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Abstract

Somatic instability of CAG repeats has been associated with the clinical progression of CAG
repeat diseases. Aging and DNA repair processes influence the somatic stability of CAG repeat in
disease and in mouse models. However, most of the studies have focused on genetically
engineered transgenic repeats and little is known about the stability of naturally polymorphic CAG
repeats. To study whether age and/or DNA repair activity have an effect on the somatic stability of
CAG repeats, we analyzed variations of the length of naturally polymorphic CAG repeats in the
striatum of young and aged WT and oggl KO mice. Some multiple and long polymorphic CAG
repeats were observed to have variable length in the striatum of aged mice. Interestingly, a low
level of repeat variability was detected in the CAG repeat located in #8p, the only mouse
polymorphic CAG repeat that is associated with a trinucleotide disease in humans, in the striatum
of aged mice and not in young mice. We propose that age may have an effect on the somatic
stability of polymorphic CAG repeats and that such an effect depends on intrinsic CAG repeat
characteristics.

1. INTRODUCTION

Length variability of trinucleotide repeat sequences is a common form of genetic
polymorphism but, for reasons yet to be understood, some polymorphic trinucleotide repeats
become abnormally unstable, expand and cause neurodegeneration. At least sixteen (16)
neurodegenerative disorders have been associated with trinucleotide repeat expansion, 11 of
them associated with CAG repeat expansions, and Huntington’s disease (HD) is the best
known neuropathology linked to increased CAG repeats in a specific gene [1]. The
observation of intergenerational expansion that accompanies anticipation in families
carrying CAG repeats diseases led to propose meiotic instability as an underlying
mechanism for repeat expansion [2]. However, CAG repeats have also been found to expand
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in non-proliferative somatic cells such as neurons [3, 4] and, more specifically, in specific
brain regions, and in neuron sub-populations [5, 6]. This type of expansion at the somatic
level is proposed to occur in an age-related manner [4, 7] and to influence the course and
severity of CAG repeat diseases [8—-10]. Different from instability at the germline level,
somatic CAG instability is hypothesized to involve molecular mechanisms associated with
DNA repair and transcription [7, 11, 12]. Studies in HD mouse models have proposed that
the activity of oggl, a glycosylase that specifically recognizes and removes the oxidatively
modified guanine base from DNA, is an initiating step in the generation of CAG expansion
with age [13]. Further supporting the role of DNA repair in CAG repeat instability,
components of other DNA repair systems have been involved [12, 14-16]. These studies
have highlighted potential factors influencing CAG somatic instability but they use mouse
models carrying transgenic CAG repeats that would be uncommonly long and highly
unstable in humans. The main reason for this is that CAG repeats located in mouse
homologues have different characteristics from their human counterparts and this is reflected
in the fact that disease-related CAG repeats are unstable in humans but not in mice. For
instance, the polymorphic CAG repeat whose expansion is responsible for HD is located in
exon 1 of Huntingtin gene (H77), normal A7 T alleles have 7 to 35 repeats whereas most of
the individuals affected with HD have 40 to 50 CAG repeats [17]. In contras, the HTT
mouse homologue A#t (htf) has 7 uninterrupted CAG repeats which have been shown to be
stable [18]. Additionally, even if the CAG repeats in the mouse gene were unstable, the
biological consequences appear to be minimal, since in order to observe phenotypic changes
and repeat instability, the mouse model requires to carry transgenic constructs with more
than 100 CAG repeats [6, 7]. There is little information about the stability of naturally
polymorphic CAG repeats in mice but it could be inferred that the same factors that induce
somatic instability in transgenic repeats may exert a similar destabilizing effect on them.
Detecting somatic instability in naturally polymorphic repeats may help to understand why
specific CAG repeats become unstable in susceptible neurons and brain regions. This in turn
may help to understand conversion of polymorphic CAG repeats from normal to pre-
mutation stages in human trinucleotide repeat disorders. In this study we aimed to determine
age-related changes in the stability of mouse polymorphic CAG repeats in the striatum and
how the activity of the DNA repair enzyme oggl may be involved.

