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Abstract

The objective of this study was to establish the impact of caloric restriction on high fat diet-

induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric 

restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and 

mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric 

restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high 

fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) 

the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the 

obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels 

comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative 

regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the 

reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric 

restriction.
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Introduction

Recent statistics from the Centers for Disease Control and Prevention estimate that in the 

United States, 16.9 % of children ages 2–19 years and 34.9 % of adults are obese [1]. In 

addition to the host of comorbidities that frequently accompany obesity (i.e. hypertension, 

insulin resistance, cardiovascular disease), skeletal muscle growth signaling is often 
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defective [2, 3]. Hyperactivity of the mechanistic target of rapamycin (mTOR) pathway can 

contribute to impaired growth signaling and insulin resistance in obese humans [3] and 

animals [2]. Consistent with this rationale, we previously reported that short-term treatment 

with the AMPK agonist and mTOR repressor, AICAR, normalized mTOR and downstream 

regulatory processes that control growth (e.g. mRNA translation initiation) to lean levels [4]. 

These and other [5] findings support the contention that normalizing mTOR during or 

following obesity, through the benefits of exercise, diet, or medication, restores growth 

signaling, insulin sensitivity, and even limit muscle mass loss.

The mTOR signaling, specifically mTOR complex 1 (mTORC1) [6, 7], pathway regulates 

anabolic processes, including cell proliferation, protein synthesis, and lipo-genesis. 

mTORC1 is a large protein complex comprised of mTOR protein and multiple subunits, 

specifically the rapamycin sensitive accessory protein, Raptor [8]. Active mTORC1 

phosphorylates downstream target proteins p70 S6 kinase (S6K1) and subsequently 

ribosomal protein S6 (rpS6), promoting translation initiation through eIF3 and the 40S 

ribosomal subunit [9]. mTORC1 is directly activated by GTP-bound Ras-homologue 

enriched in brain (Rheb) protein when the tuberous sclerosis complex (TSC) is directly 

inactivated by Akt and/or ERK1/2 [10, 11]. Conversely, the protein regulated in development 

and DNA damage responses 1 [REDD1; aka DNA-damage-inducible transcript 4 (DDIT4), 

Dexamethasone-induced gene 2 (Dig2), and RTP801] represses mTOR. REDD1 is 

upregulated by various stressors, such as glucocorticoids [12], DNA damage [13], 

endoplasmic reticulum (ER) stress [14], and hypoxia [15, 16], among others. REDD1’s 

mechanism of action has been reported to work through TSC2 by sequestering the 

modulatory protein, 14-3-3 [17], or by recruiting serine-threonine protein phosphatase 2A 

(PP2A) to dephosphorylate T308 on Akt [18].

Recent reports from our laboratory [3, 19, 20] and others [21, 22] have shown a metabolic 

and nutrient role for REDD1. As mentioned above, skeletal muscle from obese animals and 

humans exhibit hyperactive mTOR signaling in a fasted state that coincides with elevated 

REDD1 expression. In this scenario, skeletal muscle from obese mice [20] and humans [3] 

exhibit a blunted Akt and mTOR signaling response to growth stimuli. The physiological 

reason for the simultaneous increase in REDD1 in skeletal muscle during obesity is 

unknown, though it may be due to hyperactive mTOR signaling. Thus, when mTOR is 

highly activated (i.e. in an obese state), REDD1 protein is stabilized and protected from 

proteasomal degradation [23]. Upon inhibition of mTOR, REDD1 protein stability is 

reduced, leading to its degradation [23, 24], collectively suggesting reciprocal regulation of 

REDD1–mTOR that is dependent upon the energy status or nutrient state of the cell.

Short and long term caloric restriction promotes body mass loss [25, 26], improved insulin 

action [27, 28], and longevity [26]. Yet, there have been equivocal findings that caloric 

restriction alters the glucocorticoid cortisol [29, 30], yet no studies have examined caloric 

restriction effects on the glucocorticoid responsive protein, REDD1. This becomes important 

in the understanding of how mTOR is regulated during caloric restriction. Given that 

glucocorticoids or obesity/high fat diet consumption are potent stimulators of REDD1 

expression, the objective of this study was to establish the impact of caloric restriction on 

high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized 
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that caloric restriction would reverse the negative effects of high fat diet-induce obesity on 

regulators of growth signaling, and normalize their expression to that of the lean controls.

