating capillaries are not 

identical to those generating large arteries, probably because physical influences of viscosity 

and inertia differ). Consequently, the fractal complexity of spatial structures in cardiology 

would be expected to differ based on physiology16, 17, 18. It has been argued that such 

natural patterns are more accurately called 'random', 'statistical', or 'quasi' fractals rather than 

simply 'fractals', and that the term 'scale-invariant' should be used to distinguish patterns that 

are not strictly self-similar. In most of the published literature and in this Perspectives 

article, however, the term 'fractal' is used to describe biological phenomena irrespective of 
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practical limits, just as the terms 'cyclical' and 'constant' are used for behaviours that are not 

so in a mathematical sense. Readers should, therefore, consider the idiom as well as the 

method by which fractal scaling is measured when reading that a biological phenomenon has 

a fractal dimension or fractal architecture13, 19. The important point is that fractal patterns 

in the heart, although they might not scale indefinitely in space or time, are nevertheless 

perfectly amenable to fractal analysis20, so the FD can still be used to describe them (Fig. 

3b–e).

Biological systems and organogenesis

In general, biological systems do not have one overarching FD. From genome to proteome 

to morphology to function, developmentally and over time, the heart exhibits features in 

both the spatial and temporal domains that are amenable to fractal analysis. Features for 

which FDs have been found in the heart include temporal recordings of signals, such as 

electrocardiograms14, pulse21, pressure and flow22, 23, as well as arrangements of spatial 

components such as DNA sequences24, proteins25, extracellular matrix constituents26, 

trabeculae27, and, as already alluded to, coronaries and infarction scar boundaries28, 29, 30. 

Spatial fractal patterns in the heart are extracted by imaging instruments and bioinformatics 

tools at various levels of its organization (genome, proteome, organellar, cellular, tissue, 

whole-organ), and they can describe the complexity of signalling pathways, metabolic 

networks, and macroscopic structures28.

Despite the diverse range of phenomena within the cardiovascular system amenable to 

fractal analysis, some motifs can be expected to repeat over broad scales. Cells, tissues, and 

organs perform specific tasks in a coordinated manner. At the cellular and subcellular levels, 

diffusion has a major role in the transport of food, waste, gas, and heat. At this end of the 

scale, cell size is constrained by the surface-to-volume ratio needed for efficient diffusion31, 

as dictated by the fundamental laws of thermodynamics32.

For multicellular organisms, the smallest theoretical unit is not really 'one cell', but the 

combined 'service volume–transport system complex'. This theoretical unit supports 

transportation, distribution, and exchange over a wide range in volume and mass as it fills 

the 3D space of organs and organisms18, covering nine orders of magnitude from the cell to 

a gram of tissue33 and, for mammals, a further eight orders of magnitude (for example, from 

the 1.5 g of a white-toothed pigmy shrew to the 130 tonnes of a blue whale34).

The allometric scaling required for organogenesis is a familiar and pervasive topic in 

biology, and typically follows simple quarter-power laws (such as three-quarter power 

scaling for metabolism, or one-quarter power for growth rates, size, or heart rates). Indeed, 

the whole of metazoan organogenesis is underlain by fractal principles, whether by 

confluence, intussusception, clefting, or sprouting35, resulting in hierarchical, branching 

patterns of cellular clusters and transportation networks that repeat a fundamental design 

detail over many orders of magnitude. Several human organs are founded on such a fractal 

anatomy. Some examples are coronary vessels and Purkinje fibres in the heart, neurons, 

bronchial trees, and the biliary and urinary tubing systems in liver and kidneys, 

respectively30. From material science, moreover, we have learned that fractal 3D solids can 
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be created using only three things: growth, competition or selective pressure (for a resource 

needed for energy-efficient growth), and a degree of randomness36. All these factors also 

apply to biological tissues, in which controlled intercellular communication is layered on top 

of diffusion to determine the destination architecture.

