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Abstract

This review examines the current state of electrophysiological endophenotype research and 

recommends best practices that are based on knowledge gleaned from the last decade of molecular 

genetic research with complex traits. Endophenotype research is being oversold for its potential to 

help discover psychopathology relevant genes using the types of small samples feasible for 

electrophysiological research. This is largely because the genetic architecture of endophenotypes 

appears to be very much like that of behavioral traits and disorders: they are complex, influenced 

by many variants (e.g., tens of thousands) within many genes, each contributing a very small 

effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting 

heart, a measure that has received scant advocacy as an endophenotype, emerges as an 

electrophysiological variable with verified associations with molecular genetic variants. To move 

the field forward, investigations designed to discover novel variants associated with 

endophenotypes will need extremely large samples best obtained by forming consortia and sharing 

data obtained from genome wide arrays. In addition, endophenotype research can benefit from 

successful molecular genetic studies of psychopathology by examining the degree to which these 

verified psychopathology-relevant variants are also associated with an endophenotype, and by 

using knowledge about the functional significance of these variants to generate new 

endophenotypes. Even without molecular genetic associations, endophenotypes still have value in 

studying the development of disorders in unaffected individuals at high genetic risk, constructing 

animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
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1.0 Introduction

In a paper investigating the genetic basis for schizophrenia published in Nature in 1988, 

Sherrington et al. (1988) published what many thought was a breakthrough paper, wherein 

they concluded that they had found the “first strong evidence for the involvement of a single 

gene in the causation of schizophrenia.” Few would have thought then that in the ensuing 

three decades, and despite witnessing the human genome project completed, we still would 

know relatively little about how specific genes influence the development of schizophrenia 

and other psychiatric disorders. Moreover, what little we do know has no obvious public 

health significance. A major concern in the psychiatric literature has been that identifying 

genes is hamstrung by the inadequacy of the American Psychiatric Association's Diagnostic 
and Statistical Manuals (DSM) to carve nature at its joints with enough precision to facilitate 

success. The definition of DSM disorders depends little on biology; instead, they remain 

defined largely by consensus expert opinion, are obviously heterogeneous, and show 

substantial overlap. Against this backdrop, interest in strategies for gene finding that do not 

depend on the DSM has been high.

One such strategy involves identifying endophenotypes, genetically influenced quantifiable 

traits that have the potential to carve nature at its joints. Endophenotypes identify those at 

risk for psychopathology prior to its becoming manifest and can be used to identify 

etiologically relevant genetic variants. Assumed to be less genetically complex and more 

proximal to the effects of genes, endophenotypes offer a potentially refined and powerful 

approach to uncover genetic variants associated with psychopathology. Many thoughtful 

endophenotype articles populate the literature (for recent examples, see Anokhin, 2014; 

Beauchaine, 2009; Burton et al., 2015; Campanella, Pogarell, & Boutros, 2014; Euser et al., 

2012; Faraone, Bonvicini, & Scassellati, 2014; Ferrarelli, 2013; Glahn et al., 2014; 

Goldstein & Klein, 2014; W. G. Iacono & Malone, 2011; Lenzenweger, 2013; Loo, 

Lenartowicz, & Makeig, 2015; Manoach & Agam, 2013; Miller & Rockstroh, 2013; Moses-

Kolko, Horner, Phillips, Hipwell, & Swain, 2014; Owens, Bachman, Glahn, & Bearden, 

2016; Pearlson, 2015; Rosen, Spellman, & Gordon, 2015; Rubenstein, Wiggins, & Lee, 

2015; Salvatore, Gottesman, & Dick, 2015; Swerdlow, Gur, & Braff, 2015), and many of 

these share a conviction that endophenotypes are valuable for identifying genetic liability . 

However, despite their introduction to psychiatry by Gottesman and Shields (I. I. Gottesman 

& Shields, 1972) over four decades ago, the promise of endophenotypes for gene discovery 

has yet to be realized.

In this article, we evaluate this promise and recommend best practices for genetic 

endophenotype research that we believe can improve the quality of investigation. We are 

informed in this effort by our own experience conducting molecular-genetic investigations of 

more than a dozen psychophysiological measures (W. G. Iacono, Malone, Vaidyanathan, & 

Vrieze, 2014b; Malone et al., 2014; Vaidyanathan, Isen, et al., 2014; Vaidyanathan, Malone, 

Donnelly, et al., 2014b; Vaidyanathan, Malone, Miller, McGue, & Iacono, 2014; Vrieze et 

al., 2014a, 2014b), as well as by the lessons of the past decade or so of molecular genetic 

research, which have prompted researchers to think about the genetics of complex traits and 

diseases differently. We have learned that disorders like schizophrenia are caused by many 

genetic variants each of which has a small effect in the general population (Schizophrenia 
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Working Group of the Psychiatric Genomics, 2014). In fact, neurodevelopmental disorders 

like schizophrenia, which only a few decades ago were thought to be caused primarily by the 

home rearing environment, are not all that different in their genetic architecture from 

complex medical diseases like coronary heart disease or type 2 diabetes (Visscher, Brown, 

McCarthy, & Yang, 2012). The small effect of any individual common genetic variant is 

undetectable without an adequately powered design. A longstanding hope is that individual 

genetic effects on endophenotypes will be larger, thereby increasing power to detect genetic 

variants related to disease and psychiatric disorders. However, relatively few reports put 

endophenotypes to the ultimate test, evaluating whether in fact an endophenotype can be 

used to identify molecular genetic variants associated with psychopathology. Those that 

exist have been largely restricted to candidate gene investigations or small sample reports 

that, if they have generated positive results, have not been verified. Our recent work, which 

constitutes the most comprehensive large sample molecular genetic investigation of 

electrophysiological endophenotypes undertaken to date (described in detail below, see W. 

G. Iacono, 2014a), provides little basis for optimism that endophenotypes will live up to the 

hope that they will lead to breakthroughs in the identification of psychopathology relevant 

genes. Hence, this is a good point to reconsider where the value of endophenotypes lies, and 

how endophenotypes can be profitably used to shed light on the etiology of psychiatric 

disorder.

Our focus is on electrophysiological endophenotypes, but the approach we recommend is 

broadly applicable to all endophenotypes. Advances in psychophysiology, such as improved 

signal processing and statistical methods, are obviously important, but we do not believe that 

the current level of sophistication used to quantify and process electrophysiological variables 

is a significant impediment to success in identifying genetic variants associated with 

endophenotypes. Electrophysiological variables have psychometric properties that are at 

least equivalent to and in many cases are better than those of phenotypes that have met with 

success in molecular genetic research. Our focus is on the best practices needed to promote a 

trait as a suitable endophenotype, and to demonstrate its utility for uncovering biological 

pathways to the development of psychiatric disorder. Although we believe our 

recommendations are supported by current practices governing molecular genetic 

investigations of complex traits, we recognize that there is apt to be some divergence of 

opinion regarding which practices are indeed optimal. We are not arguing that all 

endophenotype research must subscribe to our approach, but we do believe that deviation 

from our recommendations should be accompanied by sound justification.

We begin by reviewing the development of the endophenotype construct and update the 

criteria that endophenotypes should satisfy given the current state of knowledge regarding 

the genetics of complex traits. Next, we consider how to use molecular genetic methods and 

analytic techniques to gain insights into the biology of endophenotypes. These 

recommendations are derived in part from our experience evaluating the molecular genetic 

basis of 17 endophenotypes that we published as a special issue in Psychophysiology in 

December 2014. Included in the special issue is an article devoted to molecular genetic 

methodology (W. G. Iacono, Malone, Vaidyanathan, & Vrieze, 2014a). We recommend this 

methods article, which was written as a tutorial and included a glossary of technical terms, 

to our readers who desire better understanding of the molecular and statistical techniques we 
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discuss here. We follow discussion of our special issue with a selective review and critique 

of electrophysiological endophenotypes in light of our recommended best practices. We 

conclude by considering future directions for endophenotype research.

2.0 Biomarkers and the Endophenotype Concept

Psychiatric research has had a longstanding interest in developing reliable biomarkers, 

clinically useful biological features that are associated with psychopathology. A valid 

biomarker could lead to improved diagnosis, prognosis, and treatment as well as provide 

clues to the nature of underlying pathophysiology (W. G. Iacono, 1985). Although 

biomarkers such as neurochemical metabolites or measures of inflammatory response have 

obvious face value, for the vast majority of disorders, there is no consensus regarding which 

molecules are likely to make the best marker targets. Absent a solid theoretical foundation 

from which a vast array of possible biochemical markers can be reduced to a few plausible 

candidates, identifying valid biomarkers remains a daunting empirical task. Part of the 

appeal of psychophysiological measures derives from their tapping central nervous system 

function broadly; if the integrity of any element of a brain system is compromised, an 

electrophysiological measure associated with that system may be affected. However, this 

advantage may be offset by the measure's spatial coarseness and inability to identify the 

exact locus of dysfunction or precise mechanism involved.

State-dependent biomarkers that are present only during exacerbation of symptoms 

constitute episode markers (W. G. Iacono, 1985). Episode markers can be useful for disorder 

identification, and for monitoring course and treatment effectiveness. Results from 

schizophrenia research have shown how psychophysiological measures can be used to 

“mark” the presence of psychotic symptoms. Using a vocalization paradigm adapted from 

primate research, Ford and colleagues (J.M. Ford, 2015; J. M. Ford et al., 2014) have 

identified an N1 event-related potential response in schizophrenia patients that, because it 

appears to assess the quality of neural processing associated with hallucinations, may index 

the state of psychosis in this disorder (Ford, 2016). Using magnetoencephalography (MEG) 

to examine functional connectivity across cortical regions, Hinkley et al. (Hinkley et al., 

2011) also provide evidence of an electrocortical biomarker for schizophrenia. These 

investigators reported that diminished alpha band connectivity was associated with psychotic 

symptoms and impaired cognition, and posited that the observed neurophysiologic effect 

might be a useful treatment target.

Unlike state-dependent biomarkers, markers of environmentally induced susceptibility are 

temporally stable traits that identify those who have become vulnerable to disorder as a 

consequence of environmental exposure (W. G. Iacono, 1985). Acquired characteristics, 

such as those secondary to perinatal complications or substance abuse, or those arising 

subsequent to trauma, fall into this category. Investigations of posttraumatic stress disorder 

(PTSD) have shown that traumatic exposure may generate such susceptibility markers. 

Comparing monozygotic twins discordant for combat exposure, Orr et al. (2003) found that 

elevated heart rate response to startling sounds was evident only in the exposed twins, 

suggesting that the cardiac response represents an acquired marker of PTSD rather than a 

sign of pre-existing genetic vulnerability. In a MEG study, combat veterans with PTSD and 
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resilient combat veterans exposed to trauma without developing PTSD showed distinctly 

different patterns of neural network activity that were interpreted as accounting for 

differences in how trauma was encoded in the brain (James et al., 2013). Such 

environmentally mediated heart rate and MEG responses have many of the qualities of an 

endophenotype, but because they are not a manifestation of genetic liability, they would have 

little value for identifying whatever genetic mechanisms are involved in the associated 

clinical disorder.

Psychophysiological measures have in common with other types of biomarkers the fact that 

the unit of measurement is biological. They, like many other types of biomarkers, depend on 

a psychological task or circumstance; understanding the paradigm used to elicit the 

physiological response is thus critical to the interpretation of the significance of the 

response. The eye blink startle electromyographic (EMG) response takes on quite different 

meaning if it is elicited by an intense unexpected event, the same event when part of a pre-

pulse inhibition sequence, and the same event presented while viewing pleasant or aversive 

imagery. In only the first two of these paradigms is the response heritable, and only pre-

pulse inhibition receives strong support as an endophenotype (Anokhin, Golosheykin, & 

Heath, 2007; Anokhin, Heath, Myers, Ralano, & Wood, 2003; Hasenkamp et al., 2010; 

Malone et al., 2014). Psychological context is thus important to the evaluation of a 

psychophysiological marker, a fact that is often not fully appreciated when an 

electrophysiological signal is interpreted as a neurophysiological biomarker as though the 

bioelectric response itself is all that matters.

Psychophysiological research that successfully identifies these different types of biomarkers 

may well have considerable public health significance. Endophenotypes are also biomarkers. 

They can be distinguished from episode markers and trait markers stemming from 

environmental exposure by their ability to index genetic liability for a psychiatrically 

relevant trait (W. G. Iacono, 1985).

3.0 The Research Domain Criteria (RDoC) Naturally Involve 

Endophenotypes

The US National Institute of Mental Health developed the Research Doman Criteria (RDoC) 

to encourage psychopathology research that is organized around a behavioral neuroscience 

framework rather than the clinical descriptions that characterize the DSM. RDoC 

emphasizes continuously distributed biobehavioral dimensions rather than categories based 

on descriptions of behavioral symptoms. Biomarker research in general and endophenotype 

research in particular fit the RDoC scheme which emphasizes taking advantage of 

knowledge in neuroscience, genomics, and behavioral science to gain insights into 

psychopathology-relevant dimensional constructs. As others have noted, the brain systems 

focus of RDoC “builds on a fundamentally psychophysiological outlook” (Cuthbert, 2014, p. 

1205) that “brings the realm of endophenotypes to the foreground of the research enterprise” 

(Miller & Rockstroh, 2013, p. 201).
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4.0 Endophenotype Construct Validation

We contend that best practice endophenotype research should be designed to address the 

topics listed in Table 1. These topics are grouped into three domains, representing three 

important aspects of construct validation (Cronbach & Meehl, 1955a) applied to 

endophenotypes. The first, threshold criteria, describe the minimum requirements any 

biomarker must satisfy to have standing as a putative endophenotype. The second, 

endophenotype verification, identifies the requirements necessary to remove the qualifier 

“putative” or “candidate” from an endophenotype's status. Compared to the first domain, 

there is far less endophenotype research targeting verification. The third domain deals with 

utility. While the topics listed here also enhance construct validity, they cover usefulness of 

an endophenotype, how it can be used as a research tool to advance knowledge regarding the 

biological etiology of psychiatric disorder. To prove its worth, an identified endophenotype 

should enable researchers to achieve the verification and utility topic goals. Thus far, few 

endophenotype investigations adequately tackle these aims.

4.1 Threshold criteria

Despite ample evidence that psychiatric disorders involve dysfunctional brain systems, there 

are no biomarkers that can be used clinically to confirm a diagnosis or identify a given 

individual as at risk, and it is not clear that the candidate biomarkers that exist do a better job 

identifying cases than existing interview methods (although see (Clementz et al., 2015)). In 

addition, our understanding of the pathophysiology of psychiatric disorders remains fairly 

primitive. In the absence of a good theoretical framework regarding the mechanisms that 

give rise to abnormal behavior, it is difficult to develop hypotheses that generate new 

biomarker candidates, so much of the research conducted to date has involved an 

atheoretical empirical approach to biomarker discovery. Although this is true for 

endophenotypes as well as other biomarkers, the construct validity of a putative 

endophenotype is enhanced by the knowledge that psychopathology is heritable. Unlike 

other types of biomarkers which need only show an association to psychopathology to be 

elevated to candidate status, endophenotypes must show such association plus evidence that 

they are under genetic influence. As Table 1 indicates, these two criteria must be met for a 

biomarker to receive provisional consideration as an endophenotype.

Demonstrating an association between a candidate endophenotype and a clinical disorder or 

correlated clinical characteristic is necessary to establish the clinical relevance of the 

measure, but the measure need not show high sensitivity or specificity because DSM 

disorders are heterogeneous and overlapping. The value of the endophenotype is not to 

validate a DSM diagnosis, but to provide a biologically informed alternative avenue to 

uncover etiological factors relevant to the types of dysfunction those with a diagnosis 

experience. As Patrick and colleagues have emphasized (Patrick et al., 2013; Yancey, 

Venables, & Patrick, 2016), it is not reasonable to expect measures of constructs from 

different domains, such as a psychophysiological variable and a clinical interview 

assessment, to show more than a modest association, and correlations smaller than .20 are 

commonplace (W. G. Iacono, 2014b; W G Iacono, 2016). For this reason, relatively large 

sample investigations are required to quantify accurately the degree to which variance is 
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shared between an endophenotype and an associated clinical phenotype (e.g., an N of 193 is 

required to have 80% power for detecting a Pearson correlation of .20 as significant at p<.

05).

Investigations that recruit genetically informative samples, like twins, can be used to 

establish the heritability of an endophenotype. A general population sample can be used for 

this purpose for dimensional traits that are continuously distributed (which appears to be the 

case for the vast majority of candidate endophenotypes). Establishing heritability also 

establishes reliability, another critical endophenotype attribute. Monozygotic twins, who 

conceptually can be thought of as parallel forms of the same individual, are especially useful 

for demonstrating the psychometric soundness of an endophenotypic measure because they 

can be expected to be highly similar for virtually all human traits (Polderman et al., 2015). 

The relatives of affected individuals with the endophenotype should possess the trait. 

Affected relatives should be characterized by endophenotype values similar to those of 

probands. Unaffected relatives are of particular value. Because many, but not all, of the 

unaffected relatives are presumably at elevated risk for developing a heritable disorder, they 

should score midway between probands and healthy comparison subjects. These patterns 

should be evident in all first-degree affected and unaffected relatives - parents, siblings and 

offspring. Given that the genetic liability for a clinical phenotype is shared by a candidate 

endophenotype, shared genetic influence should be evident. The same genetically 

informative samples that are used to establish the heritability of an endophenotype can often 

also be used to establish the degree to which genetic covariance is shared across the 

endophenotype and the clinical phenotype.

Once these threshold criteria are satisfied, the nomological net that derives from the process 

of endophenotype construct validation (Cronbach & Meehl, 1955b) can be further developed 

by carrying out research that address topics in Sections II and III of Table 1.

4.2 Endophenotype verification requires molecular genetic data

Virtually all research conducted on endophenotypes address the threshold criteria in Section 

I of Table 1. These criteria have provided the default definition of an endophenotype for 

decades. However, virtually every human trait of significance is heritable (Polderman et al., 

2015), so the current threshold for considering any biomarker as a putative endophenotype is 

low. The proliferation of candidate endophenotypes motivated primarily by meeting these 

threshold criteria has thus far contributed little to our understanding of the genetics of 

psychopathology. Given the current state of molecular genetic knowledge and methods, 

continued reliance on this default definition has outlived its usefulness; it is time to hold the 

definition of an endophenotype to a higher standard, and require that it demonstrate 

verifiable association with genetic variants. To achieve this criterion, the work supporting the 

molecular genetic basis of the endophenotype must be adequately powered, a topic we 

consider at length in subsequent sections. In addition, any molecular genetic finding must be 

supported through replication or meta-analysis. Once this is established, conducting 

investigations to determine if the same variants are associated with the relevant clinical 

phenotype should be relatively straightforward if power is also adequate. This 

accomplishment would speak directly to the hoped-to-be-realized promise of 
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endophenotypes. However, and importantly, it is conceivable that this process would also 

work in reverse in that genetic variants associated with a clinical phenotype can be used to 

identify variants for an electrophysiological measure with which it is correlated.

Recent methodological advances make possible the use of molecular genetic data to estimate 

heritability and the degree to which genetic variants are shared between an endophenotype 

and its associated clinical phenotype, two of our criteria in Table 1, which were previously 

only possible in twin studies (although family studies can at least provide evidence of 

familial influence even if they cannot disentangle genes and common environment). 

Genomic-relatednesss-matrix restricted maximum likelihood (GREML) (Ge et al., 2015; 

Speed, Hemani, Johnson, & Balding, 2012; Yang et al., 2010), which is implemented in 

software tools such as GCTA (Yang, Lee, Goddard, & Visscher, 2011) enables researchers to 

estimate the heritability of a trait (Yang et al., 2010) in a sample of subjects who are 

unrelated by kinship. Heritability estimates (“SNP heritability”) derived from GREML, or 

other approaches with a similar aim (So, Li, & Sham, 2011), are based on the degree of 

genetic relatedness among individuals from different families of origin that is due to 

measured genetic variants, as opposed to the degree of genetic relatedness implied by 

different familial relationships (monozygotic twin siblings, dizygotic twins or other sibling 

pairs, parent-offspring pairs, and the like). GREML determines the degree to which genetic 

relatedness between pairs of individuals accounts for phenotypic variance, using a mixed 

model to estimate the genetic variance in the phenotype. Because subjects are not from the 

same family, phenotypic similarity between them cannot be due to the collection of factors 

that contribute to family resemblance, including shared environment. It must be due to 

genetic variants inherited independently by subjects who are unrelated by kinship that 

influence the trait under study or that are linked with causal variants. Endophenotype 

research can be extended by GREML in ways that are not possible with classic twin- or 

family-based methods, such as to partition heritability by different characteristics of the 

genome, such as chromosome, minor allele frequency, and functional annotation, a method 

of attaching relevant biological information to genomic elements. (See J. J. Lee, Vattikuti, & 

Chow, 2016, for a discussion.) GREML also can be used to derive estimates of the genetic 

correlation between traits (S. H. Lee, Yang, Goddard, Visscher, & Wray, 2012), as can cross-

trait LD Score regression (Bulik-Sullivan et al., 2015), thus permitting endophenotype 

researchers to address criterion #4 in Table 1 using measured variants.

4.3 Utility

An underappreciated element of an endophenotype is its ability to identify youth without the 

manifest clinical phenotype who are nevertheless at high risk for developing it. This is a 

difficult criterion to establish because it requires longitudinal investigations in which a 

healthy sample of those with the endophenotype are followed for many years to determine 

their increased odds of developing psychopathology. Yoon et al. (Yoon, Malone, & Iacono, 

2015) provided just such an example using reduced P300 event-related potential (ERP) 

amplitude, an endophenotype for externalizing disorders. This research team reported that 

healthy individuals assessed at age 17, who were subsequently diagnosed with a substance 

use disorder or antisocial personality disorder by age 29, had smaller P300 ERP amplitudes 

at age 17 than those who remained healthy. For each 1-microvolt decrease in age-17 P300 
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amplitude, the odds of an age-29 externalizing diagnosis were increased by 5%. Findings 

such as this point to the potential value of using endophenotypes to identify those at genetic 

high risk well before they become symptomatic. A longitudinal research strategy built from 

a sample enriched in this way makes it possible to study individuals in the prodromal period 

preceding disorder development. In turn, such an enriched sample provides an opportunity to 

identify factors that differentiate those at high risk who succumb from those at high risk who 

do not.

With respect to developmental continuity, it is not reasonable to expect mean level stability 

over the lifespan because brain growth and maturation vary by age, and thus age appropriate 

norms may be required. However, in longitudinal investigations, it is reasonable to expect 

rank order stability for an endophenotype over much of the life span. There may be age 

limits to stability; the P300 response of preschool-age children may not be related to 

psychological processes such as subjective probability in quite the same way as it does in 

subsequent developmental periods (Polich, Ladish, & Burns, 1990). The sensitivity of an 

endophenotype to changing developmental influences and the age at which it can be 

advantageously employed to assess genetic liability represent important aspects of construct 

validation. Developmental considerations aside, an endophenotype should show trait-like 

properties. For instance, it should show substantial test-retest reliability over short periods of 

time (W. G. Iacono & Lykken, 1981), and be present when clinical symptoms are inactive or 

during disorder remission (W. G. Iacono, Peloquin, Lumry, Valentine, & Tuason, 1982; e.g., 

W. G. Iacono, Tuason, & Johnson, 1981). An ideal endophenotype would be immune to the 

consequences of treatment; otherwise, it would not be possible to identify whether the 

genetic liability is present in treated individuals. However, if the hope that endophenotypes 

contribute to understanding etiologic mechanisms is realized and treatments that target the 

mechanism are developed, it is possible that treatment success could be indexed through the 

modification of the neurobehavioral trait.

Many if not most putative endophenotypes have been identified through research that is 

atheoretical and empirically driven. This is not surprising given that we are searching for a 

biomarker that taps into genetic risk at a time when we have scant knowledge of genetic or 

biological mechanisms associated with psychopathology. As a consequence, articles listing 

requirements for endophenotype identification emphasize empirical criteria, not how to 

generate hypotheses regarding how best to specify their operational definition given existing 

theory because our theories are not refined enough to offer such precise specification 

(Vaidyanathan, Vrieze, & Iacono, 2015). Nevertheless, endophenotypes offer strong clues as 

to the pathophysiology of disorder; the utility of an endophenotype ultimately will derive 

from the insight it provides into underlying mechanisms. Once a candidate endophenotype 

has been shown to have demonstrable construct validity, the nomological net should be 

expanded to include the results of theory building research designed to identify the 

biological processes involved.

Although this will necessarily include studies with humans, modeling similar phenomena in 

animals provides a potentially advantageous complement to investigations that attempt to 

model complex human behaviors like symptoms of disorder (e.g., anxiety, drug self-

administration) and offers an avenue for studying processes related to clinical phenotypes 
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that are without obvious animal analogs (e.g., psychosis). In addition to the fact that animal 

studies offer control over confounds that complicate human research, and thus may simplify 

the task of identifying relevant brain systems, they also facilitate study of gene function 

related to these systems (e.g., Rosen et al., 2015). Animal research that yields a gene finding 

for an analog endophenotype that involves a genetic homolog in humans has obvious merit: 

It can be used to generate a human candidate gene study that adopts a hypothesis backed by 

high biological plausibility. However, there are many candidate gene studies of clinical 

phenotypes in humans backed by this type of biological plausibility, and these studies have 

not yielded verified genetic variants. Thus, it remains to be seen whether endophenotypes 

would fare any better when following this approach.