Experimental Methods

Materials

A Coomassie protein assay was performed using Coomassie Plus Reagent (Thermo 

Scientific; Rockford, IL, USA). Western blotting was performed using a Bio-Rad mini-

PROTEAN Tetra Cell system. Polyvinylidine difluoride (PVDF) membrane was purchased 

from Bio-Rad Laboratories (Hercules, CA, USA). Primary antibody for SREBP-1c 

(NB600-582) from NOVUS biologicals (Littleton, CO, USA), antibodies for phospho-p70 

S6 Kinase Thr389 (9234), phospho-S6 Ribosomal Protein Ser240/244 (5364), phospho-

MEK1/2 Ser217/221 (9154), phospho-ERK1/2 Thr202/Tyr204 (4370), cleaved caspase 3 

(9664), LC3A/B (4108), and GAPDH (2118), were purchased from Cell Signaling 

Technology (Beverly, MA, USA), and REDD1 (10638-1-AP) was purchased from 

Proteintech. Enhanced chemiluminescence (ECL) reagent was purchased from Bio-Rad 

Laboratories (Clarity western ECL). Chemiluminescence imaging was performed on a Bio-

Rad ChemiDoc MP Imager.

Animals

The Institutional Animal Care and Use Committee at the University at Buffalo approved the 

protocols and procedures. Six-week-old, male C57Bl/6 mice (Jackson Laboratories) were 

housed at 22 °C in 50 % humidity with 12-h day/night cycles. This study design and 

characteristics of the mice were reported previously [31]. For the first 8 weeks of the study, 

the mice were split into four groups, one group receiving a low fat (LF) diet (5 % fat; 

Research Diets) and the other three groups receiving a high fat diet (60 % fat; Research 

Diets). Following this initial lead-in period, the LF fed mice were maintained on their diet 

for an additional 8 weeks, and the HF fed mice were either maintained on the same high fat 

(HF) diet, a low fat, caloric restricted diet (LF+CR), or a high fat, caloric restricted (HF

+CR) diet for an additional 8 weeks. The caloric intake of the calorie restricted groups was 

~70 % of that of the low fat, control group, an amount that has previously shown to be 

effective at protecting against high fat diet induced obesity in mice [32]. Per the previously 

published findings from this study [31], the HF fed groups all weighed significantly more 

than the LF fed group. Caloric restriction limited weight gain in both the LF and the HF fed 

groups versus the HF maintained group, with the LF+CR body weight similar to the LF fed 

group. Following the treatment period and a 12-h versus fast, blood and the plantar flexor 

complex (containing the medial and lateral gastrocnemius, soleus, and plantaris muscles) 

were collected under 3 % isoflurane. The tissue was frozen in liquid nitrogen for subsequent 

analysis, then the mice were euthanized while under 3 % isoflurane anesthesia.

Blood Fatty Acids

Nonesterified free fatty acids were analyzed with an enzymatic kit in accordance with the 

manufacturer’s instructions (Wako Chemical; Richmond, VA, USA).
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Tissue Processing and Western Analysis

Per our previously published methods [20], the plantar flexor complex samples were 

homogenized in ten volumes of CHAPS-containing buffer [40 mM HEPES (pH 7.5), 120 

mM NaCl, 1 mM EDTA, 10 mM pyrophosphate, 10 mM-glycerophosphate, 40 mM NaF, 1.5 

mM sodium vanadate, 0.3 % CHAPS, 0.1 mM PMSF, 1 mM benzamidine, 1 mM DTT, and 

protease inhibitors (#04693116001, Roche, Indianapolis, IN, USA)], where the total and 

cytosolic fractions were isolated and protein concentrations were determined. Equal protein 

(30 μg of protein) was resolved using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), and then transferred onto PVDF membrane (Bio-Rad 

Protean). After blocking in 5 % milk in tris-buffered saline (TBS) plus 0.1 % Tween-20 

(TBS-T) for 1 h at room temperature, membranes were incubated with the respective 

primary antibody overnight 4 °C in TBS-T. Membranes were incubated with a horse-radish 

peroxidase (HRP)-containing secondary antibody corresponding to the primary antibody 

host for 1 h in a 5 % milk/TBS-T solution at room temperature. Then the protein 

immunoblot images were visualized following addition of ECL reagent and captured (Bio-

Rad ChemiDoc MP Imager). Density measurements for the images were quantified using 

Bio-Rad ImageLab software, and were normalized to the appropriate control. Each sample 

was then normalized to the LF group, for the respective blot, and then expressed as a mean 

percentage of the LF group between blots.

