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Abstract

Sparse estimation techniques are widely utilized in diffusion MRI (DMRI). In this paper, we 

present an algorithm for solving the ℓ0 sparse-group estimation problem and apply it to the tissue 

signal separation problem in DMRI. Our algorithm solves the ℓ0 problem directly, unlike existing 

approaches that often seek to solve its relaxed approximations. We include the mathematical 

proofs showing that the algorithm will converge to a solution satisfying the first-order optimality 

condition within a finite number of iterations. We apply this algorithm to DMRI data to tease apart 

signal contributions from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) 

with the aim of improving the estimation of the fiber orientation distribution function (FODF). 

Unlike spherical deconvolution (SD) approaches that assume an invariant fiber response function 

(RF), our approach utilizes a response function group (RFG) to span the signal subspace of each 

tissue type, allowing greater flexibility in accounting for possible variations of the response 

function throughout space and within each voxel. Our ℓ0 algorithm allows for the natural groupings 

of the RFs to be considered during signal decomposition. Experimental results confirm that our 

method yields estimates of FODFs and volume fractions of tissue compartments with improved 

robustness and accuracy. Our ℓ0 algorithm is general and can be applied to sparse estimation 

problems beyond the scope of this paper.
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I. Introduction

Brain tissue changes such as demyelination and axonal loss are common pathological 

features of many neurological diseases. Precise quantification of these changes can improve 

the accuracy of disease diagnosis and is essential for monitoring treatment response and 

effective patient management. Diffusion magnetic resonance imaging (DMRI) [1] is an ideal 

imaging modality for this purpose owing to its unique ability to extract microstructural 

information by utilizing restricted and hindered diffusion to probe compartments that are 

much smaller than the voxel size.

Sparse estimation techniques are widely utilized in DMRI [2]–[5]. However, most 

techniques to date are predominantly based on ℓ1 regularization. This choice is partly due to 

the challenges involved in solving ℓ0-regularized problems, which are in nature non-convex, 

non-smooth, and discontinuous. While iterative hard thresholding algorithms [6]–[8] and 

greedy algorithms such as matching pursuit [9], [10], orthogonal matching pursuit [11], and 

subspace pursuit [12] have been developed for solving ℓ0-regularized least-squares problems, 

how they can be extended for solving more general ℓ0 minimization problems, such as those 

involving grouping [13], [14], is not immediately apparent. We present in this paper an 

algorithm for solving the ℓ0 sparse-group problem, which is the ℓ0 counterpart of the ℓ1 

sparse-group LASSO problem presented in [14]. We include the mathematical proofs to 

show that our algorithm converges to a solution that satisfies the first order optimality 

condition within a finite number of iterations.

We apply our algorithm to the DMRI tissue signal separation problem. In DMRI, each 

imaging voxel is in the order of 10 mm3 in size and thus contains thousands of cells and 

tissue components. The diffusion of water molecules in each compartment (e.g., axons, 

dendrites, extracellular space, and cell soma) is affected by local viscosity, composition, 

geometry, and membrane permeability [15]. While the most commonly used diffusion tensor 

imaging (DTI) provides scalar indices such as fractional anisotropy (FA) and mean 

diffusivity (MD) for quantifying white matter integrity, they are limited by their non-

specificity in identifying the exact causes of white matter changes [16], [17]. For example, 

the reduction in FA may be caused by any or a combination of the following factors that 

reduce the diffusion barriers: demyelination, fiber orientation variability, larger axon 

diameter, and lower packing density. For determining the more specific causes of changes, 

the signal contributions of the different white matter microstructural compartments need to 

be identified so that confounding information can be removed and information pertaining 

specifically to axonal injury and myelin damage can be teased out.

The general goal of diffusion compartment analysis is to identify signal contributions from 

constituent compartments and extract information that is most relevant to our problem at 

hand. Such approach increases specificity by removing confounding information. For 

example, it has been shown in [18] that by simply removing the diffusion signal that can be 

attributed to free diffusion [19], the sensitivity to the differences between stable and 

converting mild cognitive impairment (MCI) subjects can be significantly improved. In [20], 

the authors reported that by utilizing a model characterizing both intra- and extra-cellular 

diffusion, good estimations of neurite density and orientation dispersion can be obtained. It 
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has been reported in [21] that by proper consideration of signal contributions from gray 

matter and cerebrospinal fluid, false positive local orientations can be significantly reduced. 

All these studies point to the importance of compartmentalized analysis of DMRI data.

We employ our ℓ0 algorithm to tease apart, at each voxel, the signal contributions of white 

matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) so that the fiber orientation 

distribution function (FODF) can be estimated with greater accuracy. The concept of FODF 

[4], [22]–[25] was first introduced by Tournier and his colleagues in [22]. Assuming that all 

WM fiber bundles in the brain share identical diffusion characteristics, the diffusion-

attenuated signal can be expressed as the spherical convolution of a fiber response function 

(RF), i.e., the signal profile of a single coherent fiber bundle, with the FODF. The FODF, 

which represents the distribution of fiber orientations within the voxel, can therefore be 

recovered using spherical deconvolution (SD) [22]. The SD technique proposed in [22] was 

later improved in [23] by introducing constrained spherical deconvolution (CSD) for better 

conditioning of the inverse problem, greater robustness to noise, and less susceptibility to 

negative artifacts that are physically impossible. Unlike the multi-tensor approach [26], SD-

based methods do not require one to specify the number of tensors to fit to the data. A 

discrete version of the formulation, coupled with sparse regularization, was investigated in 

[2], [3], [27]. Tracing FODFs across space allows one to gauge connectivity between brain 

regions [28] and provides in vivo information on white matter pathways for neuroscience 

studies involving development, aging, and disorders [29]–[34].