If the promise of endophenotype research for gene finding is to be realized, the 

endophenotype must simplify the task in a way that a clinical phenotype cannot. Because 

endophenotypes are derived from laboratory measures that often require expensive 

equipment, time consuming procedures, and/or specialized technical expertise, obtaining the 

types of large samples now common to molecular genetic research of complex traits is 

difficult and expensive. Although neither the endophenotype nor its genetic basis needs to be 

simpler than the associated clinical phenotype, the task of identifying genetic variants has to 

be easier in some way for endophenotypes to be useful. For example, genetic variants 

associated with the endophenotype should have larger effect sizes than those associated with 

the corresponding clinical phenotype, making it possible to detect them using a relatively 

small sample. As desirable as this is, there is at present no compelling evidence that an 

endophenotype can achieve this objective. Nevertheless, we have retained this utility 

criterion because if an endophenotype is shown to have this property, it would be of utmost 

significance to the value of collecting expensive, labor intensive endophenotype data and to 

providing etiologically relevant insights into likely underlying mechanisms.

5.0 Lessons Learned from the Minnesota Twin Family Study Investigation of 

17 Candidate Endophenotypes

5.1 Project overview

Launched in the 1990s and still ongoing, the Minnesota Twin Family Study (MTFS) is a 

longitudinal investigation of twin children and their parents (W. G. Iacono, 1998; W. G. 

Iacono & McGue, 2002; W. G. Iacono, McGue, & Krueger, 2006). Eligible families were 

identified using publicly available birth certificates indicating that they had twin children 

born in the state of Minnesota. All families with same-sex twins meeting basic inclusion 

criteria were considered eligible. Over 80% of eligible families participated, yielding a 

sample that was broadly representative of Minnesota families with children living at home 

based on the US Census of 2000. Parents and their offspring have been evaluated using 

psychophysiological paradigms selected for their potential to yield endophenotypes for 

substance use disorders, antisocial personality disorder, schizophrenia, and mood disorders 

(W. G. Iacono, 1998). Using data from 4905 of these participants, constituting the largest 

sample ever used for this purpose, we carried out in parallel a series of seven investigations 

designed to identify molecular genetic variants associated with 17 psychophysiological 

variables involving EEG frequency-based measures, P300 oddball visual event-related 
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potential, antisaccade eye tracking, startle eye blink, and electrodermal activity (W. G. 

Iacono et al., 2014b; Malone et al., 2014; Vaidyanathan, Isen, et al., 2014; Vaidyanathan, 

Malone, Donnelly, et al., 2014b; Vaidyanathan, Malone, Miller, et al., 2014; Vrieze et al., 

2014a, 2014b). The measures chosen represent a broad range of basic and complex 

psychological processes that tap into central and autonomic nervous system arousal, startle, 

orienting, habituation, emotion, cognition, and prepotent response inhibition.

In addition to the large sample size, our project had a number of strengths. We used an 

unscreened, epidemiological sample, meaning that the results were not conditional on 

inclusion/exclusion criteria, hence making the sample suitable for investigating all the 

endophenotypes. We adopted the same set of a priori analyses for all 17 endophenotypes and 

published the entire set of findings simultaneously. Our hope was to eliminate effects 

attributable to selective reporting of results, post hoc analysis leading to irreproducible 

findings, the need to report positive findings to justify publication, and piecemeal 

publication that would make it difficult to understand how the results varied from one 

endophenotype to another. Because our sample included twin families, we were able to 

determine the heritability of each endophenotype measure in the exact same sample used for 

molecular genetic analyses. We employed discovery based analyses to examine the 

association between each endophenotype and a) common variants (single nucleotide 

polymorphisms; SNPs) throughout the genome, b) autosomal genes, c) rare exonic variants, 

and d) rare and common variants throughout the genome. Our analyses took advantage of 

improved imputation with a powerful reference panel composed of >1000 moderate-depth 

whole-genome-sequenced individuals from our own sample. We also targeted specific SNPs, 

loci, and genes for which there were prior reports indicating they were associated with the 

endophenotypes, psychopathology related to the endophenotypes, or relevant brain and 

metabolic systems. Hence, in addition to conducting genome-wide discovery-based 

analyses, which required correcting for 1 million tests, we followed leads from the literature 

and tested “hypothesized” subsets of variants within candidate loci and corrected only for 

those, thus lessening substantially the p-value threshold required for a finding to be 

considered significant.

5.2 Key results

The main findings are highlighted in Table 2. In the end, across all analyses, we discovered 

only a handful of significant associations, none of which survived correction for multiple 

testing across the 17 endophenotypes, and each of which requires replication. Novel variant 

discovery in this sample was far from a resounding success and ready replication is not 

available for the hits we did have. Table 2 lists the largest GWAS effect sizes associated with 

any of the over 500,000 examined variants, only one of which was significant. To achieve 

80% power to detect a SNP with the median effect size of .58 reported in the Table, a sample 

size of 6,808 would be required. If we accumulated a sample this big, it would still not be 

large enough to detect the largest SNP for half the endophenotypes listed in Table 2, and for 

the other half, it would detect very few variants, thus contributing little insight into the 

molecular genetic basis of individual differences in any of these measures.
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P300 amplitude provides an illuminating example. Since its discovery by Sutton and 

colleagues in the 1960s (Sutton, Braren, Zubin, & John, 1965), the P300 component has 

undoubtedly been one of the most widely studied ERP components. The initial report more 

than 30 years ago by Begleiter and colleagues that P300 amplitude was reduced in alcohol-

naïve boys at risk for alcoholism (Begleiter, Porjesz, Bihari, & Kissin, 1984) has motivated a 

large literature exploring the notion that P300 amplitude reduction is associated with 

alcoholism and other forms of disinhibitory psychopathology (i.e., childhood disruptive 

disorders, antisociality, substance use disorders, and related traits like impulsivity, 

aggression, poor decision making, etc.). This body of work has produced many empirical 

reports and several meta-analyses, which in aggregate suggest that P300 amplitude reduction 

is a robust candidate endophenotype for disinhibitory psychopathology and behavior. Yet we 

failed to find a single variant associated with it. We also failed to confirm any associations 

reported in previous candidate gene studies (Vaidyanathan, Malone, Miller, et al., 2014). 

Thus, although P300 is arguably one of the best validated endophenotypes identified to date 

(Miller & Rockstroh, 2013), it did not lead to robust genetic discovery.

It is tempting to conclude that refining an endophenotype may help to identify specific 

variants. The P300 clearly represents activity from different neural sources that is partially 

overlapping in time, which is projected to the surface of the scalp. Its amplitude is 

determined to a significant degree by activity in specific frequency ranges, especially delta 

and theta (Karakas, Erzengin, & Basar, 2000; Kolev, Demiralp, Yordanova, Ademoglu, & 

Isoglu-Alkaç, 1997). One might think that time-frequency representations of P300-related 

activity yield candidate endophenotypes that are more fundamental in some way than the 

P300 and thus more sensitive to genetic effects (i.e., associated with larger effects). We 

therefore conducted a follow-up investigation in the same sample to examine power and 

inter-trial phase locking, a measure of consistency of the brain response across trials, of delta 

and theta activity in the P300 window (Malone, McGue, & Iacono, 2016). Although we 

obtained one genome-wide significant association, it has no obvious connection with brain 

activity, and unless replicated, it cannot be considered meaningful. Thus, decomposing P300 

into simpler time-frequency components did not produce a fundamentally different result, 

and in general we suspect that refining endophenotypes or searching for supposedly simpler 

endophenotypes will not be a silver bullet for finding genes.

Our hypothesis-driven effort to follow-up candidate loci/variants reported previously in the 

literature was equally unsuccessful. We were unable to confirm any single-variant 

associations reported in the literature for any of the 17 endophenotypes, with gene-based 

tests faring only slightly better. Because we were unable to robustly corroborate any 

previous findings, additional fine-mapping efforts of these candidate loci and other 

investigations were deemed inappropriate at that time.

A couple of emblematic examples illustrate the challenges faced. Hodgkinson et al. (2010) 

performed a genome wide association study (GWAS) on alpha, beta, and theta power in a 

Native American cohort of 322 individuals and found that several SNPs in SGIP1 accounted 

for 8.8% of the variance in theta power. This association was replicated in a European 

American sample of 185, with one of the SNPs accounting for 3.5% of the variance in theta 

(although this finding did not survive correction for multiple testing). Effect sizes this large 
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are exactly what we should hope endophenotypes to yield if they are to prove their value. 

Our study (Vrieze et al., 2014b), with almost ten times the sample size, was definitively 

powered to detect an effect this large. However, we obtained a nonsignificant p-value of .199 

for the association between this gene and theta power using a gene-based test and we did not 

replicate findings at the level of individual SNPs within the gene. Greenwood et al. (2013) 

carried out a linkage study for antisaccade error in approximately 1000 individuals drawn 

from families with a schizophrenia proband. They reported linkage to a locus on 

chromosome 3p14. We examined a 10 Mb region around this locus, testing 39,000 markers 

for association with antisaccade error, and found no significant results or suggestive 

evidence that a genetic signal was present (Vaidyanathan, Isen, et al., 2014). One could 

generate a list of plausible reasons why we could not confirm these Hodgkinson and 

Greenwood findings in our MTFS sample. However, that would be missing the point. These 

failures to support previously reported findings represent only two of the many hundreds of 

leads we pursued in our project, none of which could be confirmed.

These results in aggregate cannot be easily attributed to measurement problems or a lack of 

heritable variance in this sample. Except for affectively modulated startle, which was neither 

similar in MZ twins nor appreciably heritable, MZ twin correlations were large for each of 

the 17 endophenotypes in our special issue, ranging from .53 to .86 (median .66). Table 2 
provides the heritability estimates from twin- and family-based models for all 

endophenotypes. Excluding startle modulation, these ranged from .43 to .85 (median .59). 

Using GCTA for GREML analysis (Yang et al., 2011), we could show that the 

endophenotypes were associated with the combined effect of all genotyped SNPs from our 

GWAS chip, with “SNP heritabilities” (excluding affectively modulated startle) ranging 

from .04 to .59, median .25 (see Table 2). Hence it was not the case that we arrived at our 

results because we had no reliable genetic signal to detect.

As Table 2 shows, the degree to which our candidate endophenotypes were heritable had 

little discernible consequence. Their heritability ranged from virtually 0 to greater than .80, 

but the results did not vary appreciably. One endophenotype consisted of a P300 factor score 

that, because it captured the genetic covariance across multiple electrodes, had a heritability 

of 1.00. Despite this refinement to optimize capture of genetic variance, the genetic factor 

afforded no apparent advantage over other measures. Of note, even if genetic influences on a 

trait account for only a small fraction of trait variance, there is no reason why an adequately 

powered GWAS would not identify variants associated with what genetic effect exists. The 

crucial issue seems to be the genetic “architecture” of these electrophysiological 

endophenotypes. Our findings are consistent with a conclusion that they represent polygenic 

traits influenced by many genetic variants.

6.0 How Do Electrophysiological Endophenotypes Compare with Other 

Quantitative Traits?

A prevailing sentiment in the endophenotype literature is that psychiatric endophenotypes 

are somehow different from clinical phenotypes and other complex traits. Endophenotypes 

are promoted precisely because they are expected to be more proximal to gene action and 
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thus more heavily influenced by particular genetic variants. That is, genetic effects are 

expected to be larger, much larger even, than the effects of more distal phenotypes. Although 

this may well prove to be true, the empirical literature available to date suggests otherwise.

6.1 Are endophenotype effect sizes larger than those of other phenotypes?

What constitutes a powerful study in genetic research is different than in many fields. For 

example, in the behavioral sciences a correlation of 0.1 is considered small, 0.3 medium, and 

0.5 large (Cohen, 1988). On the r2 metric (variance accounted for) these correspond to r2 of 

1%, 9%, and 25%. Consider by way of contrast SNPs located in the first intron of the FTO 
gene, which are well known to have effects on the common complex trait of body mass 

index (BMI) (Locke et al., 2015). This locus was the first associated with obesity through 

GWAS, and a PubMed search for “FTO and obesity” revealed 868 publications at the time 

of this writing. The effect size of the most strongly associated variants within this locus is 

0.34% on the r2 metric in Europeans and even smaller in other ancestry groups (Loos & Yeo, 

2014). The FTO variant effect is large by the standards of complex disease/trait genetic 

association standards but is tiny, ignorable even, by behavioral science standards. BMI is not 

unique in this respect. The average odds ratio of variants associated with Type II diabetes 

from a recent publication was 1.11 (Morris et al., 2012). The average effect of the nearly 700 

GWAS-associated variants with height, one of the most accurately measured and highly 

heritable of all human quantitative traits, is around r2=0.03% (Wood et al., 2014). The SNP 

rs16969968 in CHRNA5 accounts for 0.5% of the variance in cigarettes per day (Furberg et 

al., 2010), one of the largest effects discovered between a common variant and a complex 

behavioral or psychiatric phenotype. Not only is r2=0.5% a very large effect, it is about the 

largest effect one now expects to find in a genetic association study of complex traits and 

common variants. Detecting effects of these sizes requires massively powered studies on a 

scale that until recently was not achieved in biomedical or behavioral science.

The effects described in the previous paragraph are for associations between genetic variants 

and genetically distal phenotypes like BMI, height, cigarettes per day, or type II diabetes. 

Our own work described in the previous section, using a discovery sample of 4,900 

individuals, provides little reason to expect electrophysiological endophenotypes to be any 

different. We found only one significant GWAS hit, yet to be replicated, for any of the 17 

endophenotypes investigated. The effect size of the most significant common variant we 

discovered (rs1868457) accounted for 0.67% of the variance in antisaccade eye tracking 

errors (p=3.3×10-9, Vaidyanathan, Malone, Donnelly, et al., 2014a), and that value is 

undoubtedly inflated due to “winner's curse” (Ioannidis, 2008). Replication attempts will 

only result in attenuated effect sizes for this variant. Brain structural measures, which 

arguably are more proximal to gene effects than electrophysiological measures recorded 

from the body surface, fare no better. The ENIGMA consortium (Thompson et al., 2014) 

combined GWAS data across multiple samples and conducted a meta-analysis of 

hippocampal and intracranial volume from structural MRI in a discovery sample of 7,795 

individuals and multiple replication samples altogether totaling 21,151 (Stein et al., 2012). 

They found two genome-wide significant loci. The top hit explained 0.27% of the variance 

in hippocampal volume, slightly less than the 0.34% of the variance in BMI accounted for 

by the top hit in FTO described above. Perhaps it is unsurprising that genetic effects on the 
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size of brain regions are similar in magnitude to genetic effects on the size of the entire 

body. Finally, perhaps the most widely studied electrophysiological endophenotype of 

relevance to psychopathology is resting heart rate. This endophenotype has been studied in 

38,991 individuals, finding nine associated variants in six loci, accounting for between .083-.

167% of variance in resting heart rate (Eijgelsheim et al., 2010), again less than the top hit in 

FTO for BMI.

To further illustrate the differences in effect sizes between endophenotype-like measures and 

regular phenotypes, we reviewed the complex trait GWAS meta-analysis studies described 

above for total cholesterol (Teslovich et al., 2010); BMI (Locke et al., 2015); height (Wood 

et al., 2014); brain volumes (Stein et al., 2012); resting heart rate (Eijgelsheim et al., 2010); 

and antisaccade error (Vaidyanathan, Isen, et al., 2014) plus GWAS results for two 

metabolites (Kottgen et al., 2013; Ware et al., 2016); bone mineral density (Estrada et al., 

2012); diabetes (Scott et al., 2012); depressive symptoms , subjective well-being, and 

neuroticism (Okbay Baselmans, et al., 2016); and education level (Okbay Beauchamp, et al., 

2016). We then plotted effect sizes of GWAS-significant variants from these studies in 

Figure 1 on the r2 metric (variance accounted for in the phenotype). For quantitative trait 

studies that did not directly report variance accounted for but did report standardized effects, 

we computed an approximation using the formula: r2 = 2β2(1 – MAF)MAF, where β is a 

standardized effect size estimate of the variant when the residual variance is ~1, and MAF is 

the minor allele frequency for the variant. Unstandardized effects were converted to r2 by 

converting the p-value to its implied t-distribution value, and then converting that with the 

formula r2 = t2/(t2 + df), where df was set equal to the sample size reported for each such 

genetic variant. While an exhaustive study of quantitative trait genetic architecture is 

infeasible here, we attempted to select broadly from the domain of quantitative phenotypes, 

ranging from heritable medical biomarkers (metabolites, cholesterol levels, bone mineral 

density), to endophenotypes (antisaccade eye movements, resting heart rate, intracranial 

volume, and hippocampal volume), to physical phenotypes (height, BMI), to psychological 

phenotypes (personality, education). Most of these studies have large enough samples 

(median sample size N~78,000; see Figure 1) to have detected the largest genetic effects, 

and are thus likely to provide only slightly overestimated effect sizes of these variants. The 

lone exception is the single antisaccade hit from our work, which we expect to be 

significantly overestimated. We did not include case-control results (e.g., schizophrenia, 

macular degeneration, etc.) because effects for binary phenotypes are estimated on different 

scales such as odds ratios and are not easily directly compared to quantitative effect metrics 

such as r-squared. As electrophysiological endophenotypes are frequently quantitative, we 

believed comparisons with other quantitative phenotypes was most appropriate.

From this snapshot of the GWAS literature, the distribution of effects for the more 

“biological” blood-derived phenotypes are not of materially greater magnitude as those 

observed for highly complex and distal phenotypes, including height and BMI. A few trends 

stand out. First, whereas some of the biomarkers tend to have much larger maximum effect 

sizes (~2% for serum urate and cotinine, 1.2% for cholesterol, 0.5% for bone marrow 

density), the largest effect sizes for the brain-based and heart rate endophenotypes are 

actually smaller than those observed for height and BMI. Second, the largest effect sizes 
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observed for education levels and neuroticism were an order of magnitude smaller than the 

largest effect sizes for the brain-based and heart rate endophenotypes. Thus, endophenotypes 

may be associated with slightly larger effect sizes than distal psychological traits (like 

neuroticism), but these effects are still so small that massive sample sizes are still required to 

detect them (see discussion of power in section 7.3 below). Third, the most direct 

comparison available in Figure 1 is that between cigarettes per day and cotinine, the primary 

metabolite of nicotine and long a biomarker for nicotine consumption and addiction 

(Benowitz, 1996). The maximum effect sizes for both traits is from the same variant, 

rs16969968. The variant accounts for ~0.4% of the variation in cigarettes per day but 1.8% 

in cotinine, clearly a larger effect on the biomarker than the behavioral phenotype. Cotinine 

is not an endophenotype, however, and to our knowledge stands alone as a successful 

biomarker for a psychiatric condition, in this case nicotine addiction, largely thanks to our 

advanced understanding of nicotine pharmacokinetics. Fourth, the largest effect sizes for the 

blood-derived biomarkers listed here are 2-3x larger than those for physical traits, an order 

of magnitude larger than the brain volume measures, and many times larger than those for 

more psychological phenotypes. However, this applies only to the 1-2 largest effects. The 

vast majority of observed effects for all traits, whether blood-derived biomarker or years of 

education, is well below r2=0.1%.

6.2 Is the “genetic architecture” of endophenotypes different from that of other 
phenotypes?

The GREML approach alluded to earlier is very different from GWAS, in that it estimates 

the aggregate effect of all measured variants (and those in linkage disequilibrium with them) 

rather than estimating the effect of each individual variant in turn. Although GREML cannot 

therefore identify the specific variants influencing a trait, it can nevertheless establish the 

overall magnitude of genetic variance in the trait due to the tagging SNPs on GWAS arrays, 

which are predominantly common variants (those with MAFs of at least 1%). The initial 

study using this approach examined the SNP heritability of height, one of the most heritable 

human traits based on twin and family studies, with heritability estimates from those studies 

converging on ~80% (Yang et al., 2010). GREML analysis indicated that the SNP 

heritability of height was 45%. Although well short of the total heritability of 80% from 

twin and family studies, this was also much greater than the amount of variance in height 

accounted for by GWAS of tens of thousands of subjects, which at the time of this 2010 

publication had identified approximately 50 loci accounting for about 5% of the variance in 

height in total. The difference between the variance accounted for by individual variants (5% 

in the case of height) and phenotypic heritability is called “missing heritability” (Manolio et 

al., 2009). The GREML analysis of height indicated that a substantial fraction of the total 

heritability in height was in fact captured by some unknown but presumably very large 

number of genotyped SNPs, indicating that much of the variance in height is therefore due to 

common SNPs.

We can use GREML-derived estimates of SNP heritability to ask whether common variants 

are likely to account for a greater proportion of variance in endophenotypes than clinical 

phenotypes or other complex phenotypes, which might in turn increase the likelihood of 

gene discovery. This might be the case if endophenotypes, by virtue of reflecting relatively 
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fundamental psychological and neurobiological processes, are influenced primarily by 

common variants but psychiatric disorders are disproportionately influenced by mutations 

and rare variants (Singh et al., 2016). To address this, we draw again on results from our 

recent special issue of Psychophysiology that are provided in Table 2. Excluding startle 

modulation scores, which showed little evidence of being heritable (95% confidence 

intervals around our family-based heritabilities included 0), the ratio of SNP heritability to 

family-based heritability ranged widely, with a median of 0.54. This is almost exactly equal 

to the SNP heritability to biometric heritability ratio for height, which is 0.56 if we assume a 

heritability estimate of 0.8 for height. What these estimates rather convincingly demonstrate 

is that endophenotypes are far from immune to the missing heritability problem, and they do 

not differ from other phenotypes with respect to their overall genetic architecture.

6.3 Summary: Endophenotype genetic effect sizes and architecture resemble that seen for 
other complex traits

In summary, endophenotypes are like other complex traits; they are unlikely to be associated 

with variants that have large effect sizes, which is consistent with the findings from our 

special issue. Table 2 indicates that the maximum effect size we obtained for each 

endophenotype was small, but roughly in the range of what one might expect a large effect 

size to be for a biomedical or psychological trait. Yet we were underpowered to detect any as 

significant but one. Nor was it the case that the genetic signal was “hiding” in rare variants; 

our rare variant analyses yielded no more compelling result. In addition, GREML SNP 

heritability estimates indicate that the aggregate influence of all variants on most 

endophenotypes is substantial, and little different from what we see in other traits like 

height. This combination of findings highlights the fact that endophenotypes are massively 

polygenic, with many thousands of variants each contributing very small effects. Although 

our results could be unique to our set of endophenotypes and sample, the data available for 

other heritable quantitative traits, such as those listed in Figure 1, provide little reason to 

believe this to be the case. We are persuaded that these results in aggregate shift the burden 

of proof to those who would argue otherwise. Endophenotypes may ultimately confer some 

advantages in finding genes related to psychological outcomes, but those advantages are not 

likely to be great and are outweighed by the high relative cost of an electrophysiological lab 

session versus, for example, a questionnaire or interview.

7.0 Recommendations to Advance Endophenotype Genetics

If we resign ourselves to the idea that the effect sizes for popular endophenotypes are on 

average negligibly larger than for distal phenotypes, then an important question is how can 

we proceed to conduct the strongest studies possible, increasing our ability to understand the 

genetic bases of endophenotypes and associated clinical phenomena? Our most direct 

recommendations are listed in this section.

7.1 Candidate genes are poor candidates for genetic discovery

Selecting “candidate” genes has long been practiced in behavioral and psychiatric genetic 

research. Candidate gene often really means candidate variant, where a particular genotype 

within a gene is selected typically on the basis of functional studies in model organisms. One 
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conclusion from GWAS has now been clear for some time – the expected effect size for such 

popular polymorphisms are no larger than effect sizes identified by GWAS. Even if a 

candidate polymorphism is truly associated with a phenotype, it will be at levels difficult to 

detect without a highly powered design. A recent intriguing test of the candidate gene design 

is reported in a paper by Farrell et al. (2015) in which the authors cross-referenced 108 

schizophrenia-significant loci discovered by the Psychiatric Genomics Consortium (PGC) 

(Kamarajan & Porjesz, 2015; Schizophrenia Working Group of the Psychiatric Genomics, 

2014) with a list of the 25 most popular schizophrenia candidate variants including COMT, 
DISC1, DTNBP1 and NRG1. A liberal interpretation of their findings is that four of the 25 

candidate variants they investigated (16%) showed some evidence for association in the 

Psychiatric Genomics Consortium. In the end, only one of the 25 variants was genome-wide 

significant. When they expanded their attempt to validate any of the traditional candidate 

genes to include any variant within the candidate gene of interest, again they found some 

evidence for association in 4 of 25 genes (16%). The test reported in Farrell et al. makes 

clear that the traditional approach to candidate gene studies is highly fallible, and the 

traditional candidate variants within these candidate genes in psychiatry are poor places to 

search for genetic influences on psychiatric disorder and behavioral traits. Of further note is 

that Farrell et al. evaluated only the “best” available candidate genes. If one evaluates all of 

the SCGene database (www.sczgene.org), over 1700 studies have reported over 1000 genes 

to be associated with schizophrenia, but in this PGC investigation of 150,000 people, the 

largest and best powered study ever undertaken of schizophrenia genetics, the vast majority 

of these gene findings could not be confirmed. Even if a candidate polymorphism is truly 

associated with a phenotype, it will be at levels difficult to detect without a design powered 

adequately for finding what are likely to be very small effects.