Fractal applications in cardiology

'Omic' complexity

Many of the FDs that have been determined for the heart have far-reaching practical 

implications. One practical matter that fractal analysis is helping to resolve is today's data 

deluge of genomic, transcriptomic, proteomic, and metabolomic information37 (Fig. 5). At 

the cellular level, the cardiac myocyte, like all cells, is a complex series of highly 

interconnected 'omic' systems whose structure and functional behaviour are fractal, variable, 

and adaptive15. With regard to the genome, for instance, two topics that fractal analysis is 

helping to clarify are the inherited heart muscle disease hypertrophic cardiomyopathy 

(HCM) and our understanding of so-called 'junk DNA'. HCM is the most common 

monogenic heart disease, predominantly caused by autosomal dominant mutations in 

sarcomere protein genes38, 39, in 20% of patients involving mutations in the β-myosin 

heavy chain (myosin 7) gene (MYH7) — an intron-containing gene40. Unexpected MYH7 
intron retention in mature mRNA transcripts has been linked to heart failure41, suggesting 

that the introns might be especially important in HCM. 1D DNA walks that provide a 

graphical representation of the human MYH7 DNA sequence24 have shown statistical scale-

invariance in the arrangement of introns, in the form of long-range correlations consistent 

with a fractal pattern24. Coding DNA and intron-free genes do not have this property24. 

Given that these introns can be pathogenic, coupled with the assumption that their fractal 

complexity and algebraic distribution42 potentially underlies a biologically relevant 

organizational role, adds support to a growing body of evidence43 suggesting that their 

designation as 'junk DNA' might be a misnomer. This fractal landscape does not stop with 

the genome, but persists into the human proteome: the distribution of pentapeptide 

redundancies in human proteins has been studied by fractal analysis, and the proteomic FD 

has been used to qualitatively distinguish and catalogue short linear peptide motifs critically 

involved in cell biology25.

Cellular and tissue complexity

Fractal analysis has also provided insights into the cardiovascular system at the cellular and 

tissue levels. Fractal concepts have been used to study the morphology of microtubules and 

the actin cytoskeleton44 in cardiac myocytes (Fig. 4b), to grade the severity of acute 

rejection in haematoxylin and eosin-stained biopsy samples from patients who have 

undergone heart transplantation45, and to compare collagen deposition and organization in 

the hearts of normotensive and hypertensive mice26. The last study suggested that FD 

results can be used to quantitate differences between two types of myocardial extracellular 

matrix fibrosis:reparative fibrosis, in which voids from myocyte loss fill in with 

characteristically disordered and space-filling collagen; and reactive fibrosis, in which there 

is little myocyte loss but increased collagen deposition occurs in a characteristically ordered, 

less space-filling pattern. The investigators suggest that what the FD quantitates is 
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potentially related to stiffening of the myocardium and might be relevant to models of 

scarring in general, and specifically to pharmaceutical strategies targeting transcription 

factors implicated in human cardiac fibrosis.

In cardiac electrophysiology, a need exists to combine in vivo imaging techniques with 

computational modelling to reconstruct accurately the 3D geometry of the complex human 

Purkinje network. These technologies could support the design of personalized strategies for 

single-ventricle or biventricular pacing, radiofrequency ablation, and cardiac defibrillation. 

Manual generation of Purkinje networks is complicated, low-quality, and time-consuming, 

so electrophysiologists and bioengineers have partnered to develop fractal tree algorithms 

for a more realistic simulation of the human cardiac excitation sequence46.

Clinical, high-resolution myocardial tissue perfusion imaging technologies across 

modalities, including cardiovascular magnetic resonance (CMR)22, stand to gain from 

fractal insights into the roles of myocardial local mechanics, metabolism, and regional flows 

in causing regional myocardial blood flow heterogeneity. Animal-based fractal analysis 

research of the myocardium using microspheres has shown that, in the absence of coronary 

disease, regional myocardial blood flow heterogeneity was caused by local, metabolically-

driven differences in vasomotor regulation and not by local differences in vascular 

anatomy23. This revelation — that physiologically there are normally some low-flow 

regions in the heart that are not at all ischaemic — might be highly clinically relevant. If this 

phenomenon is occurring on the macroscopic scale, appreciating it could potentially avoid 

some false-positive diagnoses of regional ischaemia and unnecessary referrals for invasive 

coronary angiography.

Macroscopic structure and function

Fractal analysis has been applied to transthoracic echocardiography images, and recent work 

indicates that the FD might have a role in clinical echocardiography. One study, for example, 

used texton-based feature extraction to detect areas of myocardial infarction 

automatically47. 'Texton' refers to fundamental microstructures in natural images or 

subtleties of image texture related to preattentive human visual perception48. The algorithm 

used in the study examined minute pixel variations in single echocardiographic views of the 

heart. It used a total of eight features, including one based on fractal analysis that measured 

surface roughness as an FD47. The results from the 160 individuals (50% with infarction) 

are especially promising given that the method is automated, foregoing the need for the 

operator manually to define the part of the image to assess.