It has been recently reported that a mismatch between the kernel used in CSD and the actual 

fiber RF can cause spurious peaks in the estimated FODF [35]. Although CSD has been 

recently extended in [21] to include RFs of not only the white matter (WM) but also the gray 

matter (GM) and the cerebrospinal fluid (CSF), these RFs are still spatially fixed and similar 

shortcomings as reported in [35] remain a problem.

In this paper, we propose to estimate the WM, GM, and CSF volume fractions and the WM 

FODF by using response function groups (RFGs). Each RFG is a collection of exemplar RFs 

catering to the variations of the actual RFs. Unlike the conventional approach of using fixed 

RFs, the utilization of RFGs will allow tolerance to RF variations and hence minimize 

estimation error due to the mismatch between the RF and the data. The FODF and 

compartmental volume fractions for each voxel are estimated by solving the ℓ0 sparse-group 

problem that takes into account the natural groupings of the RFs. Our work is an integration 

of concepts presented in [21], [36], [37] with a novel ℓ0 estimation framework.

II. Related Works

Recently, Daducci et al. [38] linearize the fitting problem of microstructure estimation 

techniques, such ActiveAx [39] and NODDI [20], to drastically speed up axon diameter and 

density estimation by a few orders of magnitude. They achieve this by solving an ℓ1 

minimization problem with a dictionary containing instances of the respective biophysical 

models generated with a discrete sampling of the diffusion parameters. Their work was 

recently extended to account for crossing fibers [40], [41]. Similar to [38], we observed that 

by using RFGs containing RFs of varying parameters, the data can be explained with greater 
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fidelity than by using RFs with a single fixed set of parameters. Dissimilar to [38], our work 

(i) solves a cardinality penalized problem instead of the ℓ1 problem, and (ii) explicitly 

considers the natural coupling between RFGs via sparse-group estimation, which is similar 

but not identical to [14].

The use of ℓ0 penalization is motivated by the observations reported in [42], where the 

authors show that the commonly used ℓ1-norm penalization [27] conflicts with the unit sum 

requirement of the volume fractions and hence results in suboptimal solutions. To overcome 

this problem, the authors propose to employ a reweighted ℓ1 minimization approached 

described by Candes et al. [43] to obtain solutions with enhanced sparsity, approximating 

solutions given by ℓ0 minimization. However, despite giving improved results, this approach 

is still reliant on the suboptimal solution of the unweighted ℓ1 minimization problem that has 

to be solved in the first iteration of the reweighted minimization scheme.

Another issue with ℓ1 minimization is that it biases and attenuates coefficient magnitudes 

[44], resulting in the erosion of FODF peaks. While this can potentially be corrected by 

debiasing [44] — a post-processing approach where the coefficients are re-estimated without 

regularization using the support of the solution identified by ℓ1 minimization — the desirable 

denoising effect of ℓ1 penalization might be undone [44].

Besides ℓ1-norm relaxation, other relaxation approaches have been proposed recently to 

substitute the ℓ0-“norm”1 by an ℓp-“norm” for some p ∈ (0, 1) (see for example [45]–[47]). In 

general, these approaches do not necessarily give high-quality solutions. See [48] for 

examples showing that, when p ∈ (0, 1], the solutions can deviate significantly from the true 

sparse solutions.

III. Contributions

In this work, we propose to directly minimize the ℓ0 penalized problem instead of resorting 

to reweighted minimization. By doing so, we (i) overcome the suboptimality of reweighted 

minimization, and (ii) improve estimation speed greatly by avoiding solving the ℓ1 

minimization problem (especially the sparse-group problem [14]) multiple times to 

gradually improve sparsity. We will describe in this paper an algorithm based on iterative 

hard thresholding (IHT) [49] to effectively and efficiently solve the ℓ0 penalized sparse-group 

problem.

The RFG framework affords the following advantages: (i) The exact RF does not need to be 

specified and can be determined automatically from the RFGs based on the data — this is 

akin to blind deconvolution for FODF estimation; (ii) The RF is allowed to vary across 

voxels as well as across fiber populations within each voxel; and (iii) The signal for each 

fiber population can be explained using a combination of RFs, making possible the modeling 

of signal with non-monoexponential decay.

1The quotation marks warn that ℓ0-“norm” is not a proper norm.
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Part of this work has been reported in our recently published conference paper [5]. Herein, 

we provide additional examples, results, derivations, and insights that are not part of the 

conference publication.

IV. Proposed Approach

In what follows, we will describe the concept of response function groups (RFGs), the 

estimation problem, the optimization framework, and some implementation issues.