The prevailing approach to candidate genes creates far more opportunities to produce 

untrustworthy findings than results that are likely to lead to genuine advances in scientific 

understanding. This is partly due to insufficient power, which creates the opportunity for 

false positives due to sampling variation. We return to the issue of power below, where we 

also provide a recommendation concerning defensible sample sizes. However, there is an 

additional difficulty with candidate gene studies. An appeal of candidate gene studies is that 

they are hypothesis-driven. We argue that this is something of an illusion given our current 

state of knowledge; in reality they are more exploratory than not. It is tempting to think that 

a particular candidate gene will somehow be different. Yet the history of molecular genetic 

research provides little evidence to suggest that this is true. Candidate genes are also often 

justified on the basis of initial findings that fail to hold up to the harsh light of replication. 

Imagine this hypothetical scenario: A researcher is interested in endophenotype X as an 

endophenotype for ADHD. Assume that two recent candidate gene studies have indicated 

that the COMT Val/Met polymorphism, which is thought to play an important role 

regulating dopamine availability in the prefrontal cortex (PFC), is related to ADHD. Our 

eager researcher conducts a candidate gene study of COMT in relation to endophenotype X, 

which turns out to yield a significant result: levels of endophenotype X are linearly related to 

the number of Val (Met) alleles. Excited about this result, s/he decides to conduct studies of 

other dopamine genes, some of which pan out whereas others do not. In the meantime, more 

studies examining the association between COMT and ADHD appear in the literature, many 
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with negative results, and then a meta-analysis reports that there is no relationship between 

COMT and ADHD after all. Even worse, subsequent research indicates that the relationship 

between COMT and dopamine availability in PFC is weak. Now what does our researcher 

do? She has an interesting endophenotype finding based on a hypothesis that is no longer 

supported, and quite possibly several more that will suffer the same fate. Should this finding 

nevertheless be considered real? Is the field advanced by having published findings such as 

these?

We believe that the answer to both questions is “no”, or at least that it is incumbent upon our 

researcher and others pursuing this type of research to demonstrate otherwise. Although this 

particular example is hypothetical, this type of situation does in fact occur, which illustrates 

a difficulty that candidate gene studies can create even when they yield positive findings 

because the base rate expectation that those findings are actually false is extremely high. We 

argue in the next section that GWASs are clearly preferable to candidate gene studies, and 

we advocate a different approach to selecting candidate variants in section 10.3. We propose 

here that researchers should attempt to replicate a candidate gene-endophenotype association 

in an independent sample within the same report, reporting the meta-analytic effect size and 

p-value corrected for multiple testing as appropriate. That way, both positive and negative 

findings are more credible than they would be if based on a single sample.

Although we argue that the traditional approach to candidate gene studies is flawed, this 

does not necessarily mean that none of the traditional candidate genes will turn out to be 

robustly associated with psychophysiological endophenotypes. We are agnostic on this 

point, albeit somewhat skeptical. Amplitude of the event-related negativity (ERN) is 

associated with both internalizing and externalizing disorders (with different directions of 

effect). Several studies have demonstrated associations with candidate genes (summarized in 

Manoach & Agam, 2013). Nevertheless, as with P300 amplitude, another widely studied 

endophenotype, there have not been robust, validated findings. Models of ERN amplitude 

based in reinforcement learning hold that the ERN reflects phasic dopamine activity in 

response to an unexpected event or outcome (Nieuwenhuis, Holroyd, Mol, & Coles, 2004; 

Walsh & Anderson, 2012). This, of course, suggests that dopamine genes may influence 

ERN amplitude. To date, there has only been one replicated finding. Two studies have 

reported associations between ERN amplitude and a polymorphism of the DRD4 receptor 

gene (Agam et al., 2014; Kramer et al., 2007). However, whereas this SNP accounted for 

approximately 13% of the variance in ERN amplitude in the initial study of Kramer et al., it 

only accounted for about 3% of variance in the subsequent study of Agam and colleagues 

(the “winner's curse”; Ioannidis, 2008), and this latter effect was statistically significant only 

because a one-tailed test was used. In light of Figure 1, 3% is almost certainly a gross 

overestimate of the true effect. Moreover, subjects in Kramer et al. were selected from a 

larger group based on their genotypes (they were required to be homozygous for both the 

DRD4 receptor and COMT genes), creating a problem of interpretation, and the DRD4 gene 

was unrelated to BOLD activation of the dorsal anterior cingulate cortex (dACC) in Agam et 

al. In reinforcement learning accounts of the ERN, prediction error in the dACC is directly 

related to ERN amplitude (Holroyd & Coles, 2008). Failure to find an association between 

DRD4 and dACC activity throws the finding of association between DRD4 and ERN into 
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doubt. Of course, it may turn out that the DRD4 receptor gene or another of the commonly 

studied candidate genes influences ERN amplitude. However, the history of candidate gene 

research leads us to be cautious. In addition, early attempts to identify specific molecular-

genetic influences on substance abuse also focused on dopamine genes because so many 

substances of abuse influence dopaminergic activity. For the most part, these efforts did not 

bear fruit. We should be wary of falling into the trap of thinking that simply because a 

phenotype seems to be related to dopaminergic activity that the traditional candidate 

dopamine genes are certain to contain its molecular genetic secrets. We encourage 

researchers interested in the ERN and other endophenotypes to be more catholic in their 

approach to the problem of identifying molecular genetic variants, and to look beyond the 

usual candidates (see section 10.3).

7.2 GWAS to discover new variants associated with endophenotypes

In the effort to discover novel variants, we believe strongly that traditional candidate gene 

studies are to be discouraged in favor of GWAS. Genome-wide arrays are cheap, with 

suitable arrays selling for less than $50 per DNA sample including DNA preparation costs. 

Genome-wide arrays can be used effectively with DNA extracted from saliva or blood. They 

provide coverage of the entire genome, often with custom content including additional 

coverage of small gene sets. GWAS arrays leverage the fact that genetic variants are not 

independent. Recombination during meiosis creates segments of DNA that are inherited as a 

unit, creating a correlation among the base pairs within it, a phenomenon known as “linkage 

disequilibrium” or LD. Present day arrays use SNPs that are selected to carefully tag the LD 

structure of the genome, effectively allowing one to test the vast majority of common genetic 

variants in the human genome. Even better, genotype imputation works well with these 

SNPs to provide extremely dense and accurate measurements of nearly all common SNPs in 

the human genome. This increases statistical power for any particular variant and also 

facilitates GWAS meta-analysis by making it possible to easily combine data from multiple 

studies that happened to be genotyped on different arrays with slightly different tag SNPs.

It is important to note that genotype imputation is far more powerful than other common 

forms of imputation in the behavioral sciences. Typically, imputation techniques in the 

behavioral sciences, like multiple imputation or full information maximum likelihood, are 

meant to allow more accurate estimation of sampling error and statistical effects, but in the 

end one has no more information about a variable or dataset than was initially present. In 

genotype imputation, one obtains vast amounts of additional genetic information by 

leveraging a reference panel of additional individuals whose genomes are extensively 

measured through whole genome sequencing. The largest reference panel as of this writing 

contains 33,000 individuals and nearly 45 million variants with minor allele count ≥ 5 

(Haplotype Reference Consortium, http://haplotype-reference-consortium.org); through 

genotype imputation this resource provides vast additional information about the genotypes 

in one's own dataset. In the next few years we anticipate reference panels of well over 

100,000 individuals (200,000 haplotypes). Genotype imputation takes advantage of the fact 

that all individuals are related, if only slightly, and share short segments of their 

chromosomes. Imputation algorithms, typically hidden Markov models (Howie, 

Fuchsberger, Stephens, Marchini, & Abecasis, 2012), take advantage of this relatedness and 
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probabilistically match chromosomes between the array-genotyped study sample and the 

sequence-based reference panel. When a match is found, the genotypes from the whole-

genome-sequenced reference sample are imputed into the array-genotyped study sample. 

Imputed variants increase power to detect effects over tag SNPs alone, increase the precision 

with which an associated locus can be defined, and facilitate GWAS meta-analysis across 

studies by ensuring that all variants are measured or imputed in all studies (Li, Willer, Ding, 

Scheet, & Abecasis, 2010). Imputation (and the phasing required in order to carry out 

imputation) is now easier than ever, thanks to web services hosted at various academic 

institutions including the University of Michigan (https://imputationserver.sph.umich.edu). 

Users can upload their quality-controlled genotype files. Software on the server implements 

further quality checks, phases, imputes according to the reference panel of the user's choice, 

and makes imputed genotypes available for download.

Genome-wide array data also allow very precise estimation of each individual's ancestry, 

which must be controlled for in any genetic association study (A. L. Price et al., 2006). 

Ancestry is often confounded with phenotypic differences. Even among southern and 

northern Europeans, for example, there are differences in allele frequencies for many 

variants. If one were to conduct a GWAS of height in a study sample composed of 50% 

Italians and 50% Danes without addressing the ethnic composition of the sample, one would 

obtain artifactually decreased p-values for a large number of SNPs. This is only because 

northern Europeans are taller on average than southern Europeans and anything that 

distinguishes the two groups – including genetic variants – will also be associated with 

height. The standard controls for ancestry include principal components computed on 

genome-wide variants, or mixed model association tests using a genetic kinship matrix to 

account for genetic relatedness between all individuals (H. M. Kang et al., 2010; A. L. Price 

et al., 2006). Unlike GWAS, candidate gene studies of a handful of SNPs do not allow such 

corrections, making allelic stratification a serious confound in the candidate gene approach.

After quality control, phasing, imputation, and subsequent removal of poorly imputed or rare 

variants, a standard GWAS simply associates each of the variants with the quantitative 

phenotype. This essentially comprises millions of correlations in turn, one between the 

phenotype and each genetic variant. The next step involves determining which of the 

millions of variants are associated with the phenotype at a statistically significant level. The 

convention in GWASs of common variants (e.g., MAF > 1%) is to use the conventional 

alpha of .05 and a Bonferroni correction for 1 million tests, or .05/1,000,000 = 5×10−8. 

Testing all common variants, but then accounting for the non-independence among them due 

to linkage disequilibrium, is approximately equivalent to conducting 1 million independent 

tests; hence the convention.

But if common complex disorders/traits are highly polygenic (Chabris, Lee, Cesarini, 

Benjamin, & Laibson, 2015) with many variants of small effect, why would we restrict 

ourselves to consider as hits only the few most stringently selected variants? Why not relax 

the threshold and explore “suggestive” hits as well? Surely these are enriched for true 

signals. This is a seductive argument and we admit some level of sympathy. However, if the 

purpose of conducting a GWAS is to identify variants that are associated with a disease in 

order to conduct extremely expensive and time-consuming functional follow-up experiments 

Iacono et al. Page 21

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://imputationserver.sph.umich.edu


to identify and understand biological mechanisms, then it is even more important to control 

the family-wise error rate, or the probability that at least one hit is a Type I error, and the 

convention since Fisher's time has been to control this rate at 1 in 20, or .05. This is what a 

Bonferroni correction of 5×10−8 does. A popular alternative to a Bonferroni correction is 

false discovery rate correction, which typically provides less stringent control of Type I 

errors in favor of controlling the expected proportion of Type I errors under a null and 

alternative distribution. We do not recommend using the false discovery rate in GWAS. 

Controlling the family-wise error rate instead allows for greater certainty in our findings 

before expensive functional follow-up experiments are conducted.

Unless one's sample is unusually large or unusually special, conducting a genetic association 

study of common variants and complex disorders/traits is expected to produce entirely null 

results or, on the rarest of occasions, it will produce significant results that then require 

extensive replication. There are multiple ways to conduct replication studies, and here we 

may differ with others in our recommendations. Our recommended approach is not to 

replicate, in the traditional sense where only the significant variant is replicated in an 

independent sample at p<.05, but to conduct GWAS meta-analyses. In this approach 

summary statistics (e.g., effects and p-values) are generated in each independent sample for 

every imputed variant, and then those summary statistics are combined into one meta-

analytic result per variant. If each study imputes 45 million variants, then there will be 45 

million results from a GWAS meta-analysis of those studies.

GWAS meta-analysis has multiple benefits over standard replication, just as standard 

replication has multiple benefits over a single study. Instead of replicating only a handful of 

significant variants from the original study, meta-analysis allows one to increase sample size 

for all variants. This increases the odds that novel variants not significant in the original 

study will be discovered and, once the summary statistics for all variants are released (e.g., 

to dbGaP, or hosted on a website), it becomes a valuable (quasi-) public resource for other 

investigators interested in the same trait/disorder. Meta-analysis is an elegant solution when 

multiple replication datasets exist. Instead of vote-counting or other crude methods (e.g., 1 

replicated, 1 did not), meta-analysis provides an estimate of the overall effect size and p-

value. Meta-analysis allows for estimating many secondary statistics of interest, such as 

effect size heterogeneity and effect size moderators. Finally, GWAS meta-analysis in genetic 

association studies has led to a sea change in how genetic association studies are done. 

Instead of lone investigators guarding their own valuable data, scientists have begun sharing 

their data to accumulate the large and powerful samples required to make progress in our 

understanding of the genetic basis of disorder and human behavior.

Indeed, in genetic association studies it often makes sense to begin not by conducting a 

GWAS in a single sample and then searching for other datasets to conduct GWAS meta-

analysis using many samples. Rather, whenever possible, one should begin the entire process 

fully expecting that a meta-analysis of multiple samples will be necessary to obtain 

sufficient statistical power.
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7.3 Adequate power to detect individual effects is crucial but almost never attained in 
existing endophenotype genetic association studies

7.3.1. Power and sampling schemes in GWAS—We suggest that, once an 

endophenotype has been chosen for GWAS, power to detect genetic variants can be 

increased in two primary ways, motivated by classic work in psychology (McClelland, 2000) 

and illustrated very simply by the well-known formula for calculating the standard error of 

the slope  for arbitrary predictor X (e.g., a genetic variant) in multiple linear regression:

where MSE is the mean square error, n is the number of observations (individuals), VX is the 

variance of X, and ( ) is the proportion of variation in X not shared with other 

variables in the model. Minimizing  results in a smaller standard error and tighter 

confidence intervals; in short, more power. Clearly, doubling sample size, for example, will 

reduce  and increase power, which illustrates the role of sample size in determining power, 

but doubling the other terms in the denominator (or halving MSE) will have exactly the 

same effect as doubling n. Thus, doubling the variance in X will have exactly the same 

influence on power as doubling the sample size. When X is the genetic variant increasing its 

variance is achieved by increasing its minor allele frequency – through sampling individuals 

from the phenotypic or genetic extremes (from diverse ancestries, for example). Doubling 

the variance in the predictor not shared with other predictors, by choosing independent 

covariate sets, for example, will have the same effect. Finally, we see the importance of 

phenotypic measurement, as more precise measures with less error will decrease MSE and 

thereby increase power. Although electrophysiological endophenotypes are often measured 

reliably compared to, for example, fMRI measures, error can be reduced through 

aggregating multiple measurements (Ford, 2014).

All these ways of increasing power should be considered to the extent possible in any study 

but, all else being fairly equal, the importance of sample size in genetic association studies 

cannot be overstated. Increasing sample size instead of increasing the variance of the 

predictor can be especially important in large-scale genetic association studies. In particular, 

extreme phenotypic sampling schemes to increase the variance of an associated genetic 

variant X (VX) are highly restrictive if one wants to evaluate a new phenotype. The original 

phenotypic sampling scheme to increase VX is not likely to increase the variance of other 

genetic variants associated with the new phenotype unless the correlation between the 

original phenotype, on which the sample selection was based, and the new phenotype is 

large. However, if the two phenotypes are highly correlated then sophisticated statistical 

procedures are required to help ensure that any genetic variant associated with the new 

phenotype is not spurious due to its confounding with the original phenotype (Liu & Leal, 

2012).

Take a simple example: a phenotypic sample selection scheme to enroll individuals who 

have suffered from severe and recurrent depression versus controls who have never been 
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depressed. All individuals are assessed for depression and also a depression-related 

endophenotype, such as EEG alpha frontal asymmetry. Because the selection scheme will 

increase the variation of disorder-related genetic variants, this study design is more powerful 

than an unselected sample for detecting variants associated with depressed mood. Because 

selected individuals will be at the extreme ends of the distribution of the endophenotype 

measure, this scheme is also a potentially powerful design for the depression 

endophenotype. However, any association between variant and endophenotype could easily 

be spurious, resulting from the correlation and confounding of depression, on which the 

sample was selected, with endophenotype level. Determining whether an endophenotype-

associated variant is independently associated with the endophenotype is difficult, to say the 

least. Indeed, any other variable, including an endophenotype, that correlates with 

depression in this sample will be subject to the same difficulty, rendering this depression-

based sampling scheme limited for understanding anything other than depression. A 

common approach is to conduct genetic associations studies for a new phenotype Y within 

each sampling cell (e.g., analyze separately those screened for high depression and the 

controls), and then meta-analyze the results, but then all the original advantages of selecting 

based on depression are lost.

A representative community-based sample, on the other hand, allows one to investigate any 

number of (endo) phenotypes without this problem. If the purpose of the field then is to 

discover genes associated with a wide variety of endophenotypes and their associated 

clinical disorders, spending scarce resources on a few large community-based samples with 

many phenotypes can be a more efficient strategy than spending those resources on many 

smaller extreme sampling designs, each for a handful of phenotypes. This is especially true 

for endophenotypes that can be efficiently assayed (e.g., resting heart rate) in large numbers 

of individuals at low cost.

Power is complex and depends on a variety of factors, including those in equation 1, but also 

on the true effect size, which is often not known until research is conducted. We evaluated 

how power would change under a variety of favorable circumstances (indeed, unrealistically 

favorable). In particular, we calculated power for the largest effect sizes reported for selected 

phenotypes in Figure 1 and then recalculated power assuming the investigator implemented 

a highly effective extreme sampling design and highly precise measures (see Table 3). First, 

we calculated the sample size required to have 80% power to detect the original reported 

effect. As can be seen from Table 3, sample sizes that are unheard of in electrophysiological 

research would be required. Under realistic circumstances, such as that reported by 

ENIGMA for hippocampal volume (Stein et al., 2012), 15,258 total samples would be 

required for 80% power to detect a single genome-wide effect. Next, we estimated the 

sample size required if one were to maximize the variance of X (VX) or to reduce 

measurement error from 50% to 25%. We assume that the predictor X is a biallelic SNP, its 

variance is determined by the variance of the binomial distribution, or 2*MAF(1-MAF), 

which is maximized when MAF =.5. To reduce measurement error we simply assumed that 

the variance in the phenotype was produced in accord with classical test theory: var(P) = 

var(T) + var(E), where P is the phenotypic score, T is the true score, and E is the 

measurement error. We conservatively assumed that measurement error accounted for half 
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the variance in the phenotype, and that one could then reduce measurement error by half. As 

Table 3 indicates, even under the most unrealistically optimistic of circumstances, when one 

assumes the effect is as large as the largest effect reported for the nicotine metabolite 

cotinine, error in measuring the phenotype is reduced by half, and MAF for the variant is 

maximized at 50%, 1,465 participants are still required to have 80% power to detect a single 

genome-wide effect. The worst-case scenario is observed for educational attainment, where 

N=198,302 is required to return a single genome-wide significant effect for 80% power. 

N=148,475 is still required after error and MAF are optimized. Discovering more than a 

single effect clearly will require much, much larger samples.

The reason we include power calculations under “special” circumstances in the right-hand 

side of Table 3 is not because we believe that it is easy or realistic to cut measurement error 

in half or increase variant MAF to 50%. In fact, we have argued throughout this article that 

the failure to find genetic variants associated with electrophysiological candidate 

endophenotypes is unlikely to be due to their operational definitions or the precision with 

which they are measured, and it is clear that phenotypic selection schemes will not result in 

great MAF enrichment given how small the associations between genotype and phenotype 

are. The purpose of Table 3, instead, is to respond directly to the argument that some 

particular study sample is special and therefore extremely powerful. To create a caricature of 

the argument: a small study has huge statistical power because it used the best and most 

expensive measures collected in-person over the course of days in multiple waves on a very 

special sample of phenotypically extreme individuals from a population that is very hard to 

access and has not been studied. This argument can be extended then to rebut later failed 

replications because the replication study was not—in some cases, could not be—designed 

in the same way. This argument can be reformulated as an argument about statistical power: 

extreme sampling of a special population increases variance of the predictor, or MAF of the 

variant in question; measurement accuracy, time-consuming in-person assessments, and 

multiple waves of assessment serve to decrease measurement error; and the “best” measures 

are expected to have large effect sizes associated with them. However, as we have shown, 

even in the most unrealistically optimistic of such scenarios, it is very difficult or even 

impossible to overcome the inherent limitations of small samples to discover variants with 

the effect sizes we now expect for complex traits including endophenotypes. GWAS of 

complex traits, even in a unique sample assessed in the best way imaginable, will not be 

powerful without thousands of individuals and, more likely, tens to hundreds of thousands of 

individuals. Consequently, even studies of very special samples using refined phenotypes 

require extremely large samples to be credible.

One can imagine exceptions to our general conclusion, but these exceptions are not observed 

in the current literature. For example, some rare variant may have a large effect on the 

phenotype, such that carrying it greatly increases one's risk for disease or score on a disease-

related endophenotype. In a community representative sample, or a sample selected on the 

basis of phenotype, the rare variant will only affect risk in the few carriers who harbor it, and 

statistical power to detect the effect will remain low (because VX is necessarily low due to 

low minor allele frequency [MAF]). However, if one selects participants based on genotype 

or ancestry, such that carriers of the rare variant are oversampled, the MAF of the variant in 
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the sample and thus statistical power can be greatly increased. This kind of study design has 

traditionally involved large pedigrees with high incidence of disorder. Classic examples 

include the first report of linkage in Huntington's disease (Gusella et al., 1983) and even the 

Sherrington et al paper (Sherrington et al., 1988) described at the outset of this article. Novel 

designs to sample rare variant carriers are now possible with the advent of large-scale 

biobanks (e.g., The Nord-Trøndelag Health Study HUNT Biobank, the UK Biobank, Million 

Veterans Program, and many others) from which individuals could be selected on the basis 

of their (rare) genotype and perhaps augmented with family members not already in the 

biobank but who are also likely to carry the rare allele of interest. This novel selection 

strategy, and many others that will be possible with population-level sequencing, may be 

leveraged to greatly increase variance in the predictor (VX) by increasing the MAF of the 

genetic variant, thereby increasing power for testing association. Keep in mind, however, 

that this entire strategy depends on knowing which rare variants are important, out of the 

many hundreds of millions of rare variants that exist. We have argued in this section that 

GWAS is one recommended way to determine which genomic regions, or loci, contain 

genetic variants that influence risk for disorder. Determining which variants within a locus 

are causal is an important step in understanding the genetic basis of the (endo) phenotype. 

Knowing the causal variants is essential for selection strategies based on genotype but, more 

importantly, for understanding the biological mechanisms by which the variant influences 

the (endo) phenotype.

7.3.2 Power in GREML—Like genetic association studies, GREML also requires large 

samples. Figure 2 provides sample size estimates for univariate SNP heritability estimates 

(panel A) and genetic correlations between pairs of traits (panel B), based on R code made 

publicly available by Jian Yang, the developer of the GCTA software, which introduced the 

GREML approach (Yang et al., 2010). (An online power calculator is also available at http://

cnsgenomics.com/shiny/gctaPower/.) Panel A plots the power for finding that SNP 

heritability is significant for a range of sample sizes and a range of levels of trait SNP 

heritability (h2 = .20, .40, and .60). To have adequate power to find a significant SNP 

heritability estimate requires 1,500 subjects if heritability is high (.60), and 4,450 if 

heritability is relatively low (.20). In panel B of Figure 2 we show power required to 

estimate bivariate genetic correlations. For the sake of simplicity, power estimates for 

genetic correlations assume that the heritability of both traits is the same, using the same 

range of true heritability values as in panel A. Power is plotted for phenotypic correlations 

between the traits ranging from .10 to .40, and we assume that the genetic correlation 

between traits accounts for 80% of the phenotypic correlation. A sample of 10,000 is not 

nearly large enough to detect a genetic correlation of .08 (phenotypic correlation of .10), 

even if both traits are highly heritable (h2 = .60). If the heritability of the traits is relatively 

small in magnitude (h2 = .20), then nearly 10,000 subjects are required to detect the largest 

genetic correlation. If trait heritability is high and the phenotypic correlations are large, 

obviously an optimistic scenario, more than 3,000 subjects are still required. Factors such as 

the proportion of the phenotypic correlation accounted for by the genetic correlation and the 

degree to which the heritability of the two traits is similar affect power both positively and 

negatively, but the need for large samples is clear. When sufficiently powered, GREML 

analyses have the potential to provide insight into the genetic architecture of 
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endophenotypes and the nature of their association with clinical phenotypes, but because 

neither individual SNPS nor genes are identified, they do not shed light on the specific 

nature of the genetic etiology.