We have successfully applied box-counting fractal analysis (Fig. 3b–d) to CMR images to 

quantify left ventricular myocardial trabeculae49. We initially used the FracLac for ImageJ 

plug-in, then translated to MATLAB, and finally to dedicated commercially and publicly 

available Fractal Analysis plug-ins (implemented in cvi42 and OsiriX50, respectively). 

Using this method, the endocardial complexity of the normal human left ventricle can be 

measured (that is, a measure of the extent to which endocardial contours fill the 2D image 

space). The FD of the human left ventricle changes in a characteristic pattern from base to 

apex49, recapitulating the fractal observations along the length of the left ventricle in the 

developing mouse heart, where a 'compaction' process accompanies the development of the 
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coronary arteries51. The FD of trabeculae varies considerably in the adult population (Fig. 

3e), differing by ethnicity, left ventricular mass, the presence of hypertension, and increased 

body mass index52.

In another study, CMR fractal analysis revealed how heart failure with either reduced or 

preserved ejection fraction53 shared a common trabecular phenotype, and how the method 

could have a role in refining the diagnosis of left ventricular noncompaction49. CMR 

trabecular fractal analysis could be used to detect the subtle abnormalities in HCM before 

the development of left ventricular hypertrophy27. An increased trabecular FD seems to be a 

feature of the subclinical HCM phenotype, and might be useful as part of a scoring system 

for the prediction of genetic carriage in relatives of affected probands during family 

screening. Further work is needed to understand the role of such imaging approaches in 

family screening when genotyping finds no pathogenic mutation in the proband54. Fractal 

analysis could be particularly useful in HCM, because studies in mouse models suggest that 

HCM might be a form of 'cardiac neotonization' (Ref. 55), with preservation of 

embryological crypts and alterations in trabeculae. These alterations would be expected to 

manifest as increased FD.

Heart physiology analysis

Embedded in the signal of the healthy human heart rate and blood pressure power spectrum 

is a characteristic frequency regime over time with three power components: a high-

frequency component reflecting respiratory fluctuations, a low-frequency component, and a 

very low-frequency component. Fractal measures have been used to provide a quantitative 

description of irregularities within these complex signals and to study their autonomous 

modulation at multiple levels14. Generally, a loss of heart-rate variability predicts higher 

mortality56. Results have aided the diagnosis, characterization, and classification of cardiac 

pathologies, informed about patients' risks of adverse events (malignant and nonmalignant 

arrhythmias, sudden cardiac death) and, when applied to intrapartum fetal heart-rate 

variability monitoring, yielded better acidosis detection compared with traditional 

methods57, thus potentially reducing morbidity, mortality, and long-term sequelae 

associated with fetal hypoxia.

Temporal fractal analysis of physiological signals aims to identify the presence of one or 

more of the following features: self-similarity, power law scaling relationship, and scale 

invariance58. Signals in physiology can be regarded as analogous to either of two types of 

discretely sampled fractal processes: stationary fractional Gaussian-type (of constant 

variance over time) or nonstationary fractional Brownian-type (more common for 

physiological signals, where variance increases with time)58. Dichotomizing a signal by this 

model a priori can guide the choice of fractal method for a given time series analysis. The 

three main fractal methods (two monofractal, and one multifractal) that have been used to 

study physiological cardiac signals are respectively: a power law analysis using the Fourier 

method that evaluates the inter heart-beat intervals to generate a power spectrum density 

(PSD) summarizing the frequency harmonics embedded within the cardiac rhythm (that is, it 

characterizes power law scaling in the frequency domain); a detrended fluctuation analysis 

(DFA), which measures the degree of correlation among timescales embedded within the 
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heart-beat intervals (that is, it characterizes power law scaling in the time domain); and a 

multifractal analysis which assumes that different subparts of the heterogeneous heart-rate 

signal are characterized by local regularities, each with different FD (it also characterizes 

power law scaling in the time domain). Although these methods differ in their operational 

domain (frequency versus time), their fractal measures do relate to each other and to the 

overarching FD in a simple manner (conversion equations linking PSD and DFA outputs to 

the FD are provided in the legend to Fig. 6).