A. Response Function Groups (RFGs)

DMRI acquires several diffusion-sensitized images, probing water diffusion in various 

directions and at various diffusion scales. At each voxel location, the diffusion-weighted 

signal S(b, ĝ), measured for diffusion weighting b and at gradient direction ĝ, can be 

represented as a mixture of N models:

S(b, g) = ∑
i = 1

N
f iSi(b, g) + ε(b, g), (1)

where fi is the volume fraction associated with the i-th model Si and ε(b, ĝ) is the fitting 

residual. A wide variety of microstructural models described in [50] can be employed to 

capture the diffusion patterns of intra- and extra-axonal diffusion compartments. In the 

current work, we are interested in distinguishing signal contributions from WM, GM, and 

CSF and we choose to use the tensor model Si(b, ĝ) = Si(0) exp(−bĝTDiĝ), where Si(0, ĝ) = 

Si(0) is the baseline signal with no diffusion weighting and Di is a diffusion tensor. This 

model affords great flexibility in representing different compartments of the diffusion signal. 

Setting the diffusion tensor D = λI, the model represents isotropic diffusion with diffusivity 

λ. When λ = 0 and λ > 0 the model corresponds to the dot model and the ball model, 

respectively [50]. Setting D = (λ|| − λ⊥)v̂v̂T + λ⊥I, λ|| > λ⊥, the model represents 

anisotropic diffusion in principal direction v̂ with diffusivity λ|| parallel to v̂ and diffusivity 

λ⊥ perpendicular to v̂. When λ⊥ = 0 and λ⊥ > 0 the model corresponds to the stick model 

and the zeppelin model, respectively [50]. In our case, each RF is represented using the 

tensor model with a specific set of diffusion parameters.

Spherical deconvolution (SD) of the white matter (WM) diffusion-weighted signal with a 

fiber RF has been shown to yield high-quality estimates of FODFs [23]. According to [2], 

the solution to SD can be obtained in discretized form by including in the mixture model (1) 

a large number of anisotropic tensor models uniformly distributed on the unit sphere with 

fixed λ|| and λ⊥ and solving for {fi} via minimizing the residual in the least-squares sense 

with some appropriate regularization, giving us the FODF. In this work, instead of fixing λ|| 

and λ⊥, we allow each of them to vary across a range of values. Therefore, each principal 

direction is now represented by a group of RFs, i.e., a RFG. Additional isotropic RFGs are 

included to account for signal contributions from GM and CSF. Formally, the representation 

can be expressed as
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S(b, g) = ∑
i = 1

NWM
Si

WM(b, g) + SGM(b, g) + SCSF(b, g)

S(b, g)

+ ε(b, g), (2)

where we have NWM WM RFGs, a GM RFG, and a CSF RFG with

Si
WM(b, g) = ∑

j = 1

KWM
f i, j

WMSi, j
WM(0) exp ( − bgTDi, j

WMg),

SGM(b, g) = ∑
j = 1

KGM
f j

GMS j
GM(0) exp ( − bgTD j

GMg),

SCSF(b, g) = ∑
j = 1

KCSF
f j

CSFS j
CSF(0) exp ( − bgTD j

CSFg),

(3)

and

Di, j
WM = (λ‖, j

WM − λ ⊥ , j
WM )vivi

T + λ ⊥ , j
WM I,

D j
GM = λ j

GMI,

D j
CSF = λ j

CSFI.

(4)

Given the signal S(b, ĝ), we need to estimate the volume fractions { f i, j
WM}, { f j

GM}, and 

{ f j
CSF}. If we take the Fourier transform of (2), it is easy to see that these volume fractions 

are in fact the weights that decompose the ensemble average propagator (EAP) of the overall 

signal into a weighted sum of the EAPs of the individual tensor models. The overall volume 

fractions associated with WM, GM, and CSF are respectively

f MW = ∑
i = 1

NWM
∑
j = 1

KWM
f i, j

WM

f
WMi

, f GM = ∑
j = 1

KGM
f j

GM, f CSF = ∑
j = 1

KCSF
f j

CSF . (5)

The set {fWMi|i = 1, ..., NWM} gives the WM FODF. For the sake of notational simplicity, 

we group the volume fractions into a vector
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f =

f
WM1

⋮

f
WMNMW

fGM

fCSF

, (6)

where

f
WMi = f i, 1

WM, …, f i, KWM
WM T

,

fGM = f 1
GM, …, f KGM

GM T
,

fCSF = f 1
CSF, …, f KCSF

CSF T
.

(7)

See Figure 1 for an illustration of how the signal can be represented using the RFGs. Note 

that NWM is not the number of fiber populations, but is instead a sufficiently large number 

that results in a dense coverage of possible fiber directions. The fiber populations are 

unknown a priori and are automatically estimated by solving the sparse-group problem 

described next.