7.4 Summary of recommendations

The above recommendations for variant discovery are simple but important; our key points 

are annotated in Table 4. Traditional candidate gene studies, where genes are selected a 

priori based on animal models or non-genetic neurobiological findings in humans, are mired 

in replication difficulties and have not provided clear and robust associations. Genome-wide 

arrays are now more affordable than individually genotyping many candidate genes and 

should be preferred in any new genotyping effort. Genome-wide arrays allow for standard 

ancestry corrections and can be imputed, which makes genome-wide meta-analysis easy. 

Power to detect novel associations is small because effects are small, so researchers should 

consider this at the outset and plan to build the largest sample possible and, in perhaps many 

cases, realize they will be unable to conduct an adequately powered study. Using GREML to 

study the genetic architecture of endophenotypes and their genetic relationship to clinical 

phenotypes also requires large samples. If the goal is to discover and understand the 

biological pathways by which a gene affects a phenotype, then a Bonferroni correction that 

controls family-wise error is essential to control the proliferation of low-confidence findings.

8.0 Moving from GWAS-implicated Loci to Causal Variants

Up to now we have focused primarily on recommendations for improving the discovery of 

new genes associated with endophenotypes, and therefore genes that are presumably 

important for clinical disorders. Let us assume now, contrary to available evidence, that we 

have been successful in discovering a variant. What next?

GWAS takes advantage of the LD structure of the genome, which reflects the fact that 

through recombination we inherit chromosomes from our parents that are mosaics of our 

grandparent's chromosomes. Recombination creates a correlation among variants within 

these segments. LD is both a strength and weakness of GWAS. It allows one to efficiently 

test all common variation within the genome with a few hundred thousand carefully selected 

markers, but any particular variant significantly associated with a phenotype is far from 

guaranteed to be a causal variant. Rather, the associated variant implicates a genomic locus, 

which might span millions of nucleotide bases, thousands of variants, and dozens of genes. 

A major hurdle lies in figuring out which of these variants are causal, and which are only 

spuriously associated with the phenotype through LD with causal variants.

A common technique to understand a locus is to fine map it, or genotype/sequence all 

variants within the implicated locus. According to the latest findings from the 1000 

Genomes Project Consortium, there have been nearly 90 million genetic variants discovered 

in humans (1000 Genomes Project Consortium, 2015). However, any particular individual 

differs from the extensively curated human reference genome at only ~5 million sites. The 

difference between 5 and 90 million lies in the fact that most variants identified to date are 

rare – the allele not observed on the reference genome only exists in a tiny fraction of 

individuals and any particular individual only has a small number of these rare alleles 
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distributed throughout their genome. Traditional GWAS studies use a genome-wide array 

that genotypes a few hundred thousand up to a few million common genetic variants. 

Imputation methods can now fairly accurately impute variants down to ~0.1% minor allele 

frequency, the frequency with which the rare allele (often but not always the non-reference 

allele) is observed. Observing variants with even lower frequency currently requires direct 

genotyping or genome sequencing techniques.

Once most or even all variants within a locus have been genotyped (e.g., through 

sequencing), one can systematically test these variants for association. A common approach 

is to conduct stepwise forward selection conditional tests to exhaustively test all variants 

within a region conditional on all other associated variants. This can be done precisely when 

raw genotypes are available or approximated through tests that model the covariance among 

variant effects using LD as a proxy (Yang et al., 2012).

A potentially more powerful approach to disentangle LD from truly independently 

associated effects is to leverage different ancestral groups in a process known as trans-ethnic 

fine mapping (Kichaev & Pasaniuc, 2015). Trans-ethnic fine mapping exploits the fact that 

different ancestral groups (e.g., East Asian versus Native American ancestry) have different 

LD patterns across the genome. It is well known, for example, that regions of LD in 

individuals of European ancestry are large relative to individuals of sub-Saharan African 

ancestry. If a locus identified through GWAS shows different LD patterns in individuals of 

different ancestries, then conducting an association analysis in both ancestries can narrow 

the locus, thus reducing the set of credible candidate causal variants. For this reason, 

electrophysiological studies of different ethnic groups, such as those carried out with Native 

and Mexican American communities in the US (Ehlers & Gizer, 2013; Ehlers & Phillips, 

2007; Ehlers, Wills, Phillips, & Havstad, 2015; Norden-Krichmar et al., 2015), are 

especially valuable even if they are not expected to greatly increase power to detect novel 

associations, nor do they obviate the need for large samples (e.g., see Table 3).

Another approach is to test putatively functional variants within a locus for association. One 

expects, for example, that coding variants inducing a nonsense or missense mutation are 

more likely to have functional effects on gene transcription and, by the same token, larger 

effects on downstream phenotypes. An excellent example of the power of functional 

annotation was recently reported for the intronic variants in FTO associated with BMI, as 

discussed above. While these variants were first discovered over a decade ago, their 

mechanism of action was unknown until 2015. In the end, FTO is not the relevant gene 

affecting BMI levels. Instead, the intronic locus harboring the BMI-associated variants is an 

enhancer—a functional unit in the genome that influences expression of a gene—for nearby 

genes, IRX3 and IRX5, over 1 million bases away from FTO. The finding was originally 

suggested by epigenomic annotations (e.g., from ENCODE or NIH Roadmap) indicating 

that the intronic locus in FTO contained an enhancer for IRX3/IRX5, the phenotypic effects 

of which were subsequently confirmed through mouse and patient tissue samples 

(Claussnitzer et al., 2015). Understanding the function of associated loci can be a powerful 

tool to understand which variants to prioritize for later experiments, and also to elucidate 

biological mechanisms of action.
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9.0 Selective Review of Electrophysiological Biomarkers as Candidate 

Endophenotypes

In this section we review the literature on electrophysiological biomarkers, with an emphasis 

on those that are candidate endophenotypes. We begin by addressing how well putative 

endophenotypes satisfy the threshold criteria in Table 1. Some have been the focus of years 

of research, whereas investigations into others have only recently been undertaken. However, 

with the exception of resting heart rate, none of the candidate endophenotypes meet the 

criteria in Section II of Table 1 for molecular genetic verification. Of note, they do not 

satisfy criterion #5, which requires demonstration of a verified association with a specific 

genetic variant. Given this failure, they of course cannot satisfy criterion #6, which requires 

the verified variant to also be associated with the clinical phenotype. As with our 

investigation of 17 endophenotypes described in our special issue of Psychophysiology, we 

do not feel that it is likely that the failure of endophenotypes in general to lead to verified 

molecular genetic discovery is due to poor measurement. For one thing, it is unlikely that the 

candidate endophenotypes listed in Table 5 are uniformly poorly measured. In addition, 

most are heritable, and we argue in section 5.2 that large MZ twin correlations can be 

viewed as a form of reliability. Endophenotype researchers should always be concerned with 

the psychometric properties of their measures (e.g., see W. G. Iacono & Malone, 2011). 

However, the results of our review suggest that a change in perspective is what is needed 

more than (just) improved measurement reliability and increased methodological 

sophistication. Despite the fact that electrophysiological endophenotypes have to date 

largely failed to meet the rigorous criteria we enumerated in Table 1, there are nevertheless 

molecular genetic endophenotype studies that stand out from the rest because they represent 

a step in the right direction.

9.1 A review of how well candidate endophenotypes satisfy threshold criteria

Table 5 lists a variety of electrophysiological measures that are either considered biomarkers 

or endophenotypes. We searched PubMed using variations of “endophenotype,” 

“intermediate phenotype,” and “biomarker” together with “electrophysiology,” 

“psychophysiology,” and terms specifying more specific physiological measures or classes 

of measures (e.g., “event-related potential or ERP,” “autonomic,” “EEG”, and so on). The 

table provides citations for studies that support each measure as a biomarker or 

endophenotype, particularly meta-analyses, which are indicated by bold face, and reviews, 

indicated by italics, as well as key papers. Table 5 addresses the Threshold Criteria in Table 
1 that we identified as necessary for treating a phenotype as a candidate endophenotype: 

association with a clinical phenotype, heritability, presence in unaffected relatives, and 

evidence for a shared genetic liability. We have attempted to be systematic and thorough in 

our search of PubMed, although it is not possible to be exhaustive. We did not include 

measures reflecting neurobiological systems that appear to be disrupted by environmental 

adversity and stress, such as EEG asymmetry in infants and children associated with 

psychosocial risk. We also did not include putative endophenotypes relevant for different 

levels of analysis, such as developmental trajectories (Tierney, Gabard-Durnam, Vogel-

Farley, Tager-Flusberg, & Nelson, 2012), or weighted composites (Clementz et al., 2015) 

and multivariate endophenotypes (Gilmore, Malone, & Iacono, 2010; W. G. Iacono, Carlson, 
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& Malone, 2000; G. W. Price et al., 2006). There is invariably a certain degree of subjective 

judgment involved in how to efficiently and fairly summarize so much research. The table is 

nevertheless useful for drawing broad inferences about what we are learning to date from 

psychophysiological endophenotype research.

The sheer number of entries in Table 5 attests to the level of interest in endophenotypes and 

biomarkers. What is perhaps less apparent is that interest is increasing, judging from the 

number of papers published in recent years. The majority of work has focused on addressing 

the threshold criteria, which is clearly a desirable first step to establishing a given measure 

as a putative endophenotype. The viability of some measures as endophenotypes is stronger 

than for others in that it is supported by meta-analysis or at least the results of a narrative 

review, whereas one or two empirical reports is all that we could find for others. This may be 

because interest in a particular measure as an endophenotype is recent, as is the case with 

feedback-related negativity, reward positivity, measures of connectivity or phase synchrony, 

broadband noise, and other measures that are more recently available to endophenotype 

researchers. In other cases, such as the oddball N2 amplitude, interest seems to have faded. 

There have been a number of twin studies, which establish broadly that heritable individual 

differences are evident for the majority of putative endophenotypes. Many studies have also 

been conducted of healthy first-degree relatives of probands with a clinical disorder, who 

presumably share the genetic liability for the disorder despite not having manifested it. 

Somewhat fewer studies have been conducted with children or youth at high risk for a 

disorder by virtue of a positive family history.

The second column of Table 5 contains our evaluation of the strength of evidence for 

considering the biomarker in each row an endophenotype, based on how well it meets the 

Section I Threshold Criteria in Table 1. We classified measures into one of four categories: 

biomarker (represented by B), suggestive evidence (S), moderate evidence (M), and 

persuasive evidence (P). Putative endophenotypes meeting only criterion #1 in Table 1 – 

evidence of a phenotypic association with a clinical phenotype, without evidence of genetic 

influence -- are classified as biomarkers. For instance, the theta/beta ratio of resting EEG 

power, thought to be a marker of ADHD, and disrupted neural synchrony in PTSD, do not 

appear to be genetically influenced. Evidence of genetic influence is most commonly 

provided by heritability studies. However, evidence for genetic influence on a few measures 

comes from findings in healthy first-degree relatives, such as PFC broadband noise and the 

feedback positivity. We considered the evidence as “suggestive” if there was evidence of 

heritability but neither criterion #3 or #4 was met. For us to consider the evidence as 

“moderate,” a putative endophenotype must meet criteria #3 and #4 or there must be more 

than one report showing evidence that it meets one or the other. If it meets one of the two 

criteria, we assigned an “S+.” However, if evidence that a putative endophenotype meets 

either of these criteria came from the same report that also established its criterion validity, 

we considered this an “S.” For instance, Iacono (1999) found that electrodermal activity 

(EDA) was increased in patients with schizophrenia and first-degree relatives. In cases such 

as this we considered the evidence as merely suggestive (“S”) rather than “S+.” For evidence 

to be considered persuasive, the putative endophenotype must meet both criteria (#3 and #4) 
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with more than a single empirical report and preferably meta-analysis or narrative review 

providing evidence relevant to each criterion.

While necessarily imprecise and somewhat subjective, we feel that this scheme is 

nevertheless useful. It indicates that the majority of endophenotypes supported by moderate 

or persuasive evidence are endophenotypes for schizophrenia and bipolar disorder (11 out of 

16). This undoubtedly reflects in part the fact that there is a long history of interest in 

endophenotypes for schizophrenia in particular. This scheme also indicates that, whereas the 

ratio of theta to beta resting EEG power may constitute a biomarker for ADHD, it is 

amplitude of the error-related negativity (ERN; rated “M”) that is the best putative 

endophenotype for ADHD. Although a focus of research only for a few years, the feedback-

related negativity shows moderate evidence as an endophenotype for depression. P300 

amplitude is a persuasive endophenotype for SUDs and externalizing disorders and for 

schizophrenia, and the evidence is moderate that it is an endophenotype for bipolar disorder 

as well. P300 latency is a strong endophenotype for schizophrenia and moderate for bipolar 

disorder. Indeed, P300 amplitude and latency are the only candidate endophenotypes for 

which the evidence is persuasive.

9.2 Selective review of molecular genetic studies of endophenotypes

The vast majority of molecular genetic studies of putative endophenotypes have been 

candidate gene studies with small samples. The performance of candidate gene studies for 

complex traits in the past decade gives us little reason to believe that their results are 

verifiable. Nevertheless, we review in this section all studies, whether candidate gene studies 

or GWAS, with a sample size of at least 400 or that included a replication sample in the 

original report. This criterion includes studies with a discovery and replication sample as 

well as the few studies that combined GWAS results across multiple independent samples 

through meta-analysis. We chose 400 subjects as a minimum sample size because it provides 

80% power to detect effects accounting for 2% of the variance in an endophenotype. As we 

outlined earlier, effect sizes of this magnitude are substantially larger than we expect of true 

effect sizes, and this targeted minimum sample size should not be taken as a 

recommendation. It simply allows us to highlight studies that stand out from the majority of 

molecular genetic studies because they are more highly, although not sufficiently, powered.

Well over a hundred studies have been published that assessed whether measured genetic 

variants are associated with candidate endophenotypes. Of these, only a dozen, summarized 

in Table 6, meet our admittedly liberal criteria. Despite representing research that is 

commendable in certain respects, the studies in Table 6 illustrate some of the reasons that 

candidate gene studies are so fallible, as we discussed in section 7.1. Although 12 studies are 

listed in the table, nine of them were contributed by three research groups. The studies 

reported within each group involve overlapping or identical samples, and thus should not be 

considered independent reports despite the fact that they examine different candidate genes 

or candidate endophenotypes. These overlapping reports also do not conduct project wide 

correction for multiple testing, so they do not adequately adjust for Type I error, a problem 

that is now well recognized in molecular genetic research of complex traits. Although the 

table indicates effects that were nominally significant by the criteria used (p < .05 or p < .
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01), none reach significance if all variants within all genes reported across all these studies 

were used in the multiple testing correction. This may seem like an unfair standard because 

the reports were conducted under the candidate gene paradigm, where a priori evidence is 

used to select candidate genes based on “theory”. However, we maintain the position stated 

in section 7.1 that candidate gene selection based on theory is highly fallible and that 

candidate gene studies conducted in the traditional sense where candidate genes are selected 

based on psychobiological theory and not statistical evidence, are in fact more exploratory 

than not. Thus, when multiple candidate gene findings are described in multiple publications 

from the same dataset, they should be held to higher statistical standards than within-study 

corrections, the now widely adopted standard for genome wide significance. None of the 

associations in Table 6 constitutes a verified finding.

In light of the fact that Type I error was not adequately controlled, whether within a study or 

across studies within the same research group, it cannot be surprising that several of the 

findings listed in Table 6 have not replicated. Roussos and colleagues divided the LOGOS 

sample into a discovery and replication sample and conducted a GWAS of PPI and startle 

reactivity (Roussos et al., 2015). Although they did obtain unreplicated novel genome-wide 

significant hits for two, they did not obtain significant associations between any candidate 

genes previously found to be associated with PPI, including those listed in Table 6 which 

they themselves had previously obtained.

The GWAS by Roussos and colleagues is listed in Table 7, along with GWAS or studies 

similarly using a genome-wide scan, representing seven electrophysiological 

endophenotypes in all. To avoid redundancy, we did not add to this table the GWAS results 

from the 17 endophenotypes examined in our special issue of Psychophysiology that are 

included in Table 2, none of which are covered in Table 7, or the results we obtained for 

event-related theta power described in section 5.2, a measure that is included in Table 7. 

Examples of the challenges that we faced and discussed in section 5.0 are also apparent in 

several of these studies. Zlojutro and colleagues with the Consortium on the Genetics of 

Alcoholism (COGA) conducted a GWAS of event-related EEG theta activity in a discovery 

sample of 1,064 subjects, from which 42 SNPs were prioritized for replication in a second, 

family-based sample of 1,095 subjects from 242 families with many alcohol-dependent 

individuals (Zlojutro et al., 2011). None of the variants were genome-wide significant. Table 
7 lists a second GWAS of event-related theta activity conducted by COGA, which seems to 

have expanded on the family sample of Zlojutro et al., studying 1,560 subjects in 117 

densely alcoholic families (S. J. Kang et al., 2012). A genome-wide significant signal was 

observed in chromosome 21 from multiple SNPs in KCNJ6. This study did not replicate the 

Zlojutro et al. finding. A subsequent study from our group with a sample of approximately 

4,100 (see Section 5.2 and Table 2), failed to confirm either one. These studies from our 

group, Roussos et al., and COGA represent among the best currently available in 

electrophysiological endophenotype research; they show that electrophysiological 

endophenotypes have not protected researchers from the problem of false positives that have 

been widely observed to plague underpowered studies of complex traits.

Fueled by substantially larger sample sizes, resting heart rate provides a picture in stark 

contrast. It is the only candidate endophenotype to fully meet our threshold for verified 
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discovery. Although a putative endophenotype for antisocial behavior and perhaps PTSD 

(see Table 5), resting heart rate has not received as much attention as an endophenotype as 

other candidates in Table 5. Yet, as we discussed in section 6.1, GWAS meta-analyses of 

heart rate and related measures, such as Q-T interval, have identified several loci with 

genome-wide significant associations with heart rate in samples comprising subjects from 

different racial or ethnic backgrounds (European, Icelandic, Asian, African-American) (Cho 

et al., 2009; Deo et al., 2013; Eijgelsheim et al., 2010; Holm et al., 2010). There have been 

replicated findings, and several of the variants discovered are nonsynonymous and 

biologically plausible. The effect sizes are small, accounting for no more than 1 beat per 

minute. For instance, one variant accounted for 0.4% of the variance in heart rate (shortening 

the R-R interval by 12.6 ms) (Deo et al., 2013). Other studies report somewhat smaller 

effects (see Figure 1 and Table 4).

Examining Tables 6 and 7 reveals that the largest effect sizes are reported by studies with 

the smallest samples. In fact, sample size is inversely correlated with the magnitude of effect 

obtained. Unsurprisingly, only those studies with the largest samples obtained small effects; 

large samples are necessary in order to provide adequate power to detect such effects, which 

is precisely why they are needed (see Table 3). In addition, however, what is most striking 

about the studies with large samples is what they do not report: large effects. This is 

obviously not due to lack of power. That studies with the largest samples have not obtained 

large effects argues that the large effects from studies with small samples are almost 

certainly due to sampling variation or allelic stratification and are not true associations. To 

put this another way, a large effect size should be disquieting rather than reassuring; it 

almost surely signals that a finding is a false positive rather than confirming that it is real.

10.0 Where Do We Go From Here?

Our special issue in Psychophysiology was a step forward in the systematic evaluation of 

genetic associations for electrophysiological endophenotypes, but it is far from the last word. 

Electrophysiological endophenotypes are not dead, despite their apparent inability to 

dramatically increase power for genetic association studies. Endophenotypes, by their 

definition, are biological lab-based measures of genetically-influenced components of 

clinical disorders. As such, they provide insight into the nature of mental disorders and brain 

function. Of interest, then, is how to optimize their potential contribution.

10.1 Data sharing

The wave of consortia dedicated to the identification of phenotype-genotype associations has 

been driven in our opinion by one basic fact: no single investigator has access to a large 

enough sample size to profitably conduct genetic association studies of complex traits. To 

make progress, she must share her data and combine it with other data. In the world of 

neurobehavioral endophenotypes, the way has been led thus far by the ENIGMA 

consortium, which now is branching out into electrophysiology with the hope of building 

meta-samples in the tens of thousands of individuals.

Sharing data, broadly, without embargo, and with open consents, is our surest path to 

success. The NIH recognizes this fact and is encouraging it through new genomic data 
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sharing policies (https://gds.nih.gov/) requiring researchers to obtain more open consents to 

allow data sharing with repositories, such as the National Institute of Health's database for 

genotypes and phenotypes (dbGaP).

However, we encourage researchers to take things one step further and make their data more 

broadly available than through repositories like dbGaP. Whereas dbGaP is good for 

genotypes, available phenotype data are often highly limited, and are only a tiny fraction of 

all the phenotypes a particular study collects. Those phenotypes, and the potential genetic 

associations arising from them, are never shared. In the saddest cases, they are never even 

analyzed by the original investigative team. Direct collaboration between like-minded 

investigators with similar data is a powerful way to aggregate data and increase statistical 

power and generalizability. In those cases where raw data cannot be shared, or if genetic data 

is at some point in the future considered identifiable data, it is still possible to share 

association summary statistics, which has been widely successful in GWAS meta-analysis.

10.2 Consortia

One clear path forward is to build consortia to aggregate data across many studies for 

genetic association analyses. Genetic association consortia have worked for medical disease, 

psychiatric traits, and normal range behaviors. They guarantee increased power through 

increased sample size and, when successful, they provide many new opportunities for 

additional analyses and hypotheses that cannot be answered in a single dataset. Consortia are 

also one way in the current funding climate to obtain genotyping funds. There are many 

studies with electrophysiological data but not genome-wide genotypes. By banding together 

and building total sample size into the tens of thousands it may become feasible to request 

funding to genotype all available non-genotyped samples because, once done, there is reason 

to think a genetic association study of the large sample would be successful. This particular 

approach has been successful in funding genotyping in the Psychiatric Genomics 

Consortium (PGC; Sullivan, 2010). PGC comprises consortia to study the genetics of many 

disorders in addition to schizophrenia, such as autism, ADHD, substance abuse, major 

depressive disorder, bipolar disorder, PTSD, OCD, and anorexia nervosa (https://

www.med.unc.edu/pgc). There are other relevant consortia as well, such as GSCAN for 

addiction (http://gscan.sph.umich.edu), the Social Science Genetic Association Consortium 

(SSGAC; http://www.ssgac.org/Home.php), which is currently investigating educational 

attainment, subjective well being, and fertility, and ENIGMA for imaging and 

psychophysiology (http://enigma.ini.usc.edu/; Thompson et al., 2014).

10.3 A different approach to selecting candidate genes

In light of the many difficulties in candidate gene studies as they have typically been 

conducted, we suggest conducting such studies only when there is compelling evidence 

supporting a particular gene's candidacy. We suggest a two-dimensional spectrum of 

acceptability, diagrammed in Figure 3. First, we propose a spectrum of statistical 

association evidence. On one end are variants that have been indubitably associated with the 

clinical outcome(s) of interest or the endophenotype of interest. On the other end are 

variants that have mixed evidence from low-powered non-GWAS studies. The second 

spectrum concerns whether the variant is predicted to affect a genomic or molecular 
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mechanism. Variants with relatively clear mechanisms (e.g., changes to coding sequence or 

gene expression) will be easier to interpret and functionally characterize, whereas variants 

with unclear mechanisms, such as intergenic variants with no functional signatures, may be 

more difficult to characterize. Variants can be prioritized for follow-up in proportion to the 

degree of evidence for association. Variants that show strong evidence of association but also 

implicate a known mechanism should receive highest priority.

We believe the candidate gene design is changing. Instead of basing candidate gene selection 

on the usual (fallible) suspects (5-HTTLPR, DRD2, DRD4, COMT, BDNF, MAO-A, to 

name a few), which have largely led to dead ends or confusion, or on results from 

infrahuman model systems with unknown generalizability, we now know from GWAS what 

variants are truly associated with human disorders and traits under a controlled family-wise 

error rate. For schizophrenia, for example, we now have evidence for the association of 128 

variants within 108 loci. These “candidate variants” have strong support for their role in 

schizophrenia and are prima facie good candidates for schizophrenia endophenotypes. In 

addition, large consortia have formed to identify variants associated with phenotypes other 

than schizophrenia, such as personality, depression, and educational attainment. Researchers 

studying endophenotypes related to these distal and clinical outcomes will be able to take 

advantage of discoveries being made in these areas. The endophenotype then can inform us 

about the function of those specific markers. For instance, two recently published studies 

examined a number of these markers now known to be related to schizophrenia as well as 

markers related to other disorders, and each reported an association between a marker and 

P300 amplitude that survived correction for multiple testing (Del Re et al., 2014; Hall et al., 

2014). If replicated, these findings may ultimately shed light on mechanisms governing poor 

attention allocation and working memory in schizophrenia.