Statistical Analysis

Statistics analyses were performed using IBM SPSS version 22.0 software. A one-way 

analysis of variance with a least significant difference post hoc test or Pearson correlation 

was used to determine significance between groups. The significance level was set a priori at 

p < 0.05. The results are expressed as the mean ± standard error.

Results

As previously reported by Cui et al. [31] and consistent with our previous reports in obese 

mice [4, 20], the skeletal muscle mass per body weight from the HF fed mice was lower than 

the LF fed mice, and there was a partial (HF + CR) or near complete (LF + CR) reduction in 

the high fat diet-induced body weight gain with caloric restriction versus the LF control 

mice. Thus, regulators of skeletal muscle metabolism and mass were assessed. Protein 

expression of the lipogenic regulator, SREBP1c, was comparable between the LF and the 

CR groups (Fig. 1) versus a higher trend in the HF group (p = 0.08 versus LF). Consistent 

with this, blood non-esterified fatty acids were significantly higher (Fig. 2; p < 0.05) in the 

HF fed group versus all other groups, which was consistent with other markers of lipid 

metabolism reported by Cui et al. [31]. A regulatory pathway of SREBP1c and subsequently 

lipogenesis is the mTOR pathway [6, 7]. Accordingly, mTOR phosphorylation was 

significantly higher (p < 0.05) in the HF group when compared to the LF controls (Fig. 3a), 

and was significantly lower (p < 0.05) after caloric restriction. S6K1 phosphorylation in the 

HF group trended higher when compared to the LF group (Fig. 3b; p = 0.15), and trended 

lower (Fig. 3b; p = 0.07) in the HF + CR mouse muscle. Similar to mTOR, phosphorylation 

of the downstream substrate of S6K1, ribosomal protein S6 (rpS6) was significantly higher 

(p < 0.05) in the HF group (Fig. 3c) when compared to the LF group, and dramatically lower 
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(p < 0.05) in the CR groups regardless of the dietary fat when compared to both the LF and 

HF group (Fig. 3c). Activation of a pathway that also regulates mTOR, the MEK1/2-ERK1/2 

pathway, was significantly higher (Fig. 4a, b; p < 0.05) in the HF group when compared to 

the LF group. Caloric restriction was effective in reducing (Fig. 4a, b) the phosphorylation 

of MEK1/2 (p = 0.08 versus HF) and ERK1/2 (p < 0.05 versus HF), regardless of the dietary 

fat. Similar to our previous findings [20], HF diet-induced obesity promoted a significant 

elevation (Fig. 5; p < 0.05) in skeletal muscle REDD1 expression. Caloric restriction 

(regardless of dietary fat) normalized (Fig. 5; p < 0.05) REDD1 expression to levels 

comparable to the LF fed group. Interestingly, significant positive correlations between 

REDD1-MEK1/2 (r = 0.482; p < 0.05) and REDD1-ERK1/2 (r = 0.762; p < 0.001) were 

observed. Extending upon these findings of negative regulators of muscle growth, caloric 

restriction (regardless of dietary fat) significantly reduced (p < 0.05) HF diet-induced 

skeletal muscle expression of the apoptotic protein, cleaved caspase 3 (Fig. 6a) to levels 

comparable to the LF group. The LC3-II/I ratio, an indicator of autophagy, was significantly 

increased (Fig. 6a; p < 0.05) after HF diet-induced obesity, and was significantly reduced (p 
< 0.05) following caloric restriction.

Discussion

The goal of the study was to determine the impact of caloric restriction on high fat diet-

induced alterations on regulators of skeletal muscle growth. Accordingly, following an initial 

8-week period of HF diet-induced obesity, CR (~30 %) was employed while mice continued 

to consume either a LF or HF diet for 8 weeks. CR mitigated the obesity-related effects on 

two negative regulators of skeletal muscle growth, REDD1 and cleaved caspase 3. CR also 

attenuated obesity-related elevation in skeletal muscle mTORC1 and ERK1/2 pathway 

activation. Consistent with our previous findings showing that skeletal muscle REDD1 is 

responsive to overnutrition, such as high fat diet-induced obesity, the change in REDD1 

following a nutrient stimulus that limits caloric intake is proportional in response.

