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Abstract The orphan nuclear receptor TLX, also called
NR2E1, is a factor important in the regulation of neural stem
cell (NSC) self-renewal, neurogenesis, and maintenance. As a
transcription factor, TLX is vital for the expression of genes
implicated in neurogenesis, such as DNA replication, cell cy-
cle, adhesion and migration. It acts by way of repressing or
activating target genes, as well as controlling protein-protein
interactions. Growing evidence suggests that dysregulated
TLX acts in the initiation and progression of human disorders
of the nervous system. This review describes recent knowl-
edge about TLX expression, structure, targets, and biological
functions, relevant to maintaining adult neural stem cells re-
lated to both neuropsychiatric conditions and certain nervous
system tumours.
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Introduction

Drosophila tailless (Tll) gene and its homolog Tlx in verte-
brates belong to the NR2E subclass of orphan nuclear

receptors. Tll was discovered more than two decades ago as a
molecule able to specify cell fate during the embryogenesis of
Drosophila. Recent studies on Tll and Tlx in both Drosophila
and mouse have revealed critical roles in the developing ner-
vous and visual systems, as well as in maintaining neural stem
cells (NSC). Tll was identified as a gene needed for terminal
structures in Drosophila embryonic development [1–3]. The
Tll mutant not only lacks the posterior to the eighth abdominal
segment structures (tail), but also those of the head and the
brain [2, 4–6]. Similar to its phenotype, the Tll transcript ex-
presses as symmetrical caps at both poles of the embryo [7].

In mammals, four distinct areas of the postnatal brain harbour
cells with stem cell properties: (i) the subventricular zone (SVZ)
[8], (ii) the subgranular zone (SGZ) [9], (iii) the subcallosal zone
(SCZ) [9], and (iv) the cerebellum [10]. Neural stem cells keep
the capacity to proliferate and self-renew, as well as the ability to
differentiate into neuronal and glial lineages [11–14]. The
NR2E1 derives from the evolutionary preserved nuclear receptor
superfamily member of transcription factors (with at least 89–
97 % homology). It is found in both vertebrates and inverte-
brates, as mentioned above [3, 15–18].

Tlx is a key regulator of NSC maintenance and self-
renewal in the adult brain [19]. Expression of Tlx is specific
to the neurogenic regions of the developing forebrain in sev-
eral species, including the frog [16], zebra fish [17], and
mouse [3]. In early neural development, NSCs increase in
the neural tube over a limited number of cell cycles,
expanding the size of the NSC pool by symmetric division
[70]. When cells are about to determine their fate, a subset of
NSCs becomes neuroprogenitors producing specialised cell
types i.e. neurones, oligodendrocytes, and astrocytes.
Neuroprogenitor cells are thought to have a decreased poten-
tial for self-renewal and pluripotency.

In the developing embryo and adult mouse, the protein TLX
is localised to the neurogenic regions of the telencephalon,
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diencephalon, nasal placode, and retina [3, 18]. In the adult brain,
TLX is expressed in the neural stem cells of the two neurogenetic
zones—strong expression in the subventricular zone (SVZ) of
the lateral ventricle and in the subgranular zone (SGZ) of the
hippocampal dentate gyrus [19]. TLX has been found in prolif-
erating neuroprogenitors of the adult SVZ, although most Tlx-
expressing cells in the SVZ are quiescent [20, 21]. Tlx regulates
transcriptionally the expression of multiple genes by repressing
or activating target genes. Dysregulation of Tlx appears to affect
the initiation and progression of human neurological disorders
[22, 23], including various nervous system tumours [24–27],
making TLX an interesting therapeutic target.

Structure and Regulation of TLX

Tlx contains two structural subunits—the highly conserved
DNA-binding domain (DBD), and the less conserved
ligand-binding domain (LBD) [18, 28]. The TLL and TLX
proteins are identical at the levels of 81 and 41 % in the
DNA-binding and the ligand-binding domains, respectively
[3, 18]. TLX and TLL were validated as functional homologs
[18]. TLX has been recognised to act as a transcriptional re-
pressor [29]. In the LBD region, TLX interacts with its cofac-
tors, such as atrophin [30–32], BCL11A [33], LSD1 [34–36],
histone deacetylases (HDACs) [30–32, 34, 35], and the von
Hippel-Lindau suppressor protein (VHL) [25].

Analysis of the X-ray structure of human TLX-LBD [106]
unveiled that TLX-LBD does not have a canonical NR struc-
ture. The LBD of the NR superfamily is composed of 12 α-
helices (H) and a β-sheet forming an anti-parallel Bα-helical
sandwich^ [107]. The human TLX-LBD lacks two LBD heli-
ces H1 and H2 that could potentially form an open LB pocket,
and it folds into an auto-repressed ligand-free confirmation
[105]. By using homology models of TLX-LBD, Benod and
her group suggested that TLX could keep a large LB pocket,
which would enable adaptation to ligands [105]. In screening
for small molecules that directly bind TLX, three synthetic
ligands with sufficient affinity and specificity were detected
for TLX, but not for other NR2 subgroupmembers [105, 108].
However, the possibility remains that TLX functions indepen-
dently of the ligand, regardless of whether endogenous ligands
are discovered, since the structure of TLX LB pocket is similar
to Nurr1 (NR4A2) which functions without ligands [108].