An alternative to examining the association between individual markers and endophenotypes 

is to construct a polygenic risk score, which captures the aggregate effect of many variants. 

Such scores are weighted composites of allele counts, with the weights consisting of the 

regression coefficients associated with the endophenotype from GWAS or meta-analysis. 

The development, or training, sample and test sample should ideally be independent, of 

course. If not, then cross-validation techniques (e.g., k-fold or leave-one-out cross-

validation) should be used. Weights can be based on the results from the consortia that are 

forming. The regression coefficients may thus be for predicting a related clinical phenotype, 

rather than an endophenotype. The simplest approach is to use all markers to generate a risk 

score, but researchers more commonly construct a set of risk scores by using increasingly 

stringent p-value thresholds are commonly used to identify “significant” markers, such as p-

values ranging from .50 to very small values. At a minimum, significant associations 

between such risk scores based on clinical outcomes and endophenotypes attest to the 

construct validity of the endophenotype for the clinical outcome in question. Studies have 

begun to appear that relate risk scores derived from PGC, for instance, to 

psychophysiological measures, such as PPI (Hall et al., 2015; Roussos et al., 2015).

The extent to which these types of studies yield findings that can be replicated and 

ultimately advance our understanding of the endophenotype and its associated disorder 

remains to be seen. However, they can certainly be used to confirm the construct validity of 
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endophenotypes. The gain in power that derives from testing a small number of well-

validated markers, or a single risk score based on many markers in aggregate, increases 

power to detect whether and how two phenotypes are related, although at the expense of 

being able to identify specific biological mechanisms. Moreover, molecular-genetic 

researchers are developing ways to optimize polygenic risk scores (e.g., Vilhjalmsson et al., 

2015), which should make them ever more powerful. Psychophysiological researchers can 

contribute to this type of endeavor in a unique way by developing endophenotype risk 

scores. For instance, a P300 amplitude reduction (P3AR) “risk score” might be developed 

from GWAS or meta-analytic results and tested for its association with externalizing 

disorders, which would provide even more direct evidence of the validity of the notion that 

P3AR is an endophenotype for externalizing psychopathology (W. G. Iacono, Carlson, 

Malone, & McGue, 2002; W. G. Iacono, Malone, & McGue, 2008). Because P3AR is also 

associated with other disorders, like schizophrenia, the risk score can also be expected to 

show association with any disorder where this effect is observed.

Perhaps more importantly, identifying variants convincingly associated with a given clinical 

phenotype will suggest biological mechanisms and new endophenotypes. That is, it may be 

fruitful to develop endophenotypes based on the biological function of validated 

polymorphisms. This is now beginning, with follow-up studies of the 108 loci implicated by 

the PGC consortium. A recent article fine-mapped structural variation within the major 

histocompatibility complex, discovering CNVs that severely affect gene expression of C4A 

and C4B in the brain (Sekar et al., 2016). When taken to a mouse model C4 activity 

mediated synaptic pruning during postnatal development. This GWAS-based finding has 

been translated to a neurobiological mechanism which, if true, would implicate C4 
expression and possibly synaptic pruning in the etiology of schizophrenia. As the C4-related 

mechanisms are better understood, it should be possible to derive candidate endophenotypes 

for them. Indeed, we may come to think of our current arsenal of endophenotypes as 

obsolete and unlinked to genetic variants of measureable effects, replacing it with a new set 

of endophenotypes developed on the basis of known genetic effects.

It is important to note that even the highest priority candidate variants may be difficult to 

study. If the follow-up study involves association analysis of the candidate variant with 

another complex (endo) phenotype samples of over 1000 unrelated individuals will be 

required to obtain sufficient power (see Table 3). Molecular work, for example studies of 

gene expression or cellular processes affected by a candidate variant, may result in much 

larger expected effect sizes and require a fraction of the observations as for complex 

phenotypes. In either case recent success in GWAS will only spur additional focused 

analyses of candidate genes and genomic regions, except now we will know that these 

regions harbor genetic variation that actually affect disorder risk in humans, a critical 

advance in genetic research.

10.4 More research on the utility of an endophenotype

10.4.1 Predictive utility and development—Studies concerning the utility of an 

endophenotype, criteria 7 through 10 in Table 1, were hard to find, and are certainly fewer 

in number than those focused on establishing whether a putative endophenotype meets 
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threshold criteria utility. The majority concern criterion #7 that an endophenotype should 

predict development of a disorder. This includes studies examining a candidate 

endophenotype's longitudinal stability during development. For instance, P300 amplitude 

(Carlson & Iacono, 2006; Yoon et al., 2015), amplitude of the error-related negativity (ERN) 

(Meyer, Weinberg, Klein, & Hajcak, 2012) or feedback negativity (FN) (Bress, Meyer, & 

Proudfit, 2015), and resting heart rate (Baker et al., 2009) are stable during transitions from 

childhood to adolescence or from adolescence into young adulthood. A number of studies 

have evaluated the predictive utility of candidate endophenotypes. For instance, EEG alpha 

power in childhood has been found to predict antisocial behavior in adolescent male twins, 

which was due to genetic liability shared between endophenotype and outcome (Niv et al., 

2015); alpha asymmetry has been found to predict depression (Mitchell & Possel, 2012); 

reduced delta and theta event-related power (Yoon et al., 2015) and P300 amplitude 

(Carlson, Iacono, & McGue, 2004; W. G. Iacono et al., 2002; Yoon et al., 2015) are reported 

to predict externalizing disorders; reduced high-frequency power has been found to predict 

autism; increased ERN is reported to predict the onset of anxiety disorders (Meyer, Hajcak, 

Torpey-Newman, Kujawa, & Klein, 2015); reduced feedback positivity is reported to predict 

subsequent depression (Proudfit, 2015); reduced MMN amplitude has been found to predict 

the development of psychosis in at-risk individuals (Shaikh et al., 2015); and reduced resting 

heart rate in childhood has been found to predict antisocial behavior in adulthood (Raine, 

Venables, & Williams, 1990). This latter finding was recently corroborated and extended in a 

longitudinal study of more than 700,000 men in Sweden, which found that lower resting 

heart rate in late adolescence among military conscripts was associated with significantly 

elevated hazard of being convicted of violent and nonviolent crimes as well as assault and 

unintentional injuries in adulthood (Latvala, Kuja-Halkola, Almqvist, Larsson, & 

Lichtenstein, 2015). Although it is encouraging to see the number of such studies growing, 

more are needed.

Moreover, even if heritability by itself does not translate into successful gene finding, the 

fact that a valid endophenotype reflects genetic risk can be used in novel ways. For instance, 

longitudinal designs can characterize trajectories of change in endophenotypes and factors 

that influence such trajectories, including environmental factors, which may improve our 

ability to predict who is going to develop a disorder as well as enhance our understanding of 

the genetic risk captured by the endophenotype. Understanding the potentially dynamic 

relationship between endophenotype and clinical phenotype and the parameters affecting it 

is important. Anxiety appears to relate to increased ERN differently in young children 

relative to older ones (Meyer et al., 2012). The reduction in P300 amplitude characteristic of 

children and youth at risk for substance abuse appears to become attenuated in early 

adulthood (Carlson & Iacono, 2008; Hill et al., 1999), suggesting that the utility of this 

endophenotype may be limited in this developmental period. Because gene expression is 

itself dynamic, it is also important to consider age and development when searching for 

genetic variants influencing a candidate endophenotype; the relationship between gene and 

endophenotype may not be constant across development. The relationship between person 

and environment is also dynamic. On Waddington's model of the epigenetic landscape 

(Waddington, 1956), earlier periods of development are characterized by a flatter epigenetic 

landscape, permitting deviations in developmental trajectory more readily than later periods, 
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when trajectories become increasingly canalized and constrained. Longitudinal designs may 

be particularly useful because they allow one to describe and characterize developmental 

trajectories. Empirical Bayes estimates of growth curve parameters characterizing different 

aspects of individual subject's developmental trajectories may well be more sensitive targets 

of gene discovery than are single measures, just as reducing measurement error through 

aggregating multiple measurements increases power. If understanding gene effects on 

developmental trajectories themselves is illuminating, they may also be more appropriate 
targets.

10.4.2 Enhancing our understanding of brain mechanisms—We are arguing here 

that, in light of what we have learned from a decade of GWAS, endophenotype research 

needs to move beyond merely establishing that a candidate endophenotype marks genetic 

risk, with the underlying assumption that this will lead to genetic discoveries. Although 

genetic discovery is possible, the available evidence strongly suggests that it is unlikely 

without larger sample sizes or a technological revolution in our ability to conduct 

electrophysiological research much more efficiently. Nevertheless, endophenotype research 

can enhance our understanding of brain mechanisms accounting for individual differences in 

endophenotype level or configuration (criterion #8). Parametric manipulations of 

experimental parameters (e.g., Curtis, Calkins, Grove, Feil, & Iacono, 2001; Salisbury et al., 

1994) may be able to provide experimental evidence about parameters affecting an 

endophenotype. For instance, a modified version of the Eriksen flanker task has been used in 

which target-distractor incompatibility was parametrically varied in order to probe the 

sensitivity of the N2 ERP component to the degree of response conflict subjects experience 

when presented with a particular variant of the stimulus array (Forster, Carter, Cohen, & 

Cho, 2011). The nogo-N2 is considered a candidate endophenotype for alcoholism 

(Kamarajan & Porjesz, 2015), and similar types of experimental manipulations are likely to 

inform us about the nature of individual differences in this putative endophenotype. 

Lenartowicz and colleagues (Lenartowicz et al., 2014) used a visual-spatial version of the 

Sternberg working memory test in a sample of children with ADHD and typically 

developing controls to parametrically vary task load and thereby try to isolate the source of 

the difficulties experienced by children with ADHD. Studies such as these can help to isolate 

the psychological and neural processes reflected in putative endophenotypes for ADHD such 

as the P2 ERP component and thus the precise nature of genetic risk reflected in the 

endophenotype. Testing for associations with genetic variants is not a necessary part of this 

type of research. However, studies that provide a better characterization of the mechanisms 

underlying a putative endophenotype and the latent genetic risk it reflects will also 

ultimately be more informative about the neurobehavioral processes associated with a 

variant that can be verified for the endophenotype-associated disorder or proxy phenotype.

Of course, we ultimately want to trace the path from endophenotype to specific genes. 

Research that provides a more detailed understanding of the endophenotype nevertheless is 

also potentially informative about the nature of unobserved, latent genetic risk reflected in 

the endophenotype. For instance, administering ketamine, an antagonist of the NMDA 

receptor for glutamate, to healthy subjects results in mean reduced MMN amplitude and 

performance on the CPT-AX task that resembles that of patients with schizophrenia 
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(Umbricht et al., 2000). This suggests that compromised NMDAR function may be a 

characteristic of the disorder. Reduction of the amplitude of the P300 ERP potential is a 

robust endophenotype for externalizing disorders (W. G. Iacono & Malone, 2011; W. G. 

Iacono et al., 2008). However, “the” P300 is not a unitary phenomenon, as we have 

discussed in an earlier section. Although we argued that decomposing it into supposedly 

simpler elements is not likely to lead to significant genetic discovery, this type of effort can 

nevertheless lead to an increasingly elaborated understanding of the genetic risk for 

externalizing. For instance, Ford, Mathalon, and colleagues found that the consistency of 

inter-trial phase locking (ITPC) of gamma activity during the peak of the P300 response was 

correlated with P300 amplitude in control subjects but not patients with schizophrenia, 

suggesting a breakdown of the normal (partial) dependence of P300 amplitude on gamma 

synchrony in schizophrenia (J. M. Ford, Roach, Hoffman, & Mathalon, 2008). We have 

similarly found that ITPC of theta activity is reduced in externalizing disorders, and in fact 

partially mediates P300 amplitude reduction (Burwell, Malone, Bernat, & Iacono, 2014). To 

be clear, we are not advocating ITPC as yet another candidate endophenotype; we are 

suggesting that endophenotypes can lead to further understanding of the neurobehavioral 

mechanisms contributing to a clinical outcome as well as new targets for genetic association 

analysis.

10.4.3 Informing animal models—Criterion #9 in Table 1 notes that an endophenotype 

can inform an animal model, which can help us to understand the neurobehavioral 

mechanisms captured by an endophenotype as well as associated gene function. For 

instance, a number of animal models of PPI deficits have been developed, with the hope of 

understanding the etiology and pathophysiology of schizophrenia. Reduced PPI in rats is 

associated with increased perseverative responding during task switching (Freudenberg, 

Dieckmann, Winter, Koch, & Schwabe, 2007), which is often characteristic of schizophrenic 

patients during tasks such as the Wisconsin Card Sorting Test, which also requires 

behavioral flexibility and switching. Reduced levels of methylation of NRG1 have been 

reported in rats bred for reduced levels of PPI, and methylation levels are reduced in brain 

regions associated with both PPI and schizophrenia, such as medial PFC, hippocampus, 

nucleus accumbens (Rhein et al., 2013). This type of finding may lead to understanding 

epigenetic changes associated with schizophrenia as well as potential therapeutic targets. 

Oscillatory activity in the EEG of mice selectively bred to respond positively to alcohol 

administration resembles event-related time-frequency findings in humans in some respects 

(although not others), lending credence to mouse models of alcoholism (Criado & Ehlers, 

2009) and suggesting routes to understanding time-frequency endophenotypes in humans. In 

addition, delayed latency of the N1 EEG or MEG response is a putative endophenotype for 

autism spectrum disorders (ASD). A recent investigation found that the N1 response in the 

right hemisphere was delayed in children with ASD relative to typically developing children, 

as expected. Investigators also observed a latency delay of virtually the same magnitude in 

mice treated prenatally with valproic acid (VPA), an insult-based mouse model of autism. 

This latency delay was inversely correlated with inter-trial phase locking of gamma activity 

in both species. Moreover, expression levels of messenger RNA for the autism risk gene 

neuroligin-3 (NLGN3), which are reduced in mice exposed to VPA, were associated with 

gamma phase locking in mice as well. Thus, this study suggests the possibility that an 
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autism endophenotype may be related to an autism risk gene through a specific mechanism 

(gamma phase locking), which would help to understand the gene function reflected in the 

mediating mechanism as well as the specific nature of the genetic risk conveyed by the 

candidate gene and candidate endophenotype.

11.0 Summary and conclusions

To conclude, we offer the following list as our take home message to encourage best 

practices and avoiding past pitfalls that have plagued molecular genetic investigations of 

complex traits. We believe that future endophenotype research will be most profitable if 

investigators consider these points in the design and conduct of their research.

1. Most endophenotypes only meet threshold criteria. Most endophenotype 

research is confined to establishing whether an electrophysiological 

variable meets the threshold criteria in Section I of Table 1. Hence, other 

than increasing the list of variables with endophenotype potential (see 

Table 5), endophenotype research has underperformed in its promise to 

deliver insights into the etiology of psychiatric disorders.

2. The very definition of an endophenotype should evolve. The Gottesman & 

Gould (Irving I Gottesman & Gould, 2003) endophenotype criteria have 

proved monumentally valuable for stimulating research on 

endophenotypes, but we believe the time is ripe to adopt the criteria in 

Table 1 as an aid to further advance the field. It is time to define an 

endophenotype as a biobehavioral trait that not only identifies genetic 

liability for a disorder, but one that has demonstrated robust, verifiable 

association with specific genetic variants that in turn are associated with a 

clinically relevant behavioral phenotype (as noted in Section II of Table 
1). At present, only one electrophysiological variable, resting heart rate, 

has reached either of these thresholds (see Tables 2, 3, & 7).

3. Endophenotypes are the same as other complex traits in their genetic 

architecture. There is no compelling evidence that endophenotypes are 

associated with genetic variants of large effect or that they are 

substantially different than other complex phenotypes (see Figure 1). 

They appear to be polygenic traits influenced by many thousands of 

genetic variants, all contributing small effects. They do not appear to be 

any better than clinical phenotypes in their potential to assist gene finding

4. Sample size, sample size, sample size. How the electrophysiological 

variable is operationalized and measured is certainly important, and 

improving measurement improves reliability and thus statistical power, but 

the failure of endophenotypes to uncover genes is not due to poor 

measurement or particular sampling approaches, and improving 

measurement or sampling from extremes of the population will not 

overcome the need for very large samples (see Table 3).
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5. Candidate gene studies involving endophenotypes have not uncovered 

verified genetic variants (see Table 6). They should be discouraged in 

favor of using large sample GWAS studies and GWAS meta-analysis for 

genetic discovery.

6. Data sharing. Using endophenotypes to discover novel genetic variants 

will require sample sizes that number in the thousands or more likely in 

the tens of thousands, sample sizes that will not be attainable unless 

investigators share data and establish consortia to pool genotyped samples 

and harmonize measures.

7. Use endophenotypes to understand mechanisms, not to discover genes. It 

is now clear that large sample studies needed to identify verified genetic 

variants associated with psychopathology can be obtained by pooling 

those with a harmonized measure of psychopathology. In this context, a 

key value of endophenotypes will not be to identify novel genetic 

associations, but rather to identify and characterize neural mechanisms 

associated with verified genetic variants associated with psychopathology 

and relevant psychological traits (see Figure 3).

8. Use genetic signals to develop new (and better) endophenotypes. Once 

verified genetic variants associated with psychopathology are identified, 

research is encouraged to capitalize on what is known about the likely 

functional significance of the variants to develop new endophenotypes. An 

implication of this is that, if in 10 years P300 amplitude reduction is still 

the most widely studied electrophysiological endophenotype for 

disinhibitory psychopathology and schizophrenia (see Table 5), we will 

have to conclude that the endophenotype molecular genetic research 

program has failed.

9. Endophenotypes are of value even if they do not help find genes. They are 

underappreciated for their likely predictive utility, ability to enhance 

understanding of brain mechanisms, and potential to inform animal 

models (see Section III of Table 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported through National Institute of health Grants DA05147, DA036216, AA091367, DA024417, 
AA023974, DA037904, and DA040177

References

1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015; 
526:68–+. doi: 10.1038/nature15393. [PubMed: 26432245] 

Iacono et al. Page 41

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Agam Y, Vangel M, Roffman JL, Gallagher PJ, Chaponis J, Haddad S, Manoach DS. Dissociable 
genetic contributions to error processing: a multimodal neuroimaging study. PLoS One. 2014; 
9:e101784. doi: 10.1371/journal.pone.0101784. [PubMed: 25010186] 

Anokhin AP. Genetic psychophysiology: advances, problems, and future directions. Int J 
Psychophysiol. 2014; 93:173–197. doi: 10.1016/j.ijpsycho.2014.04.003. [PubMed: 24739435] 

Anokhin AP, Golosheykin S, Heath AC. Genetic and environmental influences on emotion-modulated 
startle reflex: a twin study. Psychophysiology. 2007; 44:106–112. doi: 10.1111/j.
1469-8986.2006.00486.x. [PubMed: 17241146] 

Anokhin AP, Heath AC, Myers E, Ralano A, Wood S. Genetic influences on prepulse inhibition of 
startle reflex in humans. Neurosci Lett. 2003; 353:45–48. [PubMed: 14642434] 

Baker LA, Tuvblad C, Reynolds C, Zheng M, Lozano DI, Raine A. Resting heart rate and the 
development of antisocial behavior from age 9 to 14: genetic and environmental influences. Dev 
Psychopathol. 2009; 21:939–960. doi: 10.1017/S0954579409000509. [PubMed: 19583891] 

Beauchaine TP. The Role of Biomarkers and Endophenotypes in Prevention and Treatment of 
Psychopathological Disorders. Biomark Med. 2009; 3:1–3. doi: 10.2217/17520363.3.1.1. [PubMed: 
19727417] 

Begleiter H, Porjesz B, Bihari B, Kissin B. Event-related brain potentials in boys at risk for 
alcoholism. Science. 1984; 225:1493–1496. [PubMed: 6474187] 

Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiologic 
Reviews. 1996; 18:188–204. [PubMed: 9021312] 

Bress JN, Meyer A, Proudfit GH. The stability of the feedback negativity and its relationship with 
depression during childhood and adolescence. Dev Psychopathol. 2015; 27:1285–1294. doi: 
10.1017/S0954579414001400. [PubMed: 26439074] 

Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, Neale BM. An atlas of genetic 
correlations across human diseases and traits. Nat Genet. 2015; 47:1236–1241. doi: 10.1038/ng.
3406. [PubMed: 26414676] 

Burton BK, Hjorthoj C, Jepsen JR, Thorup A, Nordentoft M, Plessen KJ. Research Review: Do motor 
deficits during development represent an endophenotype for schizophrenia? A meta-analysis. J 
Child Psychol Psychiatry. 2015 doi: 10.1111/jcpp.12479. 

Burwell SJ, Malone SM, Bernat EM, Iacono WG. Does electroencephalogram phase variability 
account for reduced P3 brain potential in externalizing disorders? Clin Neurophysiol. 2014; 
125:2007–2015. doi: 10.1016/j.clinph.2014.02.020. [PubMed: 24656843] 

Cabranes JA, Ancin I, Santos JL, Sanchez-Morla E, Garcia-Jimenez MA, Lopez-Ibor JJ, Barabash A. 
No effect of polymorphisms in the non-duplicated region of the CHRNA7 gene on sensory gating 
P50 ratios in patients with schizophrenia and bipolar disorder. Psychiatry Res. 2013; 205:276–278. 
doi: 10.1016/j.psychres.2012.08.015. [PubMed: 22981153] 

Campanella S, Pogarell O, Boutros N. Event-related potentials in substance use disorders: a narrative 
review based on articles from 1984 to 2012. Clin EEG Neurosci. 2014; 45:67–76. doi: 
10.1177/1550059413495533. [PubMed: 24104954] 

Carlson SR, Iacono WG. Heritability of P300 amplitude development from adolescence to adulthood. 
Psychophysiology. 2006; 43:470–480. doi: 10.1111/j.1469-8986.2006.00450.x. [PubMed: 
16965609] 

Carlson SR, Iacono WG. Deviant P300 amplitude development in males is associated with paternal 
externalizing psychopathology. J Abnorm Psychol. 2008; 117:910–923. doi: 2008-16252-016 [pii] 
10.1037/a0013443. [PubMed: 19025236] 

Carlson SR, Iacono WG, McGue M. P300 amplitude in nonalcoholic adolescent twin pairs who 
become discordant for alcoholism as adults. Psychophysiology. 2004; 41:841–844. doi: 10.1111/j.
0048-5772.2004.00238.x. [PubMed: 15563337] 

Chabris CF, Lee JJ, Cesarini D, Benjamin DJ, Laibson DI. The Fourth Law of Behavior Genetics. Curr 
Dir Psychol Sci. 2015; 24:304–312. doi: 10.1177/0963721415580430. [PubMed: 26556960] 

Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Kim HL. A large-scale genome-wide association 
study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat 
Genet. 2009; 41:527–534. doi: 10.1038/ng.357. [PubMed: 19396169] 

Iacono et al. Page 42

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Kellis M. FTO Obesity 
Variant Circuitry and Adipocyte Browning in Humans. N Engl J Med. 2015; 373:895–907. doi: 
10.1056/NEJMoa1502214. [PubMed: 26287746] 

Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Tamminga CA. 
Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers. Am J Psychiatry. 
2015:appiajp201514091200. doi: 10.1176/appi.ajp.2015.14091200. 

Cohen, J. Statistical power analysis for the behavioral sciences. 2nd ed.. Lawrence Erlbaum; Hillsdale, 
New Jersey: 1988. 