Models of obesity show high circulating concentration of glucose, insulin, branched chain 

amino acids, glucocorticoids, and cytokines among others, which bathe skeletal muscle in 

catabolic and anabolic stimuli [33–35]. The current data coupled with our previous findings 

show that elevated REDD1 expression in fasted muscle from high-fat fed, obese mice is 

associated with reduced TSC2 complex formation [4], and can promote Rheb GTP loading 

and mTORC1 signaling (low raptor-mTOR association, elevated S6K1 and rpS6 

phosphorylation). Thus, hyperactive mTORC1 can coincide with elevated REDD1 

expression, as reported by us [20] and others [23].

Branched chain amino acids (BCAA) are a well-established mTOR agonist in muscle [36, 

37], and elevated concentrations of BCAA appear to contribute to insulin resistance in obese 

tissues [38, 39]. Though not measured in the current study, high circulating concentrations 

of amino acids in the obese [38, 39] may constitutively activate the Rag pathway (and 

mTOR), partially explaining the inability of REDD1 to inhibit mTORC1, since REDD1 and 

growth factors signal to mTORC1 through TSC [40, 41]. Conversely, the elevation of 

glucocorticoids, a REDD1-agonist, can contribute to the irregular and blunted mTORC1 

responses in the obese under both fasted and fed conditions [22, 33–35]. In addition to 
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upregulating REDD1 protein expression while consuming a HF diet, glucocorticoid-induced 

REDD1 expression can promote apoptosis [42] and autophagy [43], which is consistent with 

the observed increase in cleaved caspase 3 and the LC3-II/I ratio, markers of apoptosis and 

autophagy, respectively. An increase in protein catabolism has been shown to restore the 

available free amino acid pool [44, 45], promoting mTOR activation and cell survival. 

Alterations in plasma glucocorticoids during obesity or caloric restriction would help 

explain the concomitant increase of both REDD1 and mTOR during obesity, and their 

reduction after caloric restriction.

The inhibitory role of REDD1 on mTOR activity in skeletal muscle was first reported in 

dexamethasone treated rodents [12], as well as in models of skeletal muscle atrophy [22, 46–

48]. Recent data from our laboratory and others report that REDD1 expression is elevated in 

skeletal muscle, cardiac, and liver from obese and/or high fat fed mouse models. Moreover, 

skeletal muscle REDD1 expression is downregulated or upregulated during a short-term 

fasting-to-fed state transition or short-term fasting, respectively [22]. REDD1 expression 

appears to be closely linked to the nutrient and the hormonal state of the cell, and these 

current and previous findings suggest differential regulation of REDD1 during acute (i.e. 

feeding or fasting) and chronic states (i.e. obesity or caloric restriction). This study supports 

these findings, and extends upon our previous work to show that chronic nutrient alterations 

(i.e. high diet or caloric restriction) can regulate REDD1 expression.

Another mechanism that may control REDD1 expression is the very protein that it inhibits, 

mTOR. When mTOR is highly active, 26S proteasome-dependent degradation of REDD1 is 

inhibited. Under conditions that inhibit mTOR, REDD1 protein stability is reduced via the 

HUWE1 ubiquitin ligase, which leads to degradation [23]. By upregulating REDD1 

expression, mTOR may act in a manner to self-regulate, which could be advantageous 

during obesity. TXNIP (also known as VDUP1 or TBP2) is induced by various types of 

cellular stress, including oxidative stress, UV irradiation, heat shock and apoptotic signaling 

[49, 50], is also a binding partner of REDD1 that promotes its stabilization and mTOR 

inhibition.

The half-life of the REDD1 protein is estimated to be 5–90 min [51], depending upon the 

cell type, then undergoes degradation through a CUL4-DDB1-regulated ubiquitin ligation 

[24, 52]. The mechanism controlling REDD1 degradation remains to be completely 

elucidated, though recent findings suggest that MEK–ERK signaling may play a role in 

REDD1 expression. Constitutively active MEK prevents REDD1 degradation even in the 

presence of cyclohexamide or CUL4 overexpression. Consistent with our findings in human 

skeletal muscle from type 2 diabetic, obese individuals [3], the current data show that 

skeletal muscle from obese mice exhibit hyperactivation of MEK–ERK in a fasted state 

through an undefined mechanism or regulator. Similar to the reports of other laboratories 

[53], we report that caloric restriction reduces basal MEK–ERK activation state. Sustained, 

long-term activation of ERK in either the cytosol or the nucleus can promote apoptosis [54]. 