B. Estimation of Volume Fractions

To estimate the volume fractions, we solve the following optimization problem:

minf ≽ 0 ϕ(f) = ‖S(b, g) − S(b, g)‖2
2 + αγ‖f‖0+(1 − α)γ

∑
i = 1

NWM
ℐ(‖f

WMi‖2) + ℐ(‖fGM‖2) + ℐ(‖fCSF‖2) ,

(8)

where ℐ(z) is an indicator function returning 1 if z ≠ 0 or 0 otherwise. The ℓ0-“norm” gives 

the cardinality of the support, i.e., ||f||0 = |supp(f)| = |{k : fk ≠ 0}|. Parameters α ∈ [0, 1] and 

γ > 0 are for penalty tuning, analogous to those used in sparse-group LASSO [14]. Note that 

α = 1 gives the ℓ0 fit, whereas α = 0 gives the group ℓ0 fit. The problem can be written more 

succinctly in matrix form:
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minf ≽ 0 ϕ(f) = ‖Af − s‖2
2 + αγ‖f‖0 + (1 − α)γ ∑

g ∈ 𝒢
ℐ(‖fg‖2) , (9)

where fg denotes the subvector containing the elements associated with group g ∈  = 

{WM1, ..., WMNWM, GM, CSF}. If the signal vector s is acquired at P (b, g)-points, A = 

[AWM|AGM|ACSF] is a P × N matrix (N = NWMKWM + KGM +KCSF) with columns 

containing all the individual WM, GM, and CSF tensor models sampled at the 

corresponding P points. We describe next our algorithm for the solution to this problem.

C. Optimization

The problem we are interested in solving has the following form:

minf ≽ 0 ϕ(f) = l(f) + r(f) . (10)

In our case, the loss term l(f) = ‖Af − s‖2
2 is smooth, convex, and has a gradient that is 

Lipschitz continuous. The regularization term r(f) = αγ||f||0+(1 − α) γ Σg∈ ℐ(||fg||2) is non-

convex, non-smooth, and discontinuous. Note that the solution is trivial, i.e., f* = 0, when 

γ ≥ ‖s‖2
2. We introduce here an algorithm called non-monotone iterative hard thresholding 

(NIHT), which we developed based on [6], [49], [51]–[53], to solve this problem. Proof of 

convergence is provided in the appendix.

1) Non-Monotone Iterative Hard Thresholding—The solution is outlined in 

Algorithm 1. The algorithm seeks the solution via gradient descent using a majorization-

minimization (MM) [54] formulation of the problem. Step 1a minimizes the majorization of 

the objective function ϕ (·) at f(k). The minimization involves a gradient descent step with 

step size 1/L(k) (more on this in the next section). The parameters Lmin and Lmax constrain 

the step size so that it is neither too aggressive nor too conservative (Step 3). We choose the 

initial step size 1/L0
(k) as proposed in [55], using a diagonal matrix 1/L0

(k)I to approximate the 

inverse of the Hessian matrix of l(f) at f(k) (Step 3). A suitable step size is determined via 

backtracking line search, where the step size is progressively shrunk by a factor of 1/τ (Step 

1c). Parameter η ensures that the line search leads to a sufficient change in the value of the 

objective function. Since the problem is non-monotone, i.e., the value of the objective 

function is not guaranteed to decrease at every iteration, we require the value of the objective 

function to be slightly smaller than the largest value of the objective function in M previous 

iterations (Step 1b). For M > 0, the algorithm may increase the value of the objective 

function occasionally but will eventually converge faster than the monotone case with M = 0 

[52]. Parameter ε controls the stopping condition (Step 2). We divide |ϕ(f(k+1)) − ϕ(f(k))| by 

max(ϕ(f(k+1)), 1) to compute the relative change or the absolute change of the value of the 

objective function, whichever is smaller. In this work, the following parameters were used: 

Lmin = 1 × 10−9, Lmax = 1 × 109, η = 1 × 10−4, τ = 2, M = 10, and ε = 1 × 10−6.
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Algorithm 1

Non-Monotone Iterative Hard Thresholding (NIHT)

Data: Signal vector s; RF matrix A.

Parameters: Grouping ; sparsity γ; balance parameter α.

Parameters: Factor τ > 1; step size constants Lmin < Lmax; line search constant η > 0; stopping tolerance ε > 0; non-
monotone parameter M.

Initialization: L0
(0) = 1; initial solution f(0).

Output: Volume fraction vector f.

/* Main Steps */

1 Set L(k) = L0
(k).

1a)Solve subproblem (see Section IV-C2)

f(k + 1) ∈ Arg min
f ≥ 0

l(f(k)) + ∇l(f(k))T(f − f(k)) + L(k)

2 ‖f − f(k)‖2
2 + r(f) .

(11)

1b)If

ϕ(f(k + 1)) ≤ max
[k − M]+ ≤ i ≤ k

ϕ(f(i)) − η
2‖f(k + 1) − f(k)‖2

2
(12)

is satisfied, then go to Step 2.

1c)Set L(k) ← L(k) and go to Step 1a.

2 If

∣ ϕ(f(k + 1)) − ϕ(f(k)) ∣
max (ϕ(f(k + 1)), 1)

< ε

is satisfied, then return f(k+1) as a solution. Otherwise, go to Step 3.

3 Set

L0
(k + 1) = max Lmin, min Lmax, ΔlTΔf

‖Δf‖2
2 , (13)

where Δf = f(k+1) − f(k) and Δl = ∇l(f(k+1)) − ∇l(f(k)).