Criado JR, Ehlers CL. Event-related oscillations as risk markers in genetic mouse models of high 
alcohol preference. Neuroscience. 2009; 163:506–523. doi: 10.1016/j.neuroscience.2009.06.039. 
[PubMed: 19540906] 

Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychological Bulletin. 1955a; 
52:281–302. [PubMed: 13245896] 

Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychological Bulletin. 1955b; 
52:281–302. [PubMed: 13245896] 

Curtis CE, Calkins ME, Grove WM, Feil KJ, Iacono WG. Saccadic disinhibition in patients with acute 
and remitted schizophrenia and their first-degree biological relatives. American Journal of 
Psychiatry. 2001; 158:100–106. [PubMed: 11136640] 

Cuthbert BN. Translating Intermediate Phenotypes to Psychopathology: The NIMH Research Domain 
Criteria. Psychophysiology. 2014

Del Re EC, Bergen SE, Mesholam-Gately RI, Niznikiewicz MA, Goldstein JM, Woo TU, Petryshen 
TL. Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A 
association with amplitude of P300b elicited by novel sounds. Transl Psychiatry. 2014; 4:e346. 
doi: 10.1038/tp.2013.117. [PubMed: 24424392] 

Deo R, Nalls MA, Avery CL, Smith JG, Evans DS, Keller MF, Whitsel EA. Common genetic variation 
near the connexin-43 gene is associated with resting heart rate in African Americans: a genome-
wide association study of 13,372 participants. Heart Rhythm. 2013; 10:401–408. doi: 10.1016/
j.hrthm.2012.11.014. [PubMed: 23183192] 

Ehlers CL, Gizer IR. Evidence for a genetic component for substance dependence in Native 
Americans. Am J Psychiatry. 2013; 170:154–164. doi: 10.1176/appi.ajp.2012.12010113. 
[PubMed: 23377636] 

Ehlers CL, Phillips E. Association of EEG alpha variants and alpha power with alcohol dependence in 
Mexican American young adults. Alcohol. 2007; 41:13–20. doi: 10.1016/j.alcohol.2007.02.001. 
[PubMed: 17452295] 

Ehlers CL, Wills DN, Phillips E, Havstad J. Low voltage alpha EEG phenotype is associated with 
reduced amplitudes of alpha event-related oscillations, increased cortical phase synchrony, and a 
low level of response to alcohol. Int J Psychophysiol. 2015; 98:65–75. doi: 10.1016/j.ijpsycho.
2015.07.002. [PubMed: 26151497] 

Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI, Muller M, Morrison AC, O'Donnell 
CJ. Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum 
Mol Genet. 2010; 19:3885–3894. doi: 10.1093/hmg/ddq303. [PubMed: 20639392] 

Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Rivadeneira F. Genome-
wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk 
of fracture. Nat Genet. 2012; 44:491–501. doi: 10.1038/ng.2249. [PubMed: 22504420] 

Euser AS, Arends LR, Evans BE, Greaves-Lord K, Huizink AC, Franken IH. The P300 event-related 
brain potential as a neurobiological endophenotype for substance use disorders: a meta-analytic 
investigation. Neurosci Biobehav Rev. 2012; 36:572–603. doi: 10.1016/j.neubiorev.2011.09.002. 
[PubMed: 21964481] 

Faraone SV, Bonvicini C, Scassellati C. Biomarkers in the diagnosis of ADHD--promising directions. 
Curr Psychiatry Rep. 2014; 16:497. doi: 10.1007/s11920-014-0497-1. [PubMed: 25298126] 

Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O'Donovan MC, Sullivan PF. Evaluating 
historical candidate genes for schizophrenia. Molecular Psychiatry. 2015; 20:555–562. doi: 
10.1038/mp.2015.16. [PubMed: 25754081] 

Iacono et al. Page 43

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ferrarelli F. Endophenotypes and biological markers of schizophrenia: from biological signs of illness 
to novel treatment targets. Curr Pharm Des. 2013; 19:6462–6479. [PubMed: 23432712] 

Ford JM. Studying auditory verbal hallucinations using the RDoC framework. Psychophysiology. 2015 
In Press. 

Ford JM, Morris SE, Hoffman RE, Sommer I, Waters F, McCarthy-Jones S, Cuthbert BN. Studying 
hallucinations within the NIMH RDoC framework. Schizophr Bull. 2014; 40(Suppl 4):S295–304. 
doi: 10.1093/schbul/sbu011. [PubMed: 24847862] 

Ford JM, Roach BJ, Hoffman RS, Mathalon DH. The dependence of P300 amplitude on gamma 
synchrony breaks down in schizophrenia. Brain Res. 2008; 1235:133–142. doi: 10.1016/j.brainres.
2008.06.048. [PubMed: 18621027] 

Forster SE, Carter CS, Cohen JD, Cho RY. Parametric manipulation of the conflict signal and control-
state adaptation. J Cogn Neurosci. 2011; 23:923–935. doi: 10.1162/jocn.2010.21458. [PubMed: 
20146615] 

Freudenberg F, Dieckmann M, Winter S, Koch M, Schwabe K. Selective breeding for deficient 
sensorimotor gating is accompanied by increased perseveration in rats. Neuroscience. 2007; 
148:612–622. doi: 10.1016/j.neuroscience.2007.06.034. [PubMed: 17693035] 

Furberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, Ardissino D, Sullivan PF. Genome-wide 
meta-analyses identify multiple loci associated with smoking behavior. Nature Genetics. 2010; 
42:441–U134. doi: 10.1038/ng.571. [PubMed: 20418890] 

Ge T, Nichols TE, Lee PH, Holmes AJ, Roffman JL, Buckner RL, Smoller JW. Massively expedited 
genome-wide heritability analysis (MEGHA). Proc Natl Acad Sci U S A. 2015; 112:2479–2484. 
doi: 10.1073/pnas.1415603112. [PubMed: 25675487] 

Gilmore CS, Malone SM, Iacono WG. Brain electrophysiological endophenotypes for externalizing 
psychopathology: a multivariate approach. Behav Genet. 2010; 40:186–200. doi: 10.1007/
s10519-010-9343-3. [PubMed: 20155392] 

Glahn DC, Knowles EE, McKay DR, Sprooten E, Raventos H, Blangero J, Almasy L. Arguments for 
the sake of endophenotypes: examining common misconceptions about the use of endophenotypes 
in psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet. 2014; 165B:122–130. doi: 
10.1002/ajmg.b.32221. [PubMed: 24464604] 

Goldstein BL, Klein DN. A review of selected candidate endophenotypes for depression. Clin Psychol 
Rev. 2014; 34:417–427. doi: 10.1016/j.cpr.2014.06.003. [PubMed: 25006008] 

Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic 
intentions. American Journal of Psychiatry. 2003; 160:636–645. [PubMed: 12668349] 

Gottesman, II.; Shields, J. Schizophrenia and genetics. Academic Press; New York, NY: 1972. 

Greenwood TA, Swerdlow NR, Gur RE, Cadenhead KS, Calkins ME, Dobie DJ, Lazzeroni LC. 
Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the consortium on 
the genetics of schizophrenia. American Journal of Psychiatry. 2013; 170:521–532. [PubMed: 
23511790] 

Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic 
DNA marker genetically linked to Huntington's disease. Nature. 1983; 306:234–238. [PubMed: 
6316146] 

Hall MH, Chen CY, Cohen BM, Spencer KM, Levy DL, Ongur D, Smoller JW. Genomewide 
association analyses of electrophysiological endophenotypes for schizophrenia and psychotic 
bipolar disorders: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2015; 168B:
151–161. doi: 10.1002/ajmg.b.32298. [PubMed: 25740047] 

Hall MH, Levy DL, Salisbury DF, Haddad S, Gallagher P, Lohan M, Smoller JW. Neurophysiologic 
effect of GWAS derived schizophrenia and bipolar risk variants. Am J Med Genet B 
Neuropsychiatr Genet. 2014; 165B:9–18. doi: 10.1002/ajmg.b.32212. [PubMed: 24339136] 

Hasenkamp W, Epstein MP, Green A, Wilcox L, Boshoven W, Lewison B, Duncan E. Heritability of 
acoustic startle magnitude, prepulse inhibition, and startle latency in schizophrenia and control 
families. Psychiatry Res. 2010; 178:236–243. doi: 10.1016/j.psychres.2009.11.012. [PubMed: 
20483176] 

Iacono et al. Page 44

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hill SY, Shen S, Locke J, Steinhauer SR, Konicky C, Lowers L, Connolly J. Developmental delay in 
P300 production in children at high risk for developing alcohol-related disorders. Biological 
Psychiatry. 1999; 46:970–981. [PubMed: 10509180] 

Hinkley LB, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM, Nagarajan SS. Clinical symptoms 
and alpha band resting-state functional connectivity imaging in patients with schizophrenia: 
implications for novel approaches to treatment. Biol Psychiatry. 2011; 70:1134–1142. doi: 
10.1016/j.biopsych.2011.06.029. [PubMed: 21861988] 

Hodgkinson CA, Enoch MA, Srivastava V, Cummins-Oman JS, Ferrier C, Iarikova P, Goldman D. 
Genome-wide association identifies candidate genes that influence the human 
electroencephalogram. Proc Natl Acad Sci U S A. 2010; 107:8695–8700. doi: 10.1073/pnas.
0908134107. [PubMed: 20421487] 

Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, Stefansson K. 
Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet. 2010; 
42:117–122. doi: 10.1038/ng.511. [PubMed: 20062063] 

Holroyd CB, Coles MG. Dorsal anterior cingulate cortex integrates reinforcement history to guide 
voluntary behavior. Cortex. 2008; 44:548–559. doi: 10.1016/j.cortex.2007.08.013. [PubMed: 
18387587] 

Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype 
imputation in genome-wide association studies through pre-phasing. Nature Genetics. 2012; 
44:955–+. doi: Doi 10.1038/Ng.2354. [PubMed: 22820512] 

Iacono WG. Psychophysiologic markers of psychopathology: A review. Canadian Psychology/
Psychologie canadienne. 1985; 26:96–112.

Iacono WG. Identifying psychophysiological risk for psychopathology: examples from substance 
abuse and schizophrenia research. Psychophysiology. 1998; 35:621–637. [PubMed: 9844425] 

Iacono WG. Genome-wide scans of genetic variants for psychophysiological endophenotypes: 
introduction to this special issue of Psychophysiology. Psychophysiology. 2014a; 51:1201–1202. 
doi: 10.1111/psyp.12340. [PubMed: 25387700] 

Iacono WG. Neurobehavioral aspects of multidimensional psychopathology. Am J Psychiatry. 2014b; 
171:1236–1239. doi: 10.1176/appi.ajp.2014.14091132. [PubMed: 25756762] 

Iacono WG. Achieving Success with the Research Domain Criteria (RDoC): Going beyond the Matrix. 
Psychophysiology. 2016 in press. 

Iacono WG, Carlson SR, Malone SM. Identifying a multivariate endophenotype for substance use 
disorders using psychophysiological measures. Int J Psychophysiol. 2000; 38:81–96. [PubMed: 
11027796] 

Iacono WG, Carlson SR, Malone SM, McGue M. P3 event-related potential amplitude and the risk for 
disinhibitory disorders in adolescent boys. Arch Gen Psychiatry. 2002; 59:750–757. [PubMed: 
12150652] 

Iacono WG, Lykken DT. Two-year retest stability of eye tracking performance and a comparison of 
electro-oculographic and infrared recording techniques: evidence of EEG in the electro-oculogram. 
Psychophysiology. 1981; 18:49–55. [PubMed: 7465728] 

Iacono WG, Malone SM. Developmental Endophenotypes: Indexing Genetic Risk for Substance 
Abuse with the P300 Brain Event-Related Potential. Child Development Perspectives. 2011; 
5:239–247. doi: 10.1111/j.1750-8606.2011.00205.x. [PubMed: 22247735] 

Iacono WG, Malone SM, McGue M. Behavioral disinhibition and the development of early-onset 
addiction: common and specific influences. Annu Rev Clin Psychol. 2008; 4:325–348. doi: 
10.1146/annurev.clinpsy.4.022007.141157. [PubMed: 18370620] 

Iacono WG, Malone SM, Vaidyanathan U, Vrieze SI. Genome wide scans of genetic variants for 
psychophysiological endophenotypes: A methodological overview. Psychophysiology. 2014a (in 
press). 

Iacono WG, Malone SM, Vaidyanathan U, Vrieze SI. Genome-wide scans of genetic variants for 
psychophysiological endophenotypes: a methodological overview. Psychophysiology. 2014b; 
51:1207–1224. doi: 10.1111/psyp.12343. [PubMed: 25387703] 

Iacono WG, McGue M. Minnesota Twin Family Study. Twin Research. 2002; 5:482–487. [PubMed: 
12537881] 

Iacono et al. Page 45

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Iacono WG, McGue M, Krueger RF. Minnesota Center for Twin and Family Research. Twin Research 
and Human Genetics. 2006; 9:978–984. doi: 10.1375/183242706779462642. [PubMed: 17254440] 

Iacono WG, Peloquin LJ, Lumry AE, Valentine RH, Tuason VB. Eye tracking in patients with unipolar 
and bipolar affective disorders in remission. J Abnorm Psychol. 1982; 91:35–44. [PubMed: 
7056941] 

Iacono WG, Tuason VB, Johnson RA. Dissociation of smooth-pursuit and saccadic eye tracking in 
remitted schizophrenics. An ocular reaction time task that schizophrenic perform well. Arch Gen 
Psychiatry. 1981; 38:991–996. [PubMed: 7283671] 

Ioannidis JP. Why most discovered true associations are inflated. Epidemiology. 2008; 19:640–648. 
doi: 10.1097/EDE.0b013e31818131e7. [PubMed: 18633328] 

James LM, Engdahl BE, Leuthold AC, Lewis SM, Van Kampen E, Georgopoulos AP. Neural network 
modulation by trauma as a marker of resilience: differences between veterans with posttraumatic 
stress disorder and resilient controls. JAMA Psychiatry. 2013; 70:410–418. doi: 10.1001/
jamapsychiatry.2013.878. [PubMed: 23426853] 

Kamarajan C, Porjesz B. Advances in electrophysiological research. Alcohol Res. 2015; 37:53–87. 
[PubMed: 26259089] 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Eskin E. Variance component 
model to account for sample structure in genome-wide association studies. Nat Genet. 2010; 
42:348–354. doi: 10.1038/ng.548. [PubMed: 20208533] 

Kang SJ, Rangaswamy M, Manz N, Wang JC, Wetherill L, Hinrichs T, Dick D. Family-based genome-
wide association study of frontal theta oscillations identifies potassium channel gene KCNJ6. 
Genes, Brain and Behavior. 2012; 11:712–719.

Karakas S, Erzengin OU, Basar E. The genesis of human event-related responses explained through 
the theory of oscillatory neural assemblies. Neurosci Lett. 2000; 285:45–48. doi: 
S0304-3940(00)01022-3 [pii]. [PubMed: 10788704] 

Kattoulas E, Stefanis NC, Avramopoulos D, Stefanis CN, Evdokimidis I, Smyrnis N. Schizophrenia-
related RGS4 gene variations specifically disrupt prefrontal control of saccadic eye movements. 
Psychological Medicine. 2012; 42:757–767. doi: S003329171100167X [pii] 10.1017/
S003329171100167X. [PubMed: 21910931] 

Kichaev G, Pasaniuc B. Leveraging Functional-Annotation Data in Trans-ethnic Fine-Mapping 
Studies. Am J Hum Genet. 2015; 97:260–271. doi: 10.1016/j.ajhg.2015.06.007. [PubMed: 
26189819] 

Kolev V, Demiralp T, Yordanova J, Ademoglu A, Isoglu-Alkaç Ü. Time-frequency analysis reveals 
multiple functional components during oddball P300. Neuroreport. 1997; 8:2061–2065. [PubMed: 
9223102] 

Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Gieger C. Genome-wide 
association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 
2013; 45:145–154. doi: 10.1038/ng.2500. [PubMed: 23263486] 

Kramer UM, Cunillera T, Camara E, Marco-Pallares J, Cucurell D, Nager W, Munte TF. The impact of 
catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers 
of performance monitoring. J Neurosci. 2007; 27:14190–14198. doi: 10.1523/JNEUROSCI.
4229-07.2007. [PubMed: 18094258] 

Latvala A, Kuja-Halkola R, Almqvist C, Larsson H, Lichtenstein P. A Longitudinal Study of Resting 
Heart Rate and Violent Criminality in More Than 700000 Men. JAMA Psychiatry. 2015; 72:971–
978. doi: 10.1001/jamapsychiatry.2015.1165. [PubMed: 26351735] 

Lee JJ, Vattikuti S, Chow CC. Uncovering the Genetic Architectures of Quantitative Traits. 
Computational and Structural Biotechnology Journal. 2016; 14:28–34. [PubMed: 27076877] 

Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex 
diseases using single-nucleotide polymorphism-derived genomic relationships and restricted 
maximum likelihood. Bioinformatics. 2012; 28:2540–2542. doi: 10.1093/bioinformatics/bts474. 
[PubMed: 22843982] 

Lenartowicz A, Delorme A, Walshaw PD, Cho AL, Bilder RM, McGough JJ, Loo SK. 
Electroencephalography correlates of spatial working memory deficits in attention-deficit/

Iacono et al. Page 46

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hyperactivity disorder: vigilance, encoding, and maintenance. J Neurosci. 2014; 34:1171–1182. 
doi: 10.1523/JNEUROSCI.1765-13.2014. [PubMed: 24453310] 

Lenzenweger MF. Thinking clearly about the endophenotype-intermediate phenotypebiomarker 
distinctions in developmental psychopathology research. Dev Psychopathol. 2013; 25:1347–1357. 
doi: 10.1017/S0954579413000655. [PubMed: 24342844] 

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: Using Sequence and Genotype Data to 
Estimate Haplotypes and Unobserved Genotypes. Genetic Epidemiology. 2010; 34:816–834. doi: 
Doi 10.1002/Gepi.20533. [PubMed: 21058334] 

Liu DJ, Leal SM. A unified method for detecting secondary trait associations with rare variants: 
application to sequence data. PLoS Genet. 2012; 8:e1003075. doi: 10.1371/journal.pgen.1003075. 
[PubMed: 23166519] 

Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Speliotes EK. Genetic studies of body 
mass index yield new insights for obesity biology. Nature. 2015; 518:197–206. doi: 10.1038/
nature14177. [PubMed: 25673413] 

Loo SK, Lenartowicz A, Makeig S. Research Review: use of EEG biomarkers in child psychiatry 
research - current state and future directions. J Child Psychol Psychiatry. 2015 doi: 10.1111/jcpp.
12435. 

Loos RJF, Yeo GSH. The bigger picture of FTO-the first GWAS-identified obesity gene. Nature 
Reviews Endocrinology. 2014; 10:51–61. doi: 10.1038/nrendo.2013.227. 

Malone SM, McGue M, Iacono WG. What can time-frequency and phase coherence measures tell us 
about the genetic basis of P3 amplitude? International Journal of Psychophysiology. 2016

Malone SM, Vaidyanathan U, Basu S, Miller MB, McGue M, Iacono WG. Heritability and molecular-
genetic basis of the P3 event-related brain potential: a genome-wide association study. 
Psychophysiology. 2014; 51:1246–1258. doi: 10.1111/psyp.12345. [PubMed: 25387705] 

Manoach DS, Agam Y. Neural markers of errors as endophenotypes in neuropsychiatric disorders. 
Front Hum Neurosci. 2013; 7:350. doi: 10.3389/fnhum.2013.00350. [PubMed: 23882201] 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Visscher PM. Finding the 
missing heritability of complex diseases. Nature. 2009; 461:747–753. doi: 10.1038/nature08494. 
[PubMed: 19812666] 

McClelland GH. Increasing statistical power without increasing sample size. American Psychologist. 
2000; 55:963–964. doi: Doi 10.1037/0003-066x.55.8.963. 

Meyer A, Hajcak G, Torpey-Newman DC, Kujawa A, Klein DN. Enhanced error-related brain activity 
in children predicts the onset of anxiety disorders between the ages of 6 and 9. J Abnorm 
Psychol. 2015; 124:266–274. doi: 10.1037/abn0000044. [PubMed: 25643204] 

Meyer A, Weinberg A, Klein DN, Hajcak G. The development of the error-related negativity (ERN) 
and its relationship with anxiety: evidence from 8 to 13 year-olds. Dev Cogn Neurosci. 2012; 
2:152–161. doi: 10.1016/j.dcn.2011.09.005. [PubMed: 22308177] 

Miller GA, Rockstroh B. Endophenotypes in psychopathology research: where do we stand? Annual 
Review of Clinical Psychology. 2013; 9:177–213. doi: 10.1146/annurev-clinpsy-050212-185540. 

Mitchell AM, Possel P. Frontal brain activity pattern predicts depression in adolescent boys. Biol 
Psychol. 2012; 89:525–527. doi: 10.1016/j.biopsycho.2011.12.008. [PubMed: 22200655] 

Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, Replication DG. Large-
scale association analysis provides insights into the genetic architecture and pathophysiology of 
type 2 diabetes. Nature Genetics. 2012; 44:981–+. doi: 10.1038/ng.2383. [PubMed: 22885922] 

Moses-Kolko EL, Horner MS, Phillips ML, Hipwell AE, Swain JE. In search of neural 
endophenotypes of postpartum psychopathology and disrupted maternal caregiving. J 
Neuroendocrinol. 2014; 26:665–684. doi: 10.1111/jne.12183. [PubMed: 25059408] 

Nieuwenhuis S, Holroyd CB, Mol N, Coles MG. Reinforcement-related brain potentials from medial 
frontal cortex: origins and functional significance. Neurosci Biobehav Rev. 2004; 28:441–448. 
doi: 10.1016/j.neubiorev.2004.05.003. [PubMed: 15289008] 

Niv S, Ashrafulla S, Tuvblad C, Joshi A, Raine A, Leahy R, Baker LA. Childhood EEG frontal alpha 
power as a predictor of adolescent antisocial behavior: a twin heritability study. Biol Psychol. 
2015; 105:72–76. doi: 10.1016/j.biopsycho.2014.11.010. [PubMed: 25456277] 

Iacono et al. Page 47

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Norden-Krichmar TM, Gizer IR, Phillips E, Wilhelmsen KC, Schork NJ, Ehlers CL. Variants Near 
CCK Receptors are Associated With Electrophysiological Responses to Pre-pulse Startle Stimuli 
in a Mexican American Cohort. Twin Res Hum Genet. 2015; 18:727–737. doi: 10.1017/thg.
2015.77. [PubMed: 26608796] 

Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, Cesarini D. Genetic 
variants associated with subjective well-being, depressive symptoms, and neuroticism identified 
through genome-wide analyses. Nat Genet. 2016; 48:624–633. doi: 10.1038/ng.3552. [PubMed: 
27089181] 

Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, Benjamin DJ. Genome-wide 
association study identifies 74 loci associated with educational attainment. Nature. 2016; 
533:539–542. doi: 10.1038/nature17671. [PubMed: 27225129] 

Orr SP, Metzger LJ, Lasko NB, Macklin ML, Hu FB, Shalev AY, Harvard/Veterans Affairs Post-
traumatic Stress Disorder Twin Study, I. Physiologic responses to sudden, loud tones in 
monozygotic twins discordant for combat exposure: association with posttraumatic stress 
disorder. Arch Gen Psychiatry. 2003; 60:283–288. [PubMed: 12622661] 

Owens EM, Bachman P, Glahn DC, Bearden CE. Electrophysiological Endophenotypes for 
Schizophrenia. Harv Rev Psychiatry. 2016; 24:129–147. doi: 10.1097/HRP.0000000000000110. 
[PubMed: 26954597] 

Patrick CJ, Venables NC, Yancey JR, Hicks BM, Nelson LD, Kramer MD. A construct-network 
approach to bridging diagnostic and physiological domains: application to assessment of 
externalizing psychopathology. J Abnorm Psychol. 2013; 122:902–916. doi: 10.1037/a0032807. 
[PubMed: 24016026] 

Pearlson GD. Etiologic, phenomenologic, and endophenotypic overlap of schizophrenia and bipolar 
disorder. Annu Rev Clin Psychol. 2015; 11:251–281. doi: 10.1146/annurev-
clinpsy-032814-112915. [PubMed: 25581236] 

Petrovsky N, Quednow BB, Ettinger U, Schmechtig A, Mossner R, Collier DA, Kumari V. 
Sensorimotor gating is associated with CHRNA3 polymorphisms in schizophrenia and healthy 
volunteers. Neuropsychopharmacology. 2010; 35:1429–1439. doi: 10.1038/npp.2010.12. 
[PubMed: 20393456] 

Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D. 
Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 
2015; 47:702–709. doi: 10.1038/ng.3285. [PubMed: 25985137] 

Polich J, Ladish C, Burns T. Normal variation of P300 in children: age, memory span, and head size. 
Int J Psychophysiol. 1990; 9:237–248. [PubMed: 2276942] 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nature Genetics. 2006; 
38:904–909. [PubMed: 16862161] 

Price GW, Michie PT, Johnston J, Innes-Brown H, Kent A, Clissa P, Jablensky AV. A multivariate 
electrophysiological endophenotype, from a unitary cohort, shows greater research utility than 
any single feature in the Western Australian family study of schizophrenia. Biol Psychiatry. 2006; 
60:1–10. doi: 10.1016/j.biopsych.2005.09.010. [PubMed: 16368076] 

Proudfit GH. The reward positivity: from basic research on reward to a biomarker for depression. 
Psychophysiology. 2015; 52:449–459. doi: 10.1111/psyp.12370. [PubMed: 25327938] 

Quednow BB, Brinkmeyer J, Mobascher A, Nothnagel M, Musso F, Grunder G, Winterer G. 
Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of 
auditory sensory gating. Proc Natl Acad Sci U S A. 2012; 109:6271–6276. doi: 10.1073/pnas.
1118051109. [PubMed: 22451930] 

Quednow BB, Ettinger U, Mossner R, Rujescu D, Giegling I, Collier DA, Kumari V. The 
schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in 
schizophrenia spectrum and healthy volunteers. J Neurosci. 2011; 31:6684–6691. doi: 10.1523/
jneurosci.0526-11.2011. [PubMed: 21543597] 

Raine A, Venables PH, Williams M. Relationships between central and autonomic measures of arousal 
at age 15 years and criminality at age 24 years. Arch Gen Psychiatry. 1990; 47:1003–1007. 
[PubMed: 2241502] 

Iacono et al. Page 48

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rhein M, Muschler MR, Krauss JK, Bleich S, Frieling H, Schwabe K. Hypomethylation of neuregulin 
in rats selectively bred for reduced sensorimotor gating. Schizophr Res. 2013; 150:262–265. doi: 
10.1016/j.schres.2013.07.012. [PubMed: 23899995] 

Roeske D, Ludwig KU, Neuhoff N, Becker J, Bartling J, Bruder J, Schulte-Korne G. First genome-
wide association scan on neurophysiological endophenotypes points to trans-regulation effects on 
SLC2A3 in dyslexic children. Mol Psychiatry. 2011; 16:97–107. doi: 10.1038/mp.2009.102. 
[PubMed: 19786962] 

Rosen AM, Spellman T, Gordon JA. Electrophysiological endophenotypes in rodent models of 
schizophrenia and psychosis. Biol Psychiatry. 2015; 77:1041–1049. doi: 10.1016/j.biopsych.
2015.03.021. [PubMed: 25910423] 

Roussos P, Giakoumaki SG, Adamaki E, Bitsios P. The influence of schizophrenia-related neuregulin-1 
polymorphisms on sensorimotor gating in healthy males. Biol Psychiatry. 2011; 69:479–486. doi: 
10.1016/j.biopsych.2010.09.009. [PubMed: 21035784] 

Roussos P, Giakoumaki SG, Adamaki E, Georgakopoulos A, Robakis NK, Bitsios P. The association 
of schizophrenia risk D-amino acid oxidase polymorphisms with sensorimotor gating, working 
memory and personality in healthy males. Neuropsychopharmacology. 2011; 36:1677–1688. doi: 
10.1038/npp.2011.49. [PubMed: 21471957] 

Roussos P, Giakoumaki SG, Zouraraki C, Fullard JF, Karagiorga VE, Tsapakis EM, Bitsios P. The 
Relationship of Common Risk Variants and Polygenic Risk for Schizophrenia to Sensorimotor 
Gating. Biol Psychiatry. 2015 doi: 10.1016/j.biopsych.2015.06.019. 