2. MATERIALS AND METHODS

2.1. Animals and DNA extraction

Brain tissue from 3-4 (young) and 18-24 (old) month-old Svj129 wild-type and oggl KO
mice (n=3) was dissected to obtain striatum. Liver and tail tissue were used as control tissue.
DNA was extracted from fresh tissue using the Promega Wizard Genomic DNA kit. All
extracted DNA samples were diluted in 1x TE and normalized to 50ng/uL. All animal use
was conducted in accordance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and with protocols approved by the Institutional Animal Care
and Use Committee (IACUC).
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2.2. PCR and CAG repeat length measurement

2.2.1. Size screening PCR of CAG repeat regions—We used the sequence of primers
previously reported which amplify the region containing CAG repeats in the 27 genes and 30
CAG repeats found to be polymorphic in mice [19]. Reaction conditions were as follows: 1X
Taq polymerase buffer, 1,5 mM MgCly, 0.125 mM dNTPs, 0.25 uM each primer, 0.025 U/ul
Taq DNA polymerase (native Invitrogen Cat#18038-018) and 50 ng DNA. Thermal
conditions were as follows: denaturation 4:00 at 95°C, 30 cycles of 0:30 at 95°C, annealing
0:45 at 55-57°C and elongation 1:00 at 72°C, and a final elongation for 7:00 at 72°C. Two
types of analyses were done using these PCR conditions: determination of CAG repeat
length by Sanger sequencing and screening of size variations in the PCR amplicons.

Initially, PCR products were purified and sequenced to determine that the PCR was specific
for the region of interest and to measure the exact length of the non-repeat region and CAG
repeat in the Svj129 strain. For this sequencing protocol, DNA was extracted from tail tissue
sample of three different 3-month-old WT mice. Repeats were defined as more than 2
consecutive CAG sequences allowing only one synonymous (CAA) interruption. CAG
repeat length determined by sequencing was used as the reference for microfluidic
electrophoresis repeats length estimation. Second, PCR was performed in DNA extracted
from striatum/liver, young/old, and WT/oggl KO mice (n=3) products were resolved in
1.2% agarose for 2h at 25 mA to confirm amplification and visually estimate variations in
the length of PCR amplicons. The same tail snip sample used for sequencing was run in
parallel with the other samples to visually compare size differences.

2.2.2. Quantitative estimation of the CAG repeat length—Subsequent
determination of CAG repeats length in striatum was done by microfluidic electrophoresis
on an Agilent 2100 Bioanalyzer. Each genotype group (WT and oggl KO) consisted of 6
mice. The reference length obtained by sequencing for each PCR product was used to
calculate the number of CAG repeats in the amplicon using the formula: # of repeats = size
of PCR fragment in base pairs — size of non-repeat region in base pairs/3, as previously
described [20]. Sequences were analyzed for the presence of additional repeats in the
surrounding sequence using the RepeatMasker track on UCSC and for the formation of
secondary structures using mFOLD [21]. Gene diversity (GD) was calculated for each repeat
by the formula: #=1 - £~ x2;where Ais GD, x;is the frequency of a certain repeat
length 7and m is the total number of observed lengths [19, 22]. When multiple PCR
amplicons were detected by the Bioanalyzer electrophoresis, GD calculation was based on
the PCR fragment with the size closer to the sequenced reference sample.

2.2.3. Small pool PCR (SP-PCR)—SP-PCR was performed by a two-stage PCR as
previously described [23]. For the first-stage PCR, the conditions of the size screening PCR
were adjusted by increasing dNTPs to 0.8 mM and each primer to 0.5 uM. This first-stage
PCR used 1 pl of DNA per 10 ul PCR reaction at a concentration of 75 genomic equivalents/
UL. Thirty reactions of the same sample and 2 negative controls were run simultaneously.
The PCR thermal conditions were 95°C for 4min, 4 cycles of 94°C 30sec, 62°C 30sec and
69°C 1min, 14 cycles of 94°C 30sec, 64°C 30sec touchdown 0.7°C/cycle and 69°C 1min, 15
cycles of 94°C 30sec, 54°C 30sec and 69°C 1min touchdown 0.1°C/cycle, and a final
elongation 69°C 10min. For the second-stage PCR, the conditions of size screening PCR
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were adjusted to use 5 pl of the first-stage PCR product per 15 pl PCR reaction. Two
negative template controls were run simultaneously to control for contamination. PCR
amplicons were run in the Agilent 2100 Bioanalyzer and the output size were used to
quantitate the CAG repeat length as it was said above.