4 Set k ← k + 1 and go to Step 1.

Yap et al. Page 9

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Solution to Subproblem—The subproblem is group separable and can be solved by 

tackling separately the problem associated with each group g ∈ . With some algebra, the 

subproblem associated with group g can be shown to be

fg
(k + 1) ∈ Arg min

fg ≽ 0
ϕg(fg) = ‖fg − zg

(k)‖2
2 + 2

L(k)rg(fg) , (14)

where

z(k) = f(k) − ∇l(f(k))/L(k)

= f(k) − 2AT(Af(k) − s)/L(k) (15)

and fg and zg
(k) are subvectors of f and z(k) associated with group g. Note that (15) is a 

gradient descent with step size 1/L(k). If we let γ∼1
(k) = 2αγ /L(k), and γ∼2

(k) = 2(1 − α)γ /L(k), the 

solution to the problem can be obtained by hard thresholding [6]. That is, if 

z∼g = hard+(zg
(k), γ∼1

(k)),

where

[hard+(z, β)]
i
=

zi if zi < β,
0 otherwise,

(16)

the solution to the subproblem (14) is

fg
(k + 1) =

z∼g if ‖z∼g‖2
2 > γ∼1

(k)‖z∼g‖0 + γ∼2
(k),

0 otherwise.
(17)

See the appendix for the proof. Note that the sparse-group LASSO [14] can be implemented 

in a similar fashion by replacing the above solution with a soft-thresholding version.

D. Implementation Issues

1) Normalization—The columns of A and the signal vector s are normalized to have unit 

ℓ2-norm before solving (10). After obtaining the solution vector, it is rescaled back to the 

original range.

2) Tuning Parameter—If we replace r(f) = α γ||f||1+(1 − α) γΣg∈ ||fg||2 in (10), the 

thresholding operation in (16) has to be replaced by soft-thresholding at level β/2. According 
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to [56]–[58], in this case the parameter γ should be set according to the universal penalty 
level

γ = 2σ 2 log N, (18)

where σ is the noise standard deviation that can be measured from the background signal. To 

set the threshold in the case of hard-thresholding (see (16)) at the same level, we let

γ = 2σ2 log N . (19)

3) Initialization—To speed up computation, we warm start the optimization using the 

solution provided by a subspace pursuit algorithm [12], modified to use ℓ1 sparse projection 

[59].

V. Experimental Results

We compared the proposed method (L200) with the following methods:

• L0 and L1: ℓ0 and ℓ1 minimization using a single RF each for WM, GM, and CSF 

[21]. The diffusion parameters of the WM, GM, and CSF RFs were determined 

respectively based on regions in the corpus callosum, cortex, and ventricles.

• L211: Sparse-group LASSO [14] using RFGs identical to the proposed method.

Similar to [42], and according to [43], we executed sparse-group LASSO multiple times for 

L1 and L211, each time reweighing the ℓ21-norm and the ℓ1-norm so that they eventually 

approximate their ℓ0 counterparts. The tuning parameter γ was set according to Section IV-

D2. We set α = 0.5 so that the effects for both group and individual sparsity are balanced. 

We will also report results of the above-mentioned methods with GM and CSF RFs 

removed, retaining only the WM RFs. In other words, single-tissue (ST) models are used. 

The ST variants are denoted respectively as L200-ST, L211-ST, L0-ST, and L1-ST.

The parameters of the RFGs were set to cover the typical values of the diffusivities of the 

WM, GM, and CSF voxels in the datasets described in the next sections: 

λ‖
WM = 1 × 10−3 mm2/s, λ⊥

WM = [0.2:0.05:0.3] × 10−3 mm2/s, λGM = [0.0 : 0.1 : 0.8] × 10−3 

mm2/s, and λCSF = [1.3 : 0.1 : 1.5] × 10−3 mm2/s. The notation [a : s : b] denotes values 

from a to b, inclusive, with step s. Note that in practice, these ranges do not have to be exact 

but should however cover the range of parameter variation. We set, in (3), 

Si, j
WM(0) = SWM(0), S j

GM(0) = SGM(0), and S j
CSF(0) = SCSF(0), ∀i, j, according to the typical 

values of non-diffusion-weighted signals in the corpus callosum, cortex, and ventricles, 

respectively. The WM RFGs are distributed evenly on 321 points of a hemisphere, generated 

by subdivision of an icosahedron [60].
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A. Synthetic Data

For quantitative evaluation, we generated a synthetic dataset using a mixture of four tensor 

models [26]. Two of which are anisotropic and represent two WM compartments that are at 

an angle of 45°, 60°, or 90° with each other. The other two are isotropic and represent the 

GM and CSF compartments. The generated diffusion-weighted signals therefore simulate 

the partial volume effects resulting from these compartments. The volume fractions and the 

diffusivities of the compartments were allowed to vary in ranges that mimic closely the real 

data discussed in the next section. The diffusion weightings and gradient directions were set 

according to the real data. Various levels of noise (SNR = 20, 30, 40, measured with respect 

to the signal value at b = 0 s/mm2) was added. The performance statistics (see next 

paragraph) for the data generated using a combination of WM/GM/CSF diffusivities and 

volume fractions were computed. The statistics over a set of combinations of diffusivities 

and volume fractions were then averaged and reported. This procedure was repeated 100 

times.