Rubenstein E, Wiggins LD, Lee LC. A Review of the Differences in Developmental, Psychiatric, and 
Medical Endophenotypes Between Males and Females with Autism Spectrum Disorder. J Dev 
Phys Disabil. 2015; 27:119–139. doi: 10.1007/s10882-014-9397-x. [PubMed: 26146472] 

Salisbury DF, O'Donnell BF, McCarley RW, Nestor PG, Faux SF, Smith RS. Parametric manipulations 
of auditory stimuli differentially affect P3 amplitude in schizophrenics and controls. 
Psychophysiology. 1994; 31:29–36. [PubMed: 8146252] 

Salvatore JE, Gottesman II, Dick DM. Endophenotypes for Alcohol Use Disorder: An Update on the 
Field. Curr Addict Rep. 2015; 2:76–90. doi: 10.1007/s40429-015-0046-y. [PubMed: 26236574] 

Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 
schizophrenia-associated genetic loci. Nature. 2014; 511:421–427. doi: 10.1038/nature13595. 
[PubMed: 25056061] 

Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Barroso I. Large-scale association 
analyses identify new loci influencing glycemic traits and provide insight into the underlying 
biological pathways. Nat Genet. 2012; 44:991–1005. doi: 10.1038/ng.2385. [PubMed: 22885924] 

Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, McCarroll SA. Schizophrenia 
risk from complex variation of complement component 4. Nature. 2016; 530:177–183. doi: 
10.1038/nature16549. [PubMed: 26814963] 

Shaikh M, Dutt A, Broome MR, Vozmediano AG, Ranlund S, Diez A, Bramon E. Sensory gating 
deficits in the attenuated psychosis syndrome. Schizophr Res. 2015; 161:277–282. doi: 10.1016/
j.schres.2014.12.021. [PubMed: 25556079] 

Shaikh M, Hall MH, Schulze K, Dutt A, Walshe M, Williams I, Bramon E. Do COMT, BDNF and 
NRG1 polymorphisms influence P50 sensory gating in psychosis? Psychol Med. 2011; 41:263–
276. doi: 10.1017/s003329170999239x. [PubMed: 20102668] 

Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, Gurling H. 
Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature. 1988; 
336:164–167. doi: 10.1038/336164a0. [PubMed: 2903449] 

Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, Barrett JC. Rare loss-of-function 
variants in SETD1A are associated with schizophrenia and developmental disorders. Nat 
Neurosci. 2016 doi: 10.1038/nn.4267. 

Smyrnis N, Kattoulas E, Stefanis NC, Avramopoulos D, Stefanis CN, Evdokimidis I. Schizophrenia-
related neuregulin-1 single-nucleotide polymorphisms lead to deficient smooth eye pursuit in a 
large sample of young men. Schizophr Bull. 2011; 37:822–831. doi: 10.1093/schbul/sbp150. 
[PubMed: 19965935] 

Iacono et al. Page 49

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



So HC, Li M, Sham PC. Uncovering the total heritability explained by all true susceptibility variants in 
a genome-wide association study. Genet Epidemiol. 2011; 35:447–456. doi: 10.1002/gepi.20593. 
[PubMed: 21618601] 

Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide 
SNPs. Am J Hum Genet. 2012; 91:1011–1021. doi: 10.1016/j.ajhg.2012.10.010. [PubMed: 
23217325] 

Stefanis NC, Trikalinos TA, Avramopoulos D, Smyrnis N, Evdokimidis I, Ntzani EE, Stefanis CN. 
Association of RGS4 variants with schizotypy and cognitive endophenotypes at the population 
level. Behav Brain Funct. 2008; 4:46. doi: 10.1186/1744-9081-4-46. [PubMed: 18834502] 

Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Enhancing Neuro Imaging 
Genetics through Meta-Analysis, C. Identification of common variants associated with human 
hippocampal and intracranial volumes. Nat Genet. 2012; 44:552–561. doi: 10.1038/ng.2250. 
[PubMed: 22504417] 

Sullivan PF. The psychiatric GWAS consortium: big science comes to psychiatry. Neuron. 2010; 
68:182–186. doi: 10.1016/j.neuron.2010.10.003. [PubMed: 20955924] 

Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science. 
1965; 150:1187–1188. [PubMed: 5852977] 

Swerdlow NR, Gur RE, Braff DL. Consortium on the Genetics of Schizophrenia (COGS) assessment 
of endophenotypes for schizophrenia: an introduction to this Special Issue of Schizophrenia 
Research. Schizophr Res. 2015; 163:9–16. doi: 10.1016/j.schres.2014.09.047. [PubMed: 
25454799] 

Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Kathiresan S. 
Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466:707–
713. doi: Doi 10.1038/Nature09270. [PubMed: 20686565] 

Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Alzheimer's Disease 
Neuroimaging Initiative, E. C. I. C. S. Y. S. G. The ENIGMA Consortium: large-scale 
collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014; 8:153–182. 
doi: 10.1007/s11682-013-9269-5. [PubMed: 24399358] 

Tierney AL, Gabard-Durnam L, Vogel-Farley V, Tager-Flusberg H, Nelson CA. Developmental 
trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One. 
2012; 7:e39127. doi: 10.1371/journal.pone.0039127. [PubMed: 22745707] 

Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC. Ketamine-induced deficits in 
auditory and visual context-dependent processing in healthy volunteers: implications for models 
of cognitive deficits in schizophrenia. Arch Gen Psychiatry. 2000; 57:1139–1147. [PubMed: 
11115327] 

Vaidyanathan U, Isen JD, Malone SM, Miller MB, McGue M, Iacono WG. Heritability and molecular 
genetic basis of electrodermal activity: a genome-wide association study. Psychophysiology. 
2014; 51:1259–1271. doi: 10.1111/psyp.12346. [PubMed: 25387706] 

Vaidyanathan U, Malone SM, Donnelly JM, Hammer MA, Miller MB, McGue M, Iacono WG. 
Heritability and molecular genetic basis of antisaccade eye tracking error rate: A genome wide 
association study. Psychophysiology. 2014a

Vaidyanathan U, Malone SM, Donnelly JM, Hammer MA, Miller MB, McGue M, Iacono WG. 
Heritability and molecular genetic basis of antisaccade eye tracking error rate: a genome-wide 
association study. Psychophysiology. 2014b; 51:1272–1284. doi: 10.1111/psyp.12347. [PubMed: 
25387707] 

Vaidyanathan U, Malone SM, Miller MB, McGue M, Iacono WG. Heritability and molecular genetic 
basis of acoustic startle eye blink and affectively modulated startle response: a genome-wide 
association study. Psychophysiology. 2014; 51:1285–1299. doi: 10.1111/psyp.12348. [PubMed: 
25387708] 

Vaidyanathan U, Vrieze SI, Iacono WG. The power of theory, research design, and transdisciplinary 
integration in moving psychopathology forward. Psychological Inquiry. 2015; 26:209–230. doi: 
10.1080/1047840X.2015.1015367. [PubMed: 27030789] 

Iacono et al. Page 50

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, Price AL. Modeling Linkage 
Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J Hum Genet. 2015; 97:576–
592. doi: 10.1016/j.ajhg.2015.09.001. [PubMed: 26430803] 

Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 
2012; 90:7–24. doi: 10.1016/j.ajhg.2011.11.029. [PubMed: 22243964] 

Vrieze SI, Malone SM, Pankratz N, Vaidyanathan U, Miller MB, Kang HM, Iacono WG. Genetic 
associations of nonsynonymous exonic variants with psychophysiological endophenotypes. 
Psychophysiology. 2014a

Vrieze SI, Malone SM, Pankratz N, Vaidyanathan U, Miller MB, Kang HM, Iacono WG. Genetic 
associations of nonsynonymous exonic variants with psychophysiological endophenotypes. 
Psychophysiology. 2014b; 51:1300–1308. doi: 10.1111/psyp.12349. [PubMed: 25387709] 

Waddington, CH. Principles of Embryology. George Allen & Unwin; London: 1956. 

Walsh MM, Anderson JR. Learning from experience: event-related potential correlates of reward 
processing, neural adaptation, and behavioral choice. Neurosci Biobehav Rev. 2012; 36:1870–
1884. doi: 10.1016/j.neubiorev.2012.05.008. [PubMed: 22683741] 

Ware JJ, Chen X, Vink J, Loukola A, Minica C, Pool R, Munafo MR. Genome-Wide Meta-Analysis of 
Cotinine Levels in Cigarette Smokers Identifies Locus at 4q13.2. Sci Rep. 2016; 6:20092. doi: 
10.1038/srep20092. [PubMed: 26833182] 

Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Frayling TM. Defining the role of 
common variation in the genomic and biological architecture of adult human height. Nat Genet. 
2014; 46:1173–1186. doi: 10.1038/ng.3097. [PubMed: 25282103] 

Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z, Zhang K. A polymorphism in the microRNA-30e precursor 
associated with major depressive disorder risk and P300 waveform. J Affect Disord. 2010; 
127:332–336. doi: 10.1016/j.jad.2010.05.019. [PubMed: 20579744] 

Yancey JR, Venables NC, Patrick CJ. Psychoneurometric operationalization of threat sensitivity: 
relations with clinical symptom and physiological response criteria. Psychophysiology. 2016 In 
Press. 

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Visscher PM. Common SNPs 
explain a large proportion of the heritability for human height. Nat Genet. 2010; 42:565–569. doi: 
10.1038/ng.608. [PubMed: 20562875] 

Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, Replication DIG, Visscher 
PM. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 
additional variants influencing complex traits. Nat Genet. 2012; 44:369–375. S361–363. doi: 
10.1038/ng.2213. [PubMed: 22426310] 

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. 
Am J Hum Genet. 2011; 88:76–82. doi: 10.1016/j.ajhg.2010.11.011. [PubMed: 21167468] 

Yoon HH, Malone SM, Iacono WG. Longitudinal stability and predictive utility of the visual P3 
response in adults with externalizing psychopathology. Psychophysiology. 2015 doi: 10.1111/
psyp.12548. 

Zlojutro M, Manz N, Rangaswamy M, Xuei X, Flury-Wetherill L, Koller D, Almasy L. Genome-wide 
association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 
influencing risk of alcohol dependence. Am J Med Genet B Neuropsychiatr Genet. 2011; 156B:
44–58. doi: 10.1002/ajmg.b.31136. [PubMed: 21184583] 

Iacono et al. Page 51

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• The potential of endophenotypes for identifying psychopathology-

related genes has been oversold

• Endophenotypes have largely failed to produce verified molecular 

genetic associations

• Endophenotypes are complex and influenced by many genes each with 

very small effect

• Extremely large samples are necessary to discover variants associated 

with endophenotypes

• Endophenotype research should be informed by molecular genetic 

findings

• Endophenotypes are valuable even without producing molecular 

genetic hits
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Figure 1. GWAS-significant Effect Sizes for Phenotypes, Endophenotypes, and Biomarkers
Plotted here are GWAS-significant loci from large-scale GWAS meta-analyses of serum 

urate, cotinine levels (a nicotine metabolite) in smokers, total cholesterol, bone mineral 

density, cigarettes per day, BMI, height, brain anatomy volumes from structural MRI, resting 

heart rate, glycemic traits, neuroticism, depressive symptoms, subjective wellbeing, months 

of educational attainment, and antisaccade eye movements. Phenotypes are ordered by the 

maximum reported effect size except for Antisaccade, which was based on a single study 

and is undoubtedly an overestimate. The effect sizes for each trait illustrate the effect size 

distribution differences between the more “biological” measures such as cholesterol levels, 

brain volumes, and antisaccade eye movements, and genetically distal phenotypes such as 

BMI and height. Except for the three blood-derived phenotypes serum urate, cotinine and 

Iacono et al. Page 53

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



total cholesterol, all variants account for less than 1% of the variance in the corresponding 

trait.
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Figure 2. 
Power calculations for GREML analyses of SNP heritability and genetic correlations. In 

Panel A, power is plotted against sample size for three di_erent levels of SNP heritability 

(the total phenotypic variance accounted for by measured SNPs and SNPs in LD with them): 

h2 of 0.20 (plotted in red), 0.40 (plotted in blue), and 0.60 (plotted in green). The dashed 

horizontal line represents power of 80%. Dropping an imaginary vertical line to the x-axis 

from the point where each curve crosses this line provides an estimate of the sample size 

needed to have adequate power (80% power) to detect a SNP heritability of the 

corresponding magnitude. Panel B plots power against sample size for detecting genetic 

correlations, the proportion of variance shared by two phenotypes due to measured SNPs. 

The SNP heritability is assumed to be the same for both phenotypes, and the same three 

levels are used as in Panel A. Power is estimated for four di_erent phenotypic correlations, r 

= .10 to r = .40. The true genetic correlation is assumed to account for 80% of the 
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phenotypic correlation. All power estimates were conducted using R code provided by Jian 

Yang on the GCTA software discussion board (http://gcta.freeforums.net/board/1/

gctadiscussion-board).
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Figure 3. Prioritizing Candidate Genes/Variants for Follow-up Study
The usual set of candidate variants studied in psychiatric genetics and psychiatric 

endophenotype candidate gene research is represented in the upper left-hand corner. They 

are variants with plausible mechanisms based on behavioral neuroscience but inconsistent 

evidence for association. All candidates with high evidence for association are worthy of 

followup, especially those with highly plausible mechanisms of effect.
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Table 1

Endophenotype Construct Validation

I. Putative Endophenotype Threshold 
Criteria

1. Associated with one or more relevant clinical phenotypes and

2. Is heritable and/or

3. Is present in first degree relatives of those with the clinical phenotype and/or

4. Shares genetic variance with the clinical phenotype

II. Molecular Genetic Endophenotype 
Verification

5. Shows verified association with specific genetic variants

6. These verified variants show robust association with the clinical phenotype

III. Utility 7. Predicts the development of the clinical phenotype

8. Enhances theoretical understanding of the brain mechanisms accounting for endophenotype 
individual differences

9. Informs an animal model

10. Identifies genetic variants that have relatively large effect

Note - Topics 1, 2, and 3 overlap with criteria in Gottesman & Gould (2003)
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Table 2

Summary of biometric, GCTA, GWAS and rare variant results for 17 endophenotypes examined in the 

December 2014 issue of Psychophysiology,

Heritability Largest Effect No. of Significant SNPs

Endophenotype Twin Family SNP r2 MAF GWAS Exome/Sequencing

P300 Measures (N=4,211)

    P300 Amplitude .497 .602 .290 0.51 0.49 0 0

    P3 Genetic Factor 1.000 1.000 .274 0.64 0.48 0 0

Resting EEG (N=4,026)

    Alpha peak frequency .836 .826 .484 0.65 0.21 0 0

    Alpha power O1O2 .772 .781 .450 0.63 0.20 0 0

    Alpha power Cz .799 .838 .220 0.57 0.42 0 0

    Beta power Cz .853 .848 .190 0.53 0.17 0 0

    Theta power Cz .733 .690 .042 0.55 0.46 0 1

    Delta power Cz .558 .488 .145 0.55 0.26 0 0

    Total power Cz .782 .757 .069 0.50 0.11 0 0

Skin Conductance (N=4,424)

    SC Level .656 .627 .232 0.58 0.29 0 0

    SCR Amplitude .468 .427 .252 0.64 0.07 0 0

    SCR Frequency .526 .473 .336 0.51 0.29 0 0

    SCR Factor .578 .520 .349 0.47 0.18 0 0

Startle and startle modulation (N=3,323)

    Startle magnitude .367 .518 .593 0.62 0.41 0 0

    Aversive–neutral .000 .109 .000 0.86 0.06 0 0

    Pleasant–neutral .014 .052 .000 0.75 0.21 0 0

Antisaccade error (N=4,469)

    Percent error .510 .489 .468 0.65 0.24 1 0

Median .578 .602 .252 0.58 0.24 0 0

Note: SC is skin conductance, SCR skin conductance response. O1O2 represents an average over the O1 and O2 electrodes. Aversive–neutral and 
Pleasant–neutral are startle modulation (difference) scores. A SNP was considered significant if, for the identified endophenotype, the p-value was 

less than 5 × 10−8. Heritability estimates from different models are provided. Additive genetic variance was estimated from ACE models including 
only MZ and DZ twins as well as four-member families (mother, father, two twins). SNP heritability is the proportion of variance accounted for by 
all genotyped SNPs and thus in LD with them, as estimated by GCTA. Tabled numbers provide the median estimate across different methods and 

thresholds of genetic relatedness. The largest effects are given as percentages of variance accounted for (r2), and the MAF for each SNP is provided 
in the column, “MAF.” The SNP associated with the largest effect for antisaccade percent error was imputed, which means that an allele dosage 

was used in analyses in place of an allele count and the MAF is not available. We used the called SNP with the largest effect; the r2 for the imputed 
SNP was .67. GWAS gives the number of significant SNPs from genome-wide association scans, and Exome/sequencing provides the number of 
significant SNP associations from a whole-genome scan of nonsynonymous exonic variants or whole-genome sequencing analyses.
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Table 4

Recommendations for Novel Variant Discovery Efforts

Recommendation Rationale

Use genome-wide array Tests entire genome. Can be imputed. Capable of easy meta-analysis.
Straightforward ancestry correction. Helps avoid costly false-positives.

Imputation Increases association power.
Easy replication by other groups.
Improves ability to finely map an association locus. Allows tests of non-SNP genetic variants.

Power Sample sizes for GWAS of endophenotypes will require >10,000 samples to make robust discoveries because the 
effects of common variants on endophenotypes will be small, almost certainly less than r2=0.005 and probably less 
than r2=0.0005. This recommendation holds even for so-called “enriched” studies of phenotypic extremes or highly 
precise measurements. Using GREML to investigate genetic architecture and the covariance between the 
endophenotype and clinical phenotype requires smaller but still quite large samples.

Bonferroni threshold If purpose is to identify variants for follow-up functional testing, a Bonferroni threshold of 5×10−8 will control 
family-wise error rate and reduce costly false positives.

Meta-analysis The simplest way to increase statistical power is to join forces and data with like-minded people with similar data.

Replication If outright meta-analysis of all variants is not possible, then attempt to meta-analyze top hits from your study.

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iacono et al. Page 62

Ta
b

le
 5

D
eg

re
e 

to
 w

hi
ch

 e
le

ct
ro

ph
ys

io
lo

gi
ca

l b
io

m
ar

ke
rs

 s
at

is
fy

 th
re

sh
ol

d 
cr

ite
ri

a 
fo

r 
a 

pu
ta

tiv
e 

en
do

ph
en

ot
yp

e

M
ea

su
re

E
vi

de
nc

e
C

lin
ic

al
 P

he
no

ty
pe

P
he

no
ty

pi
c 

A
ss

oc
ia

ti
on

O
bs

er
ve

d 
in

U
na

ff
ec

te
d

R
el

at
iv

es

Sh
ar

ed
G

en
et

ic
L

ia
bi

lit
y

H
er

it
ab

ili
ty

Sp
on

ta
ne

ou
s 

E
E

G
 a

ct
iv

ity
 (p

ow
er

)

V
er

y 
lo

w
 f

re
qu

en
cy

S
A

D
H

D
C

oo
pe

r 
20

14
; H

el
ps

 2
00

8;
 T

ye
 2

01
2

Ty
e 

20
12

Ty
e 

20
12

D
el

ta

S
Sc

hi
zo

ph
re

ni
a/

B
ip

ol
ar

 ↑
M

or
an

 2
01

1;
 N

ar
ay

an
an

 2
01

4
N

ar
ay

an
an

 2
01

4

M
al

on
e 

20
14

a;
 S

m
it 

20
05

; 
Z

ie
ts

ch
 2

00
7

S
A

D
H

D
 ↑

R
ud

o-
H

ut
t 

20
15

S
B

in
ge

 d
ri

nk
in

g 
↑

C
ou

rt
ne

y 
20

10

S
A

ut
is

m
 ↑

W
an

g 
20

13

T
he

ta

M
Sc

hi
zo

ph
re

ni
a/

B
ip

ol
ar

 ↑
H

on
g 

20
12

; M
or

an
 2

01
1;

 N
ar

ay
an

an
 

20
14

H
on

g 
20

12
Ty

e 
20

14

S
E

xt
er

na
liz

in
g 
↑

R
ud

o-
H

ut
t 

20
15

S
A

D
H

D
 ↑

B
ar

ry
 2

00
3a

; L
oo

 2
01

0;
 R

ud
o-

H
ut

t 
20

15

S
A

lc
oh

ol
is

m
 ↑

R
an

ga
sw

am
y 

20
03

S
D

ep
re

ss
io

n 
↑

Fi
ng

el
ku

rt
s 

20
15

 (
fr

on
ta

l s
ite

s)

S
A

ut
is

m
 ↑

R
om

m
el

se
 2

01
1;

 W
an

g 
20

13

A
lp

ha

S
Sc

hi
zo

ph
re

ni
a/

B
ip

ol
ar

 ↑
N

ar
ay

an
an

 2
01

4
N

ar
ay

an
an

 2
01

4

S+
A

SB
/A

gg
re

ss
io

n 
↓

B
ar

ry
 2

00
3a

; R
ud

o-
H

ut
t 

20
15

N
iv

 2
01

5

S
A

lc
oh

ol
is

m
 ↓

E
hl

er
s 

20
07

; E
no

ch
 1

99
9

S
A

ut
is

m
 ↓

R
om

m
el

se
 2

01
1;

 W
an

g 
20

13

S
D

ep
re

ss
io

n 
↑

Fi
ng

el
ku

rt
s 

20
15

B
et

a

S
Sc

hi
zo

ph
re

ni
a/

B
ip

ol
ar

 ↑
K

am
 2

01
3;

 N
ar

ay
an

an
 2

01
4

N
ar

ay
an

an
 2

01
4

S+
E

xt
er

na
liz

in
g 
↓

R
ud

o-
H

ut
t 

20
15

G
ilm

or
e 

20
10

S
A

D
H

D
 ↓

B
ar

ry
 2

00
3a

; L
oo

 2
01

0;
 R

ud
o-

H
ut

t 
20

15

S
A

lc
oh

ol
is

m
 ↑

E
hl

er
s 

20
10

; R
an

ga
sw

am
y 

20
02

R
an

ga
sw

am
y 

20
04

S
B

in
ge

 d
ri

nk
in

g 
↑

C
ou

rt
ne

y 
20

10

S
A

ut
is

m
 ↑

R
om

m
el

se
 2

01
1;

 W
an

g 
20

13

S
D

ep
re

ss
io

n 
↑

Fi
ng

el
ku

rt
s 

20
15

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iacono et al. Page 63

M
ea

su
re

E
vi

de
nc

e
C

lin
ic

al
 P

he
no

ty
pe

P
he

no
ty

pi
c 

A
ss

oc
ia

ti
on

O
bs

er
ve

d 
in

U
na

ff
ec

te
d

R
el

at
iv

es

Sh
ar

ed
G

en
et

ic
L

ia
bi

lit
y

H
er

it
ab

ili
ty

G
am

m
a

S
A

ut
is

m
 ↑

W
an

g 
20

13
E

hl
er

s 
20

10

S
A

lc
oh

ol
is

m
 ↑

E
hl

er
s 

20
10

L
ow

-v
ol

ta
ge

 a
lp

ha
S

A
lc

oh
ol

is
m

-r
el

at
ed

, a
nx

ie
ty

E
hl

er
s 

20
15

; E
no

ch
 1

99
5

A
no

kh
in

 1
99

2;
 V

og
el

 1
97

0

T
he

ta
/b

et
a 

ra
tio

B
A

D
H

D
A

rn
s 

20
13

; 
Sn

yd
er

 2
00

6

Fr
on

ta
l a

lp
ha

 a
sy

m
m

et
ry

S+
D

ep
re

ss
io

n,
 a

nx
ie

ty
A

lle
n 

20
15

; G
ol

ds
te

in
 2

01
4;