For the PSD/Fourier method, the slope of the line relating log frequency to log PSD is the 

single fractal scaling exponent, β (Fig. 6a). For the DFA method, the average amount of 

fluctuation over bins of different sizes is measured (similar to the box-counting method, but 

this time in the temporal domain). DFA, therefore, measures the root mean square deviation 

between the signal and its trend in each bin and then plots this as a function of bin size. DFA 

generates a short-term exponent (α1) and a long-term exponent (α2)21 (Fig. 6b). The DFA 

for a healthy (young) heart forms almost straight-line segments with two slopes, α1 and α2 

— a hallmark of ideal fractal behaviour. Patients with type 2 diabetes mellitus, for example, 

show increased α slopes which are suggested as indicators of autonomic dysfunction59. 

Fractal indices of heart-rate variability have demonstrable prognostic capacity when applied 

clinically: α1 predicts sudden cardiac death in the elderly60 and echocardiographic 

deterioration in dilated cardiomyopathy61, whereas α2 predicted sudden cardiac death and 

survival functions in patients with heart failure and implantable cardioverter–defibrillators in 

SCD-HeFT62. Although survival in patients with heart failure can be improved by 

implantable defibrillators, <25% of patients who receive a device actually experience sudden 

cardiac death or appropriate shock therapy63. If sudden cardiac death prediction models for 

heart failure were to incorporate fractal indices of heart-rate variability, patient selection for 

implantable defibrillators might be refined, helping to exclude those unlikely to benefit from 

device implantation. Multifractal analysis, which produces a range of exponents (Fig. 6c), 

has been used to distinguish between healthy and diseased heart signals in heart failure and 

coronary artery disease64, 65, and to measure the effect of percutaneous coronary 

intervention and open-heart surgery on the behaviour of the human heartbeat66.

Practical challenges

Clinicians seeking to use fractal algorithms to interrogate human biology should bear in 

mind this statement published in The Lancet: “Since fractal analysis is essentially 

mathematical, as with all mathematical models, there must be a close link with the 

biological event, if the model is to be useful” (Ref. 67). For spatial or temporal fractal 

analyses to be deployed securely in clinical hands, their mathematical bases need to be 

understood; they must be applied using rigorous, repeatable, and validated methods; and 

their outputs must be interpreted within an ever-changing clinical context.

If a spatial fractal analysis is to be undertaken in patients, many aspects of image acquisition 

and postprocessing (such as segmentation algorithm to create a binary outline, mask size, 

limits of the bounding box, range of grids) need to be carefully specified because they can 

affect the computed FD. For example, in the case of boundary-line fractal analysis of 

myocardial trabeculae by CMR, initial studies have shown that the most valid trabecular 
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contours were obtained using an automated level-set segmentation algorithm that avoided 

user-dependent image-intensity histogram adjustment and incorporated a correction for 

intensity inhomogeneities across the cine slice. Using a standardized image acquisition/

postprocessing protocol, the box-counting FD was shown to be robust to field strength 

change (from 1.5 to 3.0 Tesla) and to limited cine slice-thickness variations (from 7 to 8 

mm)54.

For fractal analysis of time series in patients, similar challenges exist. For heart-rate 

variability analysis, some fractal techniques still require the preprocessing or editing of 

premature beats in the recordings68, and particular methods remain sensitive to artefacts and 

alterations in recording conditions (such as duration, body temperature, body position, free-

breathing versus controlled-breathing and physical activities69, and effect of drug therapy 

and dosage alteration66). These factors can all substantially affect short-term metrics, 

making comparisons between studies challenging. Clinicians should also bear in mind that 

fractal measures of heart-rate variability provide only an indirect (qualitative) assessment of 

cardiac autonomic activity, because no direct measurement of either cardiac parasympathetic 

or sympathetic nerve activity is currently possible70.

Future directions

The fractal nature of the human heart should be harnessed for its descriptive, diagnostic, 

prognostic, and therapeutic insights71, which requires the development of innovative 

bedside products based on fractal mathematics. For both spatial and temporal fractal 

analyses, it is not unreasonable to expect these metrics to be of greatest prognostic utility 

when combined with other more familiar clinical or imaging cardiac biomarkers (such as 

blood pressure and serum cholesterol level), so researchers in future studies should aim to 

investigate prospectively the role of such novel compound risk-scoring systems in clinical 

practice. Large-scale studies are needed to explore the superiority of fractal analysis 

methods compared with standard methods in diagnostics and risk stratifications.