We evaluated the accuracy of the estimated volume fractions and FODFs based on the 

ground truth data. The accuracy of the estimated volume fractions was evaluated by 

computing the root mean square (RMS) error between the estimated volume fractions (5) 

and the ground truth volume fractions. The accuracy of the estimated FODFs [22] was 

evaluated by comparing their peaks (local maxima) with respect to the directions of the WM 

tensor models used to generate the synthetic data. The orientational discrepancy (OD) 

measure defined in [61] was used as a metric for evaluating the accuracy of peak estimates. 

The peaks were estimated based on the method described in [4].

The results shown in Figure 2 indicate that, compared with the ℓ1 methods, the ℓ0 methods 

improve the estimation accuracy of both volume fractions and FODFs for different SNRs 

and crossing angles. For the ST methods, it is not surprising that the estimated volume 

fractions are incorrect. More important, without proper modeling of the different tissue 

compartments, errors are also introduced in the FODFs; see for examples the OD values for 

90° crossing angle.

Figure 3 shows the results for synthetic data generated using only the WM compartments. In 

this case, the estimates of the ST methods are improved. The accuracy of the volume 

fraction estimates of the multi-tissue methods are slightly worse than the single-tissue 

methods, but the errors remain reasonably low. The FODF estimates of the ℓ0 methods are 

consistently better than the ℓ1 methods.

B. Real Data

For reproducibility, diffusion-weighted imaging data from the Human Connectome Project 

(HCP) [62] were used. The 1.25 × 1.25 × 1.25 mm3 data were acquired with diffusion 

weightings b = 1000, 2000, 3000 s/mm2, each applied in 90 non-collinear directions. 18 

baseline images with low diffusion weighting b = 5 s/mm2 were also acquired. All images 

were acquired with reversed phase encoding for correction of EPI distortion.

In this evaluation, we focus only on the multi-tissue methods. Figures 4 and 5 indicate that 

the WM, GM, and CSF volume fraction maps match quite well with the anatomy shown by 
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the T1-weighted image. Figure 4 indicates that L200 gives the best structural clarity in 

regions such as the cerebellum. L211 and L1 over-estimate the GM volume fractions in WM 

regions. Figure 5 confirms that L200 gives the best structural clarity and that in the 

brainstem L200 and L0 yield volume fraction estimates that are more spatially consistent. 

L200 also captures greater amount of cortical GM details. Figure 6 shows the WM FODF 

glyphs at two regions that contain a mixture of signals from WM and GM—the cortex and 

the deep GM. The left two columns of the figure show the WM FODF glyphs of the cortical 

region. In this region, the tissue type progressively transits from WM to GM and then CSF. 

The results indicate that for pure WM region, the results are relatively consistent across 

methods. Differences start to show up in regions with GM partial volume. The right two 

columns of the figure show results in deep GM with WM and GM partial voluming. At the 

cortex, the ℓ0 methods are able to extract more directional information than the ℓ1 methods, as 

indicated by the larger glyphs that penetrate deeper into the GM. In the deep GM, the larger 

glyphs yielded by the ℓ0 methods again confirm that they are able to extract a greater amount 

of directional information. The ℓ0 methods can therefore provide more information for 

tractography algorithms in studies that need to investigate neuronal connections associated 

with the cortex and the deep GM.

C. Computation Speed

Our implementation of the ℓ0 sparse-group solver is 8 times faster than the reweighted 

LASSO sparse-group solver implemented using a similar framework but by replacing hard 

thresholding with soft thresholding.

VI. DISCUSSION

Our method relies on a discrete dictionary consisting of RFs with parameters sampled 

discretely from the parameter space. When greater accuracy is needed, the parameter 

sampling density has to be increased. This increases the computational cost and when 

dictionary is large the computation can be intractable. This is especially the case when more 

sophisticated models, such as those used for microstructural estimation, need to be fitted to 

the data.

There are a number of remedies to this problem. First, we can use an iterative screening 

approach recently proposed in [59] to remove unrelated RFs during estimation. That is, 

during optimization of the ℓ0 sparse-group problem, a subspace containing the solution can 

be estimated in each iteration and the minimization problem has to be solved only in this 

subspace, which is much smaller than the original space. This subspace is iteratively refined 

as better solution candidates are obtained. This approach can greatly reduce the 

computational load and at the same time promote robustness to local minima.

Alternatively, we can use a dictionary learning method to progressively refine the dictionary, 

as described in [63]. With such approach, the parameters of the RFs in the dictionary can be 

progressively refined in the continuous parameter space and hence obviates the need for 

including a large amount of RFs in the dictionary. Optimization is performed by alternating 

between solving the sparse problem and parameter adjustment.
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Another approach is to use a Markov chain Monte Carlo (MCMC) based optimization 

technique, as reported in [64], [65]. This approach progressively narrows down the support 

of the solution with the goal of maximizing the posterior probability.

The estimation of the FODF can be further improved by imposing spatial regularity, similar 

to what was done in [66], [67]. The assumption is that the signals of neighboring voxels are 

highly correlated and, by encouraging spatially similar estimation outcomes, one can 

improve robustness to noise and yield greater estimation accuracy with a lesser number of 

samples [66], [67]. To account for larger changes at structural boundaries, regularization 

terms based on total variation (TV) [68] or wavelet [69] can be employed for edge 

preservation.