The functions of Tll and Tlx are affected by cofactors [14],
such as transcriptional repression, being partly mediated by
associations with atrophin family proteins [14, 30–32].
Yokoyama et al. [36] demonstrated that TLX binds the pro-
moter of Pten, which is also bound by LSD1. Since Tlx-
silencing hampers NSC renewal caused by LSD1 inhibitors,
the LSD1-regulated self-renewal of NSCs might depend on
Tlx [34]. Recently, Notch1/RBPJ were found to directly reg-
ulate transcription factors that are critical for NSC self-renew-
al, including Tlx, Sox2, Pax6, and Id4 [112]. The microRNA

(miR) let-7d also modulates Tlx expression and activity
through a conserved binding site on the Tlx mRNA transcripts
[37]. Thus, in embryonic mouse brains, over-expression of let-
7d inhibits NSC proliferation, promotes neuronal differentia-
tion, and induces neuronal migration, being similar to Tlx
knockdown models. Interleukin-1 beta (IL-1β) has been
shown to be a negative regulator of embryonic and adult hip-
pocampal neurogenesis, and the expression of Tlx is repressed
in neuroprogenitors [6]. Conversely, IL-1β represses Tlx in
differentiating newborn and mature neurones and astrocytes
[38, 39]. Recently, it was demonstrated that this repression of
Tlx and neuroprogenitor proliferation is mediated through the
IL-1 receptor type I [40]. Another transcription factor regulat-
ing adult NSC proliferation is the sex-determining region-box
2 (SOX2), which has been shown to bind the promoter region
of Tlx and activate proliferation of adult mouse NSCs [41].

Tlx Targets

Tlx regulates a broad area of cellular activities, i.e. DNA rep-
lication, mitogen-activated protein kinase (MAPK) signal, ad-
hesion, cell cycle, and migration [24, 27, 42, 43]. Through the
conserved motifs or DNA-binding assays, the TLX targets
Ascl1, Pou5f1 (Oct4), miR 137, Pax2, miR 9, Pten, Cdkn1a,
Wnt7a, and Sirt1 have been identified [19, 32, 44–49].
Evidence indicates Tlx to activate Ascl1 and to promote neu-
ronal induction in adult hippocampal neuroprogenitors [45].
During hypoxic conditions, Tlx balances the NSC commit-
ment to the neuronal lineage, maintaining neural progenitor
pools through transcriptional activation of Ascl1 and Pou5f1
expression [44, 45]. Similarly, TLX induces matrix metallo-
proteinase (MMP)-2, which is crucial for NSC to migrate to
target areas and establish a neural network [27]. TLX can also
physically bind and sequester VHL in normoxia in order to
create a hypoxic environment for NSCs [25]. As a result, HIF-
2α will be stabilised and recruited to the promoters of angio-
genic factors i.e. VEGF and erythropoietin, both being impor-
tant in maintaining NSC niches [25].

TLX represses the transcription of Pax2 [49, 50]. miR137
is a TLX target and an upstream regulator of LSD1. By
recruiting LSD1 to the genomic regions of miR137, TLX
represses miR137 in NSCs [35]. miR9 , another direct TLX
target, forms a negative-feedback loop resulting in the mod-
ulation of Tlx expression in NSCs. This event affects the
status of progenitor proliferation and differentiation [51].
Tlx is also regulated by another miR, let-7b and miR378,
both of them increasing NSC differentiation [52, 113].
Emerging evidence suggests that microRNAs promote fac-
tors that induce differentiation by modulating Tlx expression
in neuroprogenitor cells, and by interplay with TLX, these
miRs appear to be involved in neurological disorders and
neural tumours, as described below.
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By analysing RNAs isolated from adult brains of wild
type and Tlx mutant mice with a gene profile screen, Qu
et al. [46] identified Wnt7α as a downstream target of Tlx.
Wnt proteins bind cell membrane-Frizzled receptors, activat-
ing Wnt signalling pathways. Furthermore, they translocate
the cytoplasmic β-catenin to the nucleus, where β-catenin
binds T cell factor family (TCF) transcription factors, togeth-
er activating the target genes [53]. Several TLX-binding
sites are contained in the promoter region of Wnt7α, sug-
gesting that Tlx regulates neurogenesis in an autonomous
manner. The Wnt pathway has been experimentally proven
to control self-renewal of NSCs.

By suppressing the G0-to-G1 cell-cycle transition, Tlx con-
trols how progenitors proliferate and differentiate by the Pten-
cyclin D1 pathway [32, 54]. As a regulator of NSC prolifera-
tion, Tlx also represses Pten in both the developing retina and
the adult brain [32, 47, 54–56]. Tlx also regulates the differ-
entiation of retinal progenitors via the phospholipase C and
MAPK pathways [54]. Thus, by controlling the expression of
Pten, Tlx regulates proliferation of stem cell and cell cycle re-
entry during retinogenesis [47, 54, 55].

Tlx is considered to regulate NSC proliferation by
governing expression of the