3. RESULTS

We analyzed 30 CAG repeats located in 27 mouse genes previously reported to be
polymorphic in 16 inbred mouse strains by Ogasawara et al [19]. A PCR was performed to
amplify the CAG repeat and surrounding genomic region followed by purification and
sequencing. This DNA sequence was used as reference to calculate the number of CAG
repeats. Based on their length (n = number of CAG/CAA repeats), the 30 CAG repeats in the
genes analyzed were classified into three groups: short (<10n), intermediate (between 10n
and 20n) and long (> 20n) repeats (Table 1). Most of the studied polymorphic repeats (18)
were short. Four polymorphic CAG repeats were classified as intermediate and other five
were long. Eighteen repeats were unique but there were also 12 repeats that were located
near one or 2 more repeats in the same gene and they were classified as multiple.
Additionally, depending on the presence or absence of synonymous CAA interruptions in
the CAG repeat sequence and the location of these interruptions in the repeat sequence,
repeats can be further classified uninterrupted, terminally interrupted, and internally
interrupted. In table 1, a consolidated classification is presented for all studied repeats which
takes into account the repeat length, presence of CAA interruptions, location of CAA
interruptions: SU= short uninterrupted, STI= short terminally interrupted, SSI= short
internally interrupted, IU: intermediate uninterrupted, 1SI: intermediate internally
interrupted, LSI: long internally interrupted, ITI: intermediate terminally interrupted.

In order to estimate the conservation of mouse CAG polymorphic repeats in humans, we
obtained the Pairwise Alignment Score by comparing the mouse gene to the corresponding
human homologue using the HomoloGene tool from NCBI. All the studied genes have a
human ortholog and the sequence homology of the repeat region in the human genes is
variable (Table 1). As for the studied CAG repeat regions in each gene, seven of these mouse
polymorphic repeats are not found in the human ortholog (ANKRD24, NRK; IL.2, NR3C1,
CHGA, IVL and TSC22D1) and only one, TBP, has been linked to a CAG repeat disease in
humans as the cause of Spinocerebellar ataxia type 17 (MIM 607136).

Variability of the CAG repeat length was first qualitatively evaluated by performing
electrophoresis of the amplified PCR fragments containing each repeat in young vs. old,
caudate vs. liver, and WT vs. oggl KO mice. A side-by-side comparison of the amplicon
size of WT and oggl KO mice revealed that there are some samples with different sizes
(Figure 1A ankrd24lane 11); but such differences were not consistently observed in a
specific age, tissue or oggl genotype group. We also observed a variable presence of
unspecific bands, which may indicate repeat contractions or expansions in some samples and
tissues. Some examples of this variability in the caudate are shown in Figure 1. In bmpé, tail
snip samples (Figure 1A lane 1) that were treated following the same protocols didn’t show
a ladder pattern observed in caudate. In cxxcZ, two WT old mice (Figure 1B lanes 8 and 10)
had unspecific bands with sizes comparable higher than others. Lastly, in fobZ, unspecific
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bands of lower size are observed only in 4 young mice (Figure 1D lanes 3,4,5 and 7). In
general, the length of the CAG repeat amplicons was qualitatively equal regardless of age,
tissue or oggl activity.

To quantitatively estimate CAG repeat variability in the striatum, we calculated the gene
diversity score (GD) for each repeat (Figure 2). This estimation was only performed in old
mice since there were not observable size differences of the CAG containing amplicons in
young mice by regular electrophoresis. As described previously, GD estimates repeat length
variability based on the frequency of each length size [19]. For this GD calculation only the
band with the expected PCR amplicon, or the band with the closest to expected band size,
was included per mouse, which in the case of multiple amplicons, will exclude bands with
other sizes. Some multiple short and intermediate CAG repeats such as /v/_a (19 n) and
vl b(6n), tobl a(7n), tobl b(6n)and tobl c(10n), and zfx3_a (11 n) and zfHx3 c (9
n) were found to have increased length variability (0.7 for /v/, 0.3 for fob1 and 0.5 for
zfhx3). The calculated GD for /v/and fobI corresponds to more than one repeat located in
the same PCR amplicon and therefore it was not possible to determine which specific repeat
was responsible for increased variability. However, the variability observed for zfx3_aand
zfhx3_c corresponds to two different PCR amplicons and therefore the GD scores reflect
repeat variability for each repeat. Only two unique CAG repeats were found to be variable in
the striatum of old mice, st6galnac5 (10 n, GD =0.3) and pficI (23 n, GD=0.5).