VII. CONCLUSION

We have shown that instead of restricting ourselves to one RF per compartment, it is 

possible to employ a group of RFs per compartment to cater to possible data variation across 

voxels. The use of ℓ0 penalization is motivated by the following observations: (i) ℓ1 

penalization conflicts with the unit sum requirement of the volume fractions, as noted in 

[42]; (ii) ℓ1 penalization is biased and attenuates coefficient magnitudes [52], resulting in the 

erosion of FODF peaks. Our results support that our ℓ0 sparse-group estimation improves 

both volume fraction and FODF estimates.

Our method provides the flexibility of including different diffusion models in different 

groupings for robust microstructural estimation. Potential future work includes incorporating 

complex diffusion models [50] for estimation of subtle properties such as axonal diameter. 

We will also apply our method to the investigation of pathological conditions such as edema 

and also to applications such as tissue segmentation [70].
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APPENDIX

We provide here a detailed convergence analysis of the non-monotone iterative hard 

thresholding (NIHT) algorithm. We show in Theorem 1 that the number of iterations for the 

inner loop is bounded and in Theorem 2 that NIHT converges to a local minimizer of (10).

Theorem 1

For each k ≥ 0, the termination criterion of the inner loop (12) is satisfied after a finite 
number of iterations.

Proof

Since f(k+1) is a minimizer of problem (14), we have

∇l(f(k))T(f(k + 1) − f(k)) + L(k)

2 ‖f(k + 1) − f(k)‖2
2 + r(f(k + 1)) ≤ r(f(k)) . (20)

Since ∇l is Lipschitz continuous with constant Ll, we have (from Proposition 12.60 in [71])

l(f(k + 1)) ≤ l(f(k)) + ∇l(f(k))T(f(k + 1) − f(k)) +
Ll
2 ‖f(k + 1) − f(k)‖2

2 . (21)

Combining these two inequalities, we obtain

l(f(k + 1)) + r(f(k + 1)) ≤ l(f(k)) + r(f(k)) −
L(k) − Ll

2 ‖f(k + 1) − f(k)‖2
2

(22)

and hence
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ϕ(f(k + 1)) ≤ ϕ(f(k)) −
L(k) − Ll

2 ‖f(k + 1) − f(k)‖2
2 . (23)

It follows that

ϕ(f(k + 1)) ≤ max
[k − M]+ ≤ i ≤ k

ϕ(f(i)) −
L(k) − Ll

2 ‖f(k + 1) − f(k)‖2
2 . (24)

Hence, (12) holds whenever L(k) ≥ Ll + η. This implies that L(k) needs to be updated only a 

finite number of times and hence the conclusion holds.

Theorem 2

Let {f(k)} be generated by NIHT when solving (10). Then these hold:

i. If the support set supp(f) = {i : fi ≠ 0}, then supp(f(k)) changes only finitely often.

ii. f(k) converges to local minimizer f* of problem (10). Moreover, supp(f(k)) → 
supp(f*), r(f(k)) → r(f*), ϕ(f(k)) → ϕ(f*), and

f∗ ∈ Argmin
f ≽ 0

{l(f): f i ≠ 0, i ∈ supp(f∗)} . (25)

Proof

Let. L(k) denote the final value of L(k) at the kth iteration. From the proof of Theorem 1, we 

know that L̄(k) ∈ [Lmin, L̃), where L̃ = τ (Ll + η). Let {f(k)} be the series of solutions to (14), 

then for all k ≥ 0,

∣ f i
(k + 1) ∣ ≥ δ = 2αγ /L∼ > 0, if f i

(k + 1) ≠ 0. (26)

Suppose supp(f(k)) ≠ supp(f(k+1)) for some k ≥ 1. Then some i exists such that ( f i
(k) ≠ 0 but 

f i
(k + 1) = 0) or ( f i

(k) = 0 but f i
(k + 1) ≠ 0), which together with (26) implies that ∣ f i

(k) ∣ ≥ δ or 

∣ f i
(k + 1) ∣ ≥ δ and we have

‖f(k + 1) − f(k)‖2 ≥ ∣ f i
(k + 1) − f i

(k) ∣ = max ( ∣ f i
(k + 1) ∣ , ∣ f i

(k) ∣ ) ≥ δ . (27)
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Since {ϕ(f(k))} is bounded below and ϕ(f(k)) − ϕ(f(k + 1)) ≥ η
2‖f(k + 1) − f(k)‖2

2
, {ϕ(f(k))} 

converges to a finite value as k→∞ and

lim
k ∞ ‖f(k + 1) − f(k)‖2 = 0. (28)

This contradicts (27) and implies that supp(f(k)) does not change when k is sufficiently large.