Consistent with previous findings in obese animal models [55], these data show that caloric 

restriction can reverse high fat diet-induced increases in skeletal muscle elevated cleaved 

caspase 3, indicating that apoptosis was reduced. When obese mice are treated with the 

MEK inhibitor, U0126, blood glucose and insulin action are improved [56]. Likewise, when 
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ERK1 is ablated in ob/ob mice, glucose metabolism and insulin sensitivity were improved 

and inflammatory cytokines were reduced [57]. Thus, elevated basal ERK1/2 activation and 

subsequent maintenance of REDD1 expression during obesity may be an attempt to limit 

inappropriate mTOR activation under conditions that promote apoptosis.

In conclusion, these data show that caloric restriction can reverse the negative effects of a 

high fat diet-induced obesity on regulators of skeletal muscle growth. Specifically, caloric 

restriction of high fat fed obese mice reduced the basal hyperactivation of mTORC1 and 

ERK1/2 signaling, as well as reduced REDD1 expression, that was associated with changes 

in markers for apoptosis and autophagy. Thus, caloric restriction may be used as a non-

pharmacologic approach to mitigating aberrant growth signaling in obese skeletal muscle.
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Abbreviations

CR Caloric restriction

ERK Extracellular signal-regulated kinase

HF High fat

LF Low fat

MEK MAPK/ERK kinase

mTOR Mammalian target of rapamycin

mTORC1 mTOR complex 1

REDD1 Regulated in development and DNA damage responses 1

rpS6 Ribosomal protein S6, S6K1 p70 ribosomal protein S6 kinase-1

SREBP1c Sterol regulatory element-binding protein 1c
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Fig. 1. 
Skeletal muscle SREBP1c expression in low fat and high fat fed, calorically restricted mice. 

Equal protein from low (LF) and high fat (HF) fed, calorically restricted (CR) mouse muscle 

homogenates were analyzed by Western blot analysis for SREBP1c and GAPDH, then 

normalized to GAPDH. Representative Western blots are shown. Means marked with an 

asterisk are significantly different p < 0.05 versus LF (n = 6/group)
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Fig. 2. 
Serum nonesterified fatty acids (NEFA) in low fat and high fat fed, calorically restricted 

mice. Means marked with an asterisk are significantly different p < 0.05 versus LF (n = 6/

group)
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Fig. 3. 
Skeletal muscle mTORC1 signaling activation in low fat and high fat fed, calorically 

restricted mice. Equal protein from low (LF) and high fat (HF) fed, calorically restricted 

(CR) mouse muscle homogenates were analyzed by Western blot analysis for a mTOR 

S2448 phosphorylation, b S6K1 T389 phosphorylation, c rpS6 S240/244 phosphorylation, 

and GAPDH, then normalized to GAPDH. Representative Western blots are shown. Means 

marked with an asterisk are significantly different p < 0.05 versus LF (n = 6/group)
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Fig. 4. 
Skeletal muscle MEK–ERK signaling activation in low fat and high fat fed, calorically 

restricted mice. Equal protein from low (LF) and high fat (HF) fed, calorically restricted 

(CR) mouse muscle homogenates were analyzed by Western blot analysis for a MEK1/2 

S217/221 phosphorylation, b ERK1/2 T202/Y204 phosphorylation, and GAPDH, then 

normalized to GAPDH. Representative Western blots are shown. Means marked with an 

asterisk are significantly different p < 0.05 versus LF and dagger are significantly p < 0.05 

versus HF (n = 6/group)
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Fig. 5. 
Skeletal muscle REDD1 expression in low fat and high fat fed, calorically restricted mice. 

Equal protein from low (LF) and high fat (HF) fed, calorically restricted (CR) mouse muscle 

homogenates were analyzed by Western blot analysis for REDD1 and GAPDH, then 

normalized to GAPDH. Representative Western blots are shown. Means marked with an 

asterisk are significantly different p < 0.05 versus LF and dagger are significantly p < 0.05 

versus HF (n = 6/group)
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Fig. 6. 
Skeletal muscle expression of cleaved caspase 3 and LC3 in low fat and high fat fed, 

calorically restricted mice. Equal protein from low (LF) and high fat (HF) fed, calorically 

restricted (CR) mouse muscle homogenates were analyzed by Western blot analysis for a 
cleaved caspase 3, b LC3-II/I ratio, and GAPDH, then normalized to GAPDH. 

Representative Western blots are shown. Means marked with an asterisk are significantly 

different p < 0.05 versus LF and dagger are significantly p < 0.05 versus HF (n = 6/group)
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