For the best-studied application of fractal analysis in heart-rate variability, the global boom 

of wearable fitness technologies means that longitudinal, valid, and potentially reliable RR-

interval data72 are now suddenly available for billions of people around the world. This 

development calls for the establishment of an open-source, Internet-based, high-availability, 

high-throughput, fractal analysis pipeline in which participants can deposit their heart-rate 

data in exchange for meaningful personalized health statistics, while also providing vital 

cardiac insights73.

Many cardiac research groups are already working on new and repurposed fractal tools for 

use in the clinic, but a major barrier to their routine bedside delivery remains the need to 

demonstrate meaningful improvements in patient care when used in randomized, controlled 

trials — an arduous, expensive, and time-consuming process. Thankfully, a number of 

successful and fascinating research applications of fractal analyses have been presented here, 

underscoring the versatility, sensitivity, and multiple potential applications in the 

cardiovascular domain.
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We suggest that clinical delivery of any fractal tool across the cardiovascular domain will 

require three important elements: close collaboration among researchers from different 

disciplines; shared access to good-quality, multicentre 'big data' (Ref. 73) (imaging, 

functional phenotyping, and multi-omics); and fractal toolkits of open-source software, 

discussion sites, online tutorials, publications, and openly accessible training datasets.

Conclusions

The cardiovascular system exhibits fractal complexity at every level and systematic analysis 

has the potential to identify pathological patterns of cardiac 'decomplexification' (such as the 

loss of heart-rate variability in heart failure) or 'hypercomplexification' (such as the 

excessive trabeculation in left ventricular noncompaction). Creative experimentation with 

fractals has yielded encouraging results — cardiologists moonlighting as mathematicians are 

steadily working out the fractal sums to expand our understanding of cardiac development, 

structure, and function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of natural fractal phenomena. a | This photograph by NASAs Spitzer Space 

Telescope shows the spectacular fractal complexity of barred spiral galaxy Messier 83 

(colloquially, the Southern Pinwheel), constellation Hydra at 15 million light years away. 

Image reprinted courtesy of NASA/JPL-Caltech. b | Multifractal patterns have been spotted 

in the quantum realm — at the atomic-scale resolution of a scanning tunnelling microscope, 

the sudden transition at which a material changes from a metal to an insulator, the waves 

associated with individual electrons gain a distinct multifractal pattern74. Permission 

obtained from Ali Yazdani, Physics Department, Princeton University, USA. c | The 

quasifractal complexity of the 'conceptually impossible' fivefold symmetrical arrangement 

seen in the atomic model of an aluminium–palladium–manganese quasicrystal surface. Its 

surface structure can be modelled by a mathematical Penrose tiling that is self-similar at 

different scales. Image reprinted from Thiel, P. A. et al. A distinctive feature of the surface 

structure of quasicrystals: intrinsic and extrinsic heterogeneity. Isr. J. Chem. 51, 1326–1339 

(2011), with permission from John Wiley and Sons.
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Figure 2. 
Theoretical fractal dimension (FD). The concept of nontrivial and infinite self-similarity can 

be appreciated in this hypothetical branching fractal set with theoretical FD of 1.51. 

Although the diagram illustrates three levels of branching, the theoretical pattern persists 

infinitely. ε−1, scale; N, number of measuring segments.
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Figure 3. 
Traditional geometry and spatial fractals. a | The regular Euclidean dimension, meaning the 

familiar geometrical descriptors, assigns an integer to each point or set of points in space: 0 

to a point, 1 to a straight line, 2 to a plane surface, and 3 to a volume or 3D figure. Complex 

macroanatomical or microanatomical structures cannot be analysed by regular Euclidean 

geometry, but can be described quantitatively by fractal geometry as a fractal dimension 

(FD) falling inclusively between these integer topological dimensions. b | The FD for the 

trabeculae in a 2D digitized image such as this cardiovascular magnetic resonance cine left 
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ventricular short-axis slice will lie inclusively between 1 and 2, and for a 3D image, between 