(ii) It follows from (i) above that there exist some K ≥ 0 such that supp(f(k)) stops changing 

and is fixed at a certain supp*  supp(f(K)) for all k ≥ K. Then one can observe from (14) 

that ∀k > K,

f(k + 1) = arg min
f ≽ 0

l(f(k)) + ∇l(f(k))T(f − f(k)) + L(k)

2 ‖f − f(k)‖2
2: f i ≠ 0, i ∈ supp∗ . (29)

Using ϕ(f(k)) − ϕ(f(k + 1)) ≥ η
2‖f(k + 1) − f(k)‖2

 and the fact that r(f(k)) = r(f(k+1)) when k >K, 

we have

l(f(k)) − l(f(k + 1)) ≥ η
2‖f(k + 1) − f(k)‖2 . (30)

It follows from Theorem 1 in [72] that f(k) → f*, where

f∗ ∈ Argmin
f ≽ 0

l(f): f i ≠ 0, i ∈ supp∗ . (31)

Now consider a small perturbation vector Δf. By using (31) we have

l(f∗) ≤ l( f∼∗), (32)

where f
∼

i
∗ = 0 for i ∉ supp* and f

∼
i
∗ = f i

∗ + Δ f i for i ∈ supp*. In addition, based on the 

conclusion in part (i), we have l(f̃*) ≤ l(f*+Δf) (otherwise, supp(f(k)) can change). Thus, f* is 

a local minimizer of (10). In addition, we know from (26) that f i
(k) ≥ δ for k > K and i ∈ 

supp*. This yields f i
∗ ≥ δ for i ∈ supp* and f i

∗ = 0 for i ∉ supp*. Hence, supp(f(k)) = supp(f*) 

= supp* for all k > K, which clearly implies that r(f(k)) = r(f*) for every k > K. By continuity 

of l, we have l(f(k)) → l(f*). It then follows that
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ϕ(f(k)) = l(f(k)) + r(f(k)) l(f∗) + r(f∗) = ϕ(f∗) . (33)

Finally, (25) holds due to (31) and the relation supp(f*) = supp*.

We show here the proof for the solution to subproblem (14).

Proof

The subproblem (14) can be written as

fg
(k + 1) ∈ Argmin

fg ≽ 0
ϕg(fg) = ‖fg − zg

(k)‖2
2 + γ∼1

(k)‖fg‖0 + γ∼2
(k)ℐ(‖fg‖2) . (34)

Now let us consider the following two cases:

I. fg = 0. Then the cost is ϕg(0) = ‖zg
(k)‖2

2
.

II. fg ≠ 0, i.e., at least one entry of fg is nonzero. Then we obviously have 

γ∼2
(k)ℐ(‖fg‖2) = γ∼2

(k). According to [6], we have

z∼g = hard+(zg
(k), γ∼1

(k)) ∈ Argmin
fg ≽ 0

ϕg(fg) = ‖fg − zg
(k)‖2

2 + γ∼1
(k)‖fg‖0 , (35)

The cost for this solution is ‖z∼g − zg
(k)‖2

2 + γ∼1
(k)‖z∼g‖0 + γ∼2

(k).

Comparing the costs of the two cases above, the solution for problem (14) can be obtained 

as (17). That is, the solution is non-zero when

‖zg
(k)‖2

2 > ‖z∼g − zg
(k)‖2

2 + γ∼1
(k)‖z∼‖0 + γ∼2

(k) (36)

or equivalently

‖z∼g‖2
2 > γ∼1

(k)‖z∼g‖0 + γ∼2
(k) . (37)

In addition, from (9) we observe that if f = 0, ϕ(0) = ‖s‖2
2. Thus, the optimal solution is f* = 0 

when αγ + (1 − α)γ = γ ≥ ‖s‖2
2.
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Fig. 1. 
The signal, S(b, ĝ), can be represented using response function groups (RFGs) associated 

with white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The volume 

fractions{ f i, j
WM}, { f j

GM}, and { f j
CSF} are estimated using a sparse-group estimation 

framework. The groupings are shaded in gray. Note that each white matter RFG WMi is 

associated with a direction vî. See (2), (3), and (4) for the mathematical details.
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Fig. 2. 
Estimation accuracy for volume fractions in terms of RMS error and FODFs in terms of OD. 

The bar plots show the mean performance statistics for SNR = 20, 30, 40 and crossing angle 

= 45°, 60°, 90°. The error bars indicate the standard deviations.
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Fig. 3. 
Estimation accuracy for volume fractions in terms of RMS error and FODFs in terms of OD. 

Only the WM compartments were used to generate the data. The bar plots show the mean 

performance statistics for SNR = 20, 30, 40 and crossing angle = 45°, 60°, 90°. The error 

bars indicate the standard deviations.
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Fig. 4. 
The WM, GM, and CSF volume fraction images obtained by L200, L211, L0, and L1. The 

T1-weighted image at the top is shown for reference. L200 gives the best structural clarity in 

regions such as the cerebellum (red arrows). L211 and L1 over-estimate the GM volume 

fractions in WM regions (green arrows).
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Fig. 5. 
The WM, GM, and CSF volume fraction images obtained by L200, L211, L0, and L1. The 

T1-weighted image at the top is shown for reference. L200 gives the best structural clarity in 

regions such as the cerebellum (red arrows). In the brainstem, L200 and L0 yield volume 

fraction estimates that are more spatially consistent (green arrows). L200 also captures 

greater amount of cortical GM details (cyan arrows).
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Fig. 6. 
WM FODF glyphs, scaled according to the WM volume fractions, at (left) a cortical region 

and (right) a deep GM region. The red and green arrows mark regions where ℓ0 methods 

yield a greater amount of WM directional information than the ℓ1 methods.
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