Given the amount of starting genomic DNA used for conventional PCR, this reaction tends
to favor the amplification of dominant alleles against less common alleles. Repeat variability
at the somatic level may occur at a low level and, therefore, less common unstable alleles
(repeat expansions or contractions) may be missed by conventional PCR. To test for repeat
variability as the result of somatic instability, we performed SP-PCR which uses one genome
equivalent per reaction in multiple reactions for the same sample. We selected four samples
for SP-PCR: young WT, old WT, young oggl KO and old oggl KO to be able to compare
repeat length differences associated with age and oggl activity in the striatum. Since #Hp has
the only polymorphic CAG repeat that has an ortholog associated with a human trinucleotide
disorder, we decided to perform SP-PCR for this repeat. In contrast to what was observed by
conventional PCR (Figure 3A), the CAG repeat of #6pwas found to be variable by SP-PCR
(Figure 3B to 3F). Variation was higher in the striatum of old WT (13.6+1.4 repeats and
10.3% CV) compared to old oggl KO (14.7+0.8 CAG repeats and 5.4% CV) (P=0.0088,
F=7.503. Figure 3F). Since the variable bands are displaced to the left, we assume that such
variations correspond to small repeat deletions occurring with very low frequency in the
striatum of old mice.

4. DISCUSSION

Somatic instability of CAG repeats is a potential mechanism underlying the loss of
vulnerable cell populations in the brain in trinucleotide repeat disorders. Many factors have
been associated with increased somatic instability in mice including brain region, age,
and/or DNA repair activity. The striatum has been found to be highly susceptible to CAG
repeat instability compared with other brain regions [4, 24, 25], and somatic CAG expansion
has also been observed to increase with age and ogg1 activity; however, these studies have
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evaluated extremely long transgenic CAG repeats and little is known about naturally
polymorphic repeats [4, 13-15]. To study how aging and oggl activity play a role in the
stability of naturally polymorphic CAG repeats in susceptible brain regions, we evaluated
the length of known polymorphic CAG repeats in the striatum of aged WT and oggl KO
mice. We detected some degree of variability in multiple CAG repeats (/V/, tob1 and zfhix3),
one intermediate (st6galnac5) and one long CAG repeat (phcl), but, this variability was not
associated with age or oggl activity.

We further explored whether repeat variability was occurring at a low level and therefore
undetectable by conventional PCR, as it may be the case of age-related somatic expansion,
by performing SP-PCR of the CAG repeat in thp. We detected increased repeat length
variation in the striatum of old mice that was not observed by conventional PCR suggesting
that age may influence the somatic stability of the 760 CAG repeat. This variation was higher
in WT compared to Oggl KO mice suggesting that, at least for the #5p CAG repeat, oggl
activity increases somatic instability but this observation will require to be confirmed with a
larger experimental cohort. Nonetheless, the observed variation is consistent with small
repeat deletions occurring somatically in old mice. Given that such small deletions were
observed in both types of tissue and genotype, they are likely to be a normal aging process.
It is known that normal aging is accompanied by DNA damage, most commonly 8-oxoG
accumulation [26] and also that the attempt of the BER system to repair the oxidized CAG
repeat may result in the formation of a hairpin on the template strand, pol g slippage, pol
hairpin bypass, FEN1 alternate flap cleavage and repeat deletion [27-29].

Interestingly, thp CAG repeat is the only repeat that is polymorphic in mice and has also
been associated with a CAG repeat-related neurodegenerative disorder in humans. While in
mice tbp has 9 to 16 synonymously interrupted CAG repeats depending on the mouse strain,
in humans 7BP has an uninterrupted CAG repeat that is 25 to 42 repeats long. Most of
expansions over 35 to 40 repeats manifest phenotypically as Spinocerebellar ataxia 17
(SCALY), arare form of Huntington Disease-like and late onset PD disease [30].