2 and 3. c | The box-counting method works by applying a grid of boxes of side length (e) 

over the image of the fractal (>60 grids are needed for this contour, but only three are 

shown) and counting the number (Ne) of the smallest number of boxes of side length (e) 

required to cover the surface or outline of the object completely. d | The empirical box-

counting FD (1.401 in this example) is estimated from the slope of a regression line when 

log(Ne) is plotted against log(1/e); therefore, FD = log (Ne)/log(1/e). e | Summary of the 

clinically relevant ranges of FD in health and disease derived from cardiovascular magnetic 

resonance research studies in the literature to date. All data reported as mean ± SD or mean 

and interquartile ranges (denoted by *). HCM, hypertrophic cardiomyopathy; HFpEF, heart 

failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; 

LVNC, left ventricular noncompaction.
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Figure 4. 
Cardiology is replete with examples of fractal structures. a | The coronary arterial tree is an 

example of a space-filling fractal network. The fractal branching of the coronary vasculature 

of a mouse heart at embryonic day 18.5 is shown here as a 3D composite image derived by 

high-resolution episcopic microscopy. Image reprinted courtesy of NIMR, MRC/Wellcome 

Images [B0007341]. b | Fractal patterning is seen in this confocal micrograph of cardiac 

muscle stained for mitochondria. Image reprinted courtesy of NIMR, MRC/Wellcome 

Images [B0006854]. c | Aspirin, the most iconic cardiovascular drug has a beautiful 

crystalline structure of fractal complexity. Image reprinted courtesy of Annie Cavanagh/

Wellcome Images [B0006216].
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Figure 5. 
Omic-level complexity in the human heart. Mutations in the lamin gene (LMNA) cause 

dilated cardiomyopathy. The edge-weighted spring embedded human LMNA protein–

protein interactome can be regarded as an example of a 'Sierpinski' weighted fractal network. 

It is constructed from a single node (LMNA) as the initial network (G1), emanating from 

which are further network generations (G2–G4). This interactome was constructed from 287 

binary interactions and excludes spoke-expanded complexes. Topological and functional 

clusters (modules) are visible and it is now possible to use multifractal analysis (a modified 

sandbox algorithm75) to quantify the probability distribution of the clustering coefficient in 

such weighted real-world networks. Interactions sourced using IntAct76 and The Molecular 

INTeraction database [MINT] and manually curated; network created using IntAct View v.

4.2.3.2 and Cytoscape v.3.0.2. For example dataset, see Supplementary information S1 

(spreadsheet).
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Figure 6. 
Monofractal and multifractal analyses applied to heart-rate variability. a | In power law 

analysis, the fractal index β (negative slope) is derived from a log–log plot of the power 

spectrum density (PSD) analysis (calculated from Fourier analysis of heart-rate intervals) 

versus frequency. β is related to fractal dimension (FD) by the following equation: FD = (5 − 

β)/2 (Ref. 58). b | In detrended fluctuation analysis (DFA), the short-term and long-term 

exponents, α1 and α2, are derived from a plot of the amplitude of detrended fluctuations 

(F(n)), calculated from heart-rate intervals versus the block size n (in beats), on a 

logarithmic scale. The short-term exponent, α1, is a measure of the degree to which the beat 

intervals are correlated on a scale of 4–16 beats, whereas the long-term exponent, α2, is a 

measure of the degree to which the beat intervals are correlated on a scale of 16–64 beats. α 
is related to FD by the following equation: FD = 3 −α (Ref. 58). Fractal indexes from 

systems with paradigmatic properties are represented by a solid line for the ideal fractal 

signal which has a β, α1, or α2 of 1. Increase in the slopes implies allostasis and rigidity 

with the maximum being Brownian motion at ~1.5 for α1 or ~−2 for β (double line). 

Decrease in the slopes implies more randomness, that is, approaching white noise (dashed 

line). *Some cardiovascular time series exhibiting antipersistent behaviour can occasionally 

have α1 <0.5 (Ref. 68,77). c | The plot of FD versus the generalized (DFA-derived) Hurst 

coefficient (h(q))78 is referred to as the multifractal spectrum79 (single solid line). The 

width of the spectrum in this example is consistent with multifractal behaviour which 

contrasts with the narrower spectrum (with more constant h(q)) that is observed with 

monofractal signals (double line) or white noise (dashed line) to the left. h(q)MIN and 

h(q)MAX indicate the multifractal spectrum width.
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