 
T

hi
bo

de
au

 2
00

6
Ja

co
bs

 2
01

5

A
no

kh
in

 2
00

6;
 S

m
it 

20
07

b
S+

A
ut

is
m

W
an

g 
20

13
G

ab
ar

d-
D

ur
na

m
 2

01
5

S
A

gg
re

ss
io

n
H

ar
m

on
-J

on
es

 2
00

7;
 K

eu
ne

 2
01

2

E
ve

nt
-r

el
at

ed
 E

E
G

 a
m

pl
itu

de
 o

r p
ow

er

T
he

ta
 o

r 
de

lta
 p

ow
er

M
A

lc
oh

ol
is

m
C

he
n 

20
09

; J
on

es
 2

00
6;

 J
on

es
 2

00
4

K
am

ar
aj

an
 2

01
5;

 K
am

ar
aj

an
 

20
06

; R
an

ga
sw

am
y 

20
07

G
ilm

or
e 

20
10

; J
on

es
 2

00
4;

 
Z

lo
ju

tr
o 

20
11

S+
E

xt
er

na
liz

in
g

B
er

na
t 2

01
1;

 G
ilm

or
e 

20
10

; Y
oo

n 
20

13
G

ilm
or

e 
20

10

S
Sc

hi
zo

ph
re

ni
a

E
th

ri
dg

e 
20

12
E

th
ri

dg
e 

20
12

B
et

a 
or

 g
am

m
a 

po
w

er

M
Sc

hi
zo

ph
re

ni
a

H
al

l 2
01

1b
; U

hl
ha

as
 2

01
0

C
le

m
en

tz
 1

99
8;

 H
al

l 2
01

1b
; 

L
ei

ch
t 2

01
1

H
al

l 2
01

1b

S
B

ip
ol

ar
 d

is
or

de
r

K
am

 2
01

3

S+
A

lc
oh

ol
is

m
Pa

dm
an

ab
ha

pi
lla

i 2
00

6a
Pa

dm
an

ab
ha

pi
lla

i 2
00

6b

S+
A

ut
is

m
U

hl
ha

as
 2

00
6

S
D

ep
re

ss
io

n 
↑

W
eb

b 
20

15

IT
PC

S
E

xt
er

na
liz

in
g

B
ur

w
el

l 2
01

4

H
al

l 2
01

1b
; M

al
on

e 
20

16

S+
A

D
H

D
M

cL
ou

gh
lin

 2
01

4
M

cL
ou

gh
lin

 2
01

4

S+
Sc

hi
zo

ph
re

ni
a

H
al

l 2
01

1b
; L

ei
ch

t 2
01

5;
 U

hl
ha

as
 

20
10

H
al

l 2
01

1b
; L

ei
ch

t 2
01

1
H

al
l 2

01
1b

S
A

ut
is

m
R

oj
as

 2
00

8
R

oj
as

 2
00

8

C
on

ne
ct

iv
ity

B
PT

SD
G

eo
rg

op
ou

lo
s 

20
10

; J
am

es
 2

01
5

S
D

ep
re

ss
io

n
Fi

ng
el

ku
rt

s 
20

07
; L

eu
ch

te
r 

20
12

; 
Pi

zz
ag

al
li 

20
03

Sm
it 

20
10

S
Sc

hi
zo

ph
re

ni
a

Fo
rd

 2
00

2;
 K

am
 2

01
3;

 M
ic

he
lo

ya
nn

is
 

20
06

; W
in

te
re

r 
20

03

S
A

ut
is

m
V

is
se

rs
 2

01
2;

 W
as

s 
20

11

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iacono et al. Page 64

M
ea

su
re

E
vi

de
nc

e
C

lin
ic

al
 P

he
no

ty
pe

P
he

no
ty

pi
c 

A
ss

oc
ia

ti
on

O
bs

er
ve

d 
in

U
na

ff
ec

te
d

R
el

at
iv

es

Sh
ar

ed
G

en
et

ic
L

ia
bi

lit
y

H
er

it
ab

ili
ty

PF
C

 b
ro

ad
ba

nd
 n

oi
se

S
Sc

hi
zo

ph
re

ni
a

W
in

te
re

r 
20

04
W

in
te

re
r 

20
04

P5
0 

se
ns

or
y 

ga
tin

g

M
Sc

hi
zo

ph
re

ni
a

A
dl

er
 1

98
2;

 B
ra

m
on

 2
00

4;
 d

e 
W

ild
e 

20
07

; 
Fr

ee
dm

an
 1

98
3;

 P
at

te
rs

on
 

20
08

; 
Si

eg
el

 1
98

4

de
 W

ild
e 

20
07

; T
ha

ke
r 2

00
8

M
. H

al
l 2

00
7

A
no

kh
in

 2
00

7b
; A

uk
es

 
20

08
; H

al
l 2

00
6;

 Y
ou

ng
 

19
96

S+
B

ip
ol

ar
 d

is
or

de
r

Sc
hu

lz
e 

20
07

; T
ha

ke
r 2

00
8

Sc
hu

lz
e 

20
07

S
PT

SD
K

ar
l 2

00
6;

 N
ey

la
n 

19
99

N
1/

P2
 a

m
pl

itu
de

S
Sc

hi
zo

ph
re

ni
a

E
th

ri
dg

e 
20

12
; S

al
is

bu
ry

 2
01

0
Sp

on
he

im
 2

00
6

O
dd

ba
ll 

N
2 

am
pl

itu
de

S
A

lc
oh

ol
is

m
C

ri
st

in
i 2

00
3;

 R
ea

lm
ut

o 
19

93
Sm

it 
20

07
a

Fl
an

ke
r/

N
og

o 
N

2 
am

pl
itu

de

S+
A

D
H

D
A

lb
re

ch
t 2

00
8;

 M
cL

ou
gh

lin
 2

00
9

A
lb

re
ch

t 2
00

8;
 M

cL
ou

gh
lin

 
20

09
A

no
kh

in
 2

00
4

S
A

lc
oh

ol
is

m
C

ri
st

in
i 2

00
3;

 P
an

de
y 

20
12

P3
00

 a
m

pl
itu

de

S+
A

nt
is

oc
ia

l b
eh

av
io

r
G

ao
 2

00
9

V
ia

na
-W

ac
ke

rm
an

n 
20

07

P
SU

D
s/

E
xt

er
na

liz
in

g
E

us
er

 2
01

2;
 I

ac
on

o 
20

02
; I

ac
on

o 
20

11
B

eg
le

ite
r 

19
84

; I
ac

on
o 

20
11

; 
P

ol
ic

h 
19

94
G

ilm
or

e 
20

10

M
al

on
e 

20
14

b;
 v

an
 

B
ei

js
te

rv
el

dt
 2

00
2

P
Sc

hi
zo

ph
re

ni
a

B
ra

m
on

 2
00

4;
 C

he
n 

20
14

; 
Je

on
 

20
03

; 
Q

iu
 2

01
4

B
ra

m
on

 2
00

5;
 E

th
ri

dg
e 

20
12

M
. H

al
l 2

00
7

S
A

D
H

D
B

ar
ry

 2
00

3b
; S

zu
ro

m
i 2

01
1

M
B

ip
ol

ar
 d

is
or

de
r

H
al

l 2
00

9;
 S

ch
ul

ze
 2

00
8;

 T
ha

ke
r 

20
08

H
al

l 2
00

9;
 S

ch
ul

ze
 2

00
8;

 
T

ha
ke

r 2
00

8

S
PT

SD
Jo

hn
so

n 
20

13
; 

K
ar

l 2
00

6;
 K

im
bl

e 
20

00
; M

cF
ar

la
ne

 1
99

3

P3
00

 la
te

nc
y

P
Sc

hi
zo

ph
re

ni
a

B
ra

m
on

 2
00

4;
 Q

iu
 2

01
4

B
ra

m
on

 2
00

5
M

. H
al

l 2
00

7
H

al
l 2

00
9;

 v
an

 
B

ei
js

te
rv

el
dt

 2
00

2
M

B
ip

ol
ar

 d
is

or
de

r
H

al
l 2

00
9;

 L
en

ox
 2

00
2;

 M
ui

r 
19

91
; 

Sc
hu

lz
e 

20
08

; T
ha

ke
r 2

00
8

H
al

l 2
00

9;
 S

ch
ul

ze
 2

00
8

H
al

l 2
00

9

E
R

N
 a

m
pl

itu
de

S+
O

C
D

, a
nx

ie
ty

 ↑
H

aj
ca

k 
20

02
; O

lv
et

 2
00

8;
 M

os
er

 
20

16
 (

se
x 

sp
ec

if
ic

)
O

lv
et

 2
00

8

A
no

kh
in

 2
00

8
M

A
D

H
D

 ↓
A

lb
re

ch
t 2

00
8;

 G
eb

ur
ek

 2
01

3
A

lb
re

ch
t 2

01
0;

 A
lb

re
ch

t 
20

08
; M

cL
ou

gh
lin

 2
00

9

S
E

xt
er

na
liz

in
g 
↓

J.
 H

al
l 2

00
7

S+
SU

D
s 
↓

Fr
an

ke
n 

20
07

E
us

er
 2

01
3

FR
N

 a
m

pl
itu

de
M

D
ep

re
ss

io
n

M
or

an
 2

01
6;

 F
ot

i 2
00

9
Fo

ti 
20

11
; K

uj
aw

a 
20

15
; 

W
ei

nb
er

g 
20

15

R
ew

ar
d 

po
si

tiv
ity

S
D

ep
re

ss
io

n
Pr

ou
df

it 
20

15
Pr

ou
df

it 
20

15

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iacono et al. Page 65

M
ea

su
re

E
vi

de
nc

e
C

lin
ic

al
 P

he
no

ty
pe

P
he

no
ty

pi
c 

A
ss

oc
ia

ti
on

O
bs

er
ve

d 
in

U
na

ff
ec

te
d

R
el

at
iv

es

Sh
ar

ed
G

en
et

ic
L

ia
bi

lit
y

H
er

it
ab

ili
ty

M
M

N
 a

m
pl

itu
de

S
Sc

hi
zo

ph
re

ni
a

E
ri

ck
so

n 
20

16
; 

H
ai

gh
 2

01
6;

 S
he

lle
y 

19
91

; T
ak

ah
as

hi
 2

01
3;

 U
m

br
ic

ht
 

20
05

H
ai

gh
 2

01
6 

(N
S)

M
. H

al
l 2

00
7

H
al

l 2
00

9
S

Ps
yc

ho
si

s
R

an
lu

nd
 2

01
5

R
an

lu
nd

 2
01

5

S
A

lc
oh

ol
is

m
In

co
ns

is
te

nt
 fi

nd
in

gs

M
D

ys
le

xi
a 

(s
pe

ec
h 

st
im

ul
i)

K
ra

us
 1

99
6;

 S
ch

ul
te

-K
or

ne
 2

00
1

H
om

m
et

 2
00

9;
 M

au
re

r 
20

09
; 

M
au

re
r 

20
03

N
40

0 
am

pl
itu

de
S

A
lc

oh
ol

is
m

R
oo

pe
sh

 2
01

0
R

oo
pe

sh
 2

00
9

N
17

0/
N

25
0 

am
pl

itu
de

B
Sc

hi
zo

ph
re

ni
a

Fe
ue

rr
ie

ge
l 2

01
5;

 M
cC

le
er

y 
20

15

N
17

0 
la

te
nc

y
B

A
ut

is
m

D
aw

so
n 

20
05

a

A
ty

pi
ca

l l
at

er
al

iz
at

io
n

S
A

ut
is

m
D

aw
so

n 
20

05
a;

 S
ee

ry
 2

01
3

D
aw

so
n 

20
05

b

B
D

ep
re

ss
io

n
T

ri
nk

l 2
01

5

A
N

S 
an

d 
el

ec
tr

om
yo

gr
ap

hi
c 

m
ea

su
re

s

A
co

us
tic

 s
ta

rt
le

S
PT

SD
/a

nx
ie

ty
P

ol
e 

20
07

A
no

kh
in

 2
00

3;
 H

as
en

ka
m

p 
20

10
; V

ai
dy

an
at

ha
n 

20
14

b
S

Sc
hi

zo
ph

re
ni

a
B

ra
ff

 1
99

2;
 L

ig
ht

 2
01

2;
 Q

ue
dn

ow
 

20
08

St
ar

tle
 m

od
ul

at
io

n

S
Ps

yc
ho

pa
th

y
B

en
ni

ng
 2

00
5;

 P
at

ri
ck

 1
99

3

W
ea

k 
h2  

(A
no

kh
in

 2
00

7a
; 

V
ai

dy
an

at
ha

n 
20

14
c)

S+
A

nx
ie

ty
/f

ea
rf

ul
ne

ss
C

ut
hb

er
t 2

00
3;

 G
ri

llo
n 

19
93

; G
ri

llo
n 

20
03

; V
ai

dy
an

at
ha

n 
20

09
G

ri
llo

n 
19

97

S
B

or
de

rl
in

e 
pe

rs
on

al
ity

H
az

le
tt 

20
07

S
B

ip
ol

ar
 d

is
or

de
r

G
ia

ko
um

ak
i 2

01
0

G
ia

ko
um

ak
i 2

01
0

Pr
ep

ul
se

 in
hi

bi
tio

n

M
Sc

hi
zo

ph
re

ni
a

B
ra

ff
 1

97
8;

 B
ra

ff
 2

01
0;

 S
w

er
dl

ow
 

20
14

; T
ur

et
sk

y 
20

07
C

ad
en

he
ad

 2
00

0;
 K

um
ar

i 
20

05
A

no
kh

in
 2

00
3;

 G
re

en
w

oo
d 

20
15

M
B

ip
ol

ar
 d

is
or

de
r

T
ha

ke
r 2

00
8

T
ha

ke
r 2

00
8

R
es

tin
g 

H
R

M
A

SB
/p

sy
ch

op
at

hy
 ↓

L
or

be
r 

20
04

; 
O

rt
iz

 2
00

4
M

ed
ni

ck
 1

97
2,

 c
ite

d 
in

 
V

en
ab

le
s 

19
87

B
ak

er
 2

00
9

W
an

g 
20

15

S
PT

SD
 ↑

P
ol

e 
20

07

E
D

 a
ct

iv
ity

/r
ea

ct
iv

ity

S
E

xt
er

na
liz

in
g 
↓

Is
en

 2
01

3;
 I

se
n 

20
12

H
er

pe
rt

z 
20

07

H
et

te
m

a 
20

03
; T

uv
bl

ad
 

20
12

; V
ai

dy
an

at
ha

n 
20

14
a

S+
PT

SD
/a

nx
ie

ty
 ↑

P
ol

e 
20

07
B

al
le

 2
01

3

S
Sc

hi
zo

ph
re

ni
a 
↑

Ia
co

no
 1

99
9

Ia
co

no
 1

99
9

R
SA

 p
at

te
rn

s
S

D
ep

re
ss

io
n

Y
ar

os
la

vs
ky

 2
01

4
Y

ar
os

la
vs

ky
 2

01
4

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iacono et al. Page 66

M
ea

su
re

E
vi

de
nc

e
C

lin
ic

al
 P

he
no

ty
pe

P
he

no
ty

pi
c 

A
ss

oc
ia

ti
on

O
bs

er
ve

d 
in

U
na

ff
ec

te
d

R
el

at
iv

es

Sh
ar

ed
G

en
et

ic
L

ia
bi

lit
y

H
er

it
ab

ili
ty

B
A

D
H

D
B

ea
uc

ha
in

e 
20

15

B
A

nt
is

oc
ia

l b
eh

av
io

r
B

ea
uc

ha
in

e 
20

15

E
D

A
 m

od
ul

at
io

n
B

SU
D

s
Ta

yl
or

 2
00

9

E
ye

 tr
ac

ki
ng

A
nt

is
ac

ca
de

 e
rr

or
 r

at
e

M
Sc

hi
zo

ph
re

ni
a

C
le

m
en

tz
 1

99
8;

 F
uk

us
hi

m
a 

19
88

; 
Tu

re
ts

ky
 2

00
7

C
al

ki
ns

 2
00

8;
 L

ev
y 

20
04

G
re

en
w

oo
d 

20
07

; 
V

ai
dy

an
at

ha
n 

20
14

b
S

Ps
yc

ho
si

s
R

ei
lly

 2
01

4
R

ei
lly

 2
01

4

S
O

C
D

L
en

ne
rt

z 
20

12
L

en
ne

rt
z 

20
12

Sm
oo

th
 p

ur
su

it 
tr

ac
ki

ng
M

Sc
hi

zo
ph

re
ni

a
C

al
ki

ns
 2

00
0;

 H
on

g 
20

08
; L

ev
y 

19
93

; O
'D

ri
sc

ol
l 2

00
8;

 T
ha

ke
r 2

00
8

C
al

ki
ns

 2
00

8;
 H

on
g 

20
08

; 
R

os
s 

20
02

; T
ha

ke
r 2

00
8

B
le

kh
er

 1
99

7;
 K

at
sa

ni
s 

20
00

N
ot

e:
 R

ef
er

en
ce

s 
ar

e 
pr

ov
id

ed
 in

 th
e 

Su
pp

le
m

en
ta

ry
 M

at
er

ia
l. 

C
ol

um
ns

 r
ep

re
se

nt
 th

e 
th

re
sh

ol
d 

cr
ite

ri
a 

fo
r 

an
 e

nd
op

he
no

ty
pe

 (
se

e 
Se

ct
io

n 
I,

 T
ab

le
 1

).
 C

ita
tio

ns
 in

cl
ud

e 
se

m
in

al
 p

ap
er

s 
es

ta
bl

is
hi

ng
 

as
so

ci
at

io
ns

 b
et

w
ee

n 
bi

om
ar

ke
r 

an
d 

cl
in

ic
al

 p
he

no
ty

pe
, a

s 
w

el
l a

s 
m

et
a-

an
al

yt
ic

 a
nd

 n
ar

ra
tiv

e 
re

vi
ew

s 
(i

n 
bo

ld
 f

ac
e 

an
d 

ita
lic

s,
 r

es
pe

ct
iv

el
y)

 o
f 

th
e 

lit
er

at
ur

e 
co

nc
er

ni
ng

 a
 b

io
m

ar
ke

r 
an

d 
ev

id
en

ce
 th

at
 it

 is
 

a 
ca

nd
id

at
e 

en
do

ph
en

ot
yp

e.
 F

ir
st

 a
ut

ho
r 

an
d 

pu
bl

ic
at

io
n 

ye
ar

 a
re

 li
st

ed
 f

or
 e

ac
h 

ci
ta

tio
n.

 T
he

 s
tr

en
gt

h 
of

 th
e 

em
pi

ri
ca

l e
vi

de
nc

e 
su

pp
or

tin
g 

a 
m

ea
su

re
 a

s 
a 

pu
ta

tiv
e 

en
do

ph
en

ot
yp

e 
w

as
 c

od
ed

 a
s 

fo
llo

w
s:

 P
 =

 
pe

rs
ua

si
ve

, M
 =

 m
od

er
at

e,
 S

 =
 s

ug
ge

st
iv

e 
(S

+
 =

 s
tr

on
gl

y 
su

gg
es

tiv
e)

, B
 =

 b
io

m
ar

ke
r 

on
ly

, e
vi

de
nc

e 
do

es
 n

ot
 s

up
po

rt
 m

ea
su

re
 a

s 
a 

pu
ta

tiv
e 

en
do

ph
en

ot
yp

e.
 N

S 
in

di
ca

te
s 

a 
no

ns
ig

ni
fi

ca
nt

 e
ff

ec
t (

e.
g.

, i
n 

a 
m

et
a-

an
al

ys
is

).

A
bb

re
vi

at
io

ns
: A

D
H

D
, a

tte
nt

io
n 

de
fi

ci
t-

hy
pe

ra
ct

iv
ity

 d
is

or
de

r;
 A

SB
, a

nt
is

oc
ia

l b
eh

av
io

r;
 P

T
SD

, p
os

ttr
au

m
at

ic
 s

tr
es

s 
di

so
rd

er
; O

C
D

, o
bs

es
si

ve
-c

om
pu

ls
iv

e 
di

so
rd

er
; S

U
D

s,
 s

ub
st

an
ce

 u
se

 d
is

or
de

rs
; I

T
PC

, 
in

te
r-

tr
ia

l p
ha

se
 c

on
si

st
en

cy
; F

R
N

, f
ee

db
ac

k-
re

la
te

d 
ne

ga
tiv

ity
; M

M
N

, m
is

m
at

ch
 n

eg
at

iv
ity

; H
R

, h
ea

rt
 r

at
e;

 E
D

, e
le

ct
ro

de
rm

al
; E

D
A

, e
le

ct
ro

de
rm

al
 a

ct
iv

ity
; R

SA
, r

es
pi

ra
to

ry
 s

in
us

 a
rh

yt
hm

ia

Int J Psychophysiol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iacono et al. Page 67

Table 6

Candidate gene endophenotype studies with large samples or a replication sample

Measure Lead Author Candidate Gene (MAF) N (replication N) Largest Effect

PPI
Petrovsky (2010)

1 CHRNA3 (0.35) 107 (73) 11.4% (7.5%)

PPI
Quednow (2011)

1 TCF4 (0.06) 107 (73) 4.4% (12.1%)

Startle reactivity
Roussos (2011)

2 CACNA1C (0.27)
ANK3 (0.04)

445 9.55%
4.42%

PPI
Roussos (2011)

2 NRG1 (0.37) 445 2.65%

PPI
Roussos (2011)

2 DAO (0.35) 445 1.38%

P50
Quednow (2012)

1 TCF4 (0.06) 1,821 0.91%

P300 latency Xu (2010) miR-30e (0.03) 2,190 0.63%

SPEM (gain, saccade frequency)
Smyrnis (2011)

3 NRG1 (0.41) 1,502 0.34%

Antisaccade error SPEM
Kattoulos (2012)

3 RGS4 (0.48) 1,530 0.33%

Antisaccade error
Stefanis (2008)

3 RGS4 (0.48) 1,532 0.20%

P50 Shaikh (2011) COMT (0.34)
BDNF (0.17)

NRG1 (0.36 – 0.39)

451 —
—
—

P50 Cabranes (2013) CHRNA7 (0.27 – 0.49) 375 —

Note: The MAF is given for each candidate gene studied where the published data permitted calculating it (i.e., if homozygotes for the rare allele 
were not combined with heterozygotes), or a range of MAFs if more than one SNP from a gene was examined. The column labeled “N (Replication 
N)” lists the number of subjects in each study, or in the Stage 1 sample if the study included a replication study. The number of subjects in the 
replication sample is provided in parentheses if applicable. The effect size of the largest association is provided in the last column, as a percentage 
of endophenotype variance accounted for. Associations that were not reported as statistically significant are indicated by a dash in place of the 
effect size. For studies including a replication sample (and analyzing discovery and replication samples separately), the variance accounted for in 
the replication by the variant is provided in parentheses.

1
Germany-Great Britain collaboration

2
Learning on Genetics of Schizophrenia (LOGOS)

3
Athens Study for Psychosis Proneness and Incidence of Schizophrenia (ASPIS)
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Table 7

Genome-wide studies with large samples, replication samples, or both

Measure Lead Author (Year) N (replication N) Largest Effect

GWAS

    MMN Roeske (2011) 200 (184) 10.53%

    Resting EEG theta power Hodgkinson (2010) 322 (185) 8.8% (3.5%)

    P50 Hall (2015) 392 9.05%

    PPI Roussos (2015) 792 (405) ?

    Event-related theta power Zlojutro (2011) 1,064 (1,095) 2.26% (0.42%)

    Event-related theta power Kang (2012) 1,560 0.91%

    Resting heart rate Deo (2013) 13,372 0.42%

    Resting heart rate Holm (2010) 23,112 0.28%

    Resting heart rate Cho (2009) 17,899 0.22%

    Resting heart rate Eijgelsheim (2010) 38,991 0.17%

Exome chip

    N4S response to pre-pulse Norden-Krichmar (2015) 420 1.97%

Note: The column labeled “N (Replication N)” lists the number of subjects in each study, or in the Stage 1 sample if the study included a 
replication study. The number of subjects in the replication sample is provided in parentheses if applicable. The effect size of the largest association 
is provided in the last column, as a percentage of endophenotype variance accounted for. For studies including a replication sample (and analyzing 
discovery and replication samples separately), the variance accounted for in the replication by the variant is provided in parentheses. To avoid 
redundancy, we did not include GWAS results from the 17 endophenotypes examined in our special issue of Psychophysiology, which are 
summarized in Table 2, despite representing a different set of endophenotypes. In addition, we did not include results we obtained for event-related 
theta power described in section 5.2, although this measure that appears in this table.
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