As previously noticed, the presence of repeat interruptions has an important impact in repeat
instability [19, 31]. It is probable that, by reducing the length of pure CAG tracts,
synonymous and non-synonymous interruptions are protective against expansion.
Interestingly, human pathogenic CAG repeats are predominantly long uninterrupted CAG
repeats [32] whereas long polymorphic CAG repeats with interruptions have been reported
to be stable in mice [19]. With some important exceptions, our results support this idea since
11n repeats or shorter were found to be uninterrupted or terminally interrupted whereas
CAG repeats longer than 13n were all found to be interrupted. An important exception is 60
which has 13 repeats and was found unstable with age despite having many synonymous
interruptions. Additionally, a few short and uninterrupted repeats were observed to be
variable in the striatum but having a common characteristic: they were multiple (ivl, tobl
and zfhx3) and two of them were in close proximity to each other (ivl and tobl) which raises
the possibility that repeat instability may be not only being affected by the length and
presence of interruptions but also by their proximity to other repeat regions. Indeed, we
identified that these multiple CAG repeats form more stable secondary structures than
unique CAG repeats (Supplementary table) which may favor the formation of slipped-strand
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DNA and repeat expansion [33] and this may explain the high GD score of these repeats in
the striatum. Previous studies have suggested that there is a threshold length over which
repeats have an increased tendency to expand [4, 6, 34, 35]. The observed higher variability
of naturally polymorphic CAG repeats longer than 11n contrasts with the stability observed
of short CAG repeats such as At [13] and other transgenic CAG repeats [36] and seem to
support that there is a repeat threshold over which repeats are more susceptible to age-
related instability. However, the above-mentioned exceptions to this threshold rule also
suggest that other intrinsic characteristics of repeat sequences play a role on length
variability and stability. A better understanding of these characteristics and their effect on
age-related somatic instability may help elucidating the early phenomena that leads to repeat
expansion and neurodegeneration.

5. CONCLUSIONS

The study of factors inducing trinucleotide repeat instability may help understand the
progression of repeat neurodegenerative disorders. Age and DNA repair activity have been
proposed to influence somatic instability of in transgenic models; however, it is uncertain
whether these factors can also induce somatic instability of naturally polymorphic repeats.
Our study suggests that naturally polymorphic CAG repeats present somatic repeat
variability that is associated with repeat number, proximity and length. Additionally, low
levels of variation of the #Hp repeat were detected in the striatum of aged mice suggesting
that somatic instability takes place in this naturally polymorphic repeat in an age-related
manner. Also, the lack of Oggl influenced the variability in repeats suggesting a role for
DNA repair processes. Future studies are required to understand how age induces repeat
instability of #hp and its implications for neurodegenerative repeat disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
Naturally polymorphic CAG repeats present somatic variability in mice
The length of the CAG repeat located in thp, the TBP homologue, in

striatum was age-dependent, but not influenced by the activity of the DNA
repair enzyme Oggl

Somatic stability of naturally polymorphic CAG repeats may be influenced
by repeat length, the specific repeat sequence and its surrounding sequence
context
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Figure 1. Assessment of length of polymorphic CAG repeats in relation to age- and oggl activity
Representative agarose gel electrophoresis of the CAG repeat —containing region of analyzed

mouse polymorphic CAG repeats in striatum of young (3mo) and old (18-24mo). Arrow
heads indicate the reference size as indicated by the length of the PCR product from tail snip
(TS). A. short unique CAG repeats. B. Intermediate unique CAG repeats. C. Long unique
CAG repeats. D. Multiple CAG repeats. (L: MW ladder, W: wild type, K: 0oggl-ko)
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Figure 2. Length variability of polymorphic CAG repeats in the striatum of old mice
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The range of variability is represented graphically for each repeat and a measure of the gene
diversity (GD) is shown.
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Figure 3. Age-related variability of the length of the CAG repeats of tbp gene
A. Comparative microfluidic electropherograms of the CAG repeat region of #hp in the

striatum of old mice in wild-type (W) and oggl KO (K) mice as determined by conventional
PCR. B to E. Comparative microfluidic eletropherograms of the CAG repeat in young WT
(B), old WT (C), young oggl KO (D) and old oggl KO (E) mice obtained by SP-PCR. The
arrow indicates the expected 97bp PCR fragment. NTC: non-template control. F.
Quantitative analysis of the number of CAG repeats obtained by SP-PCR in B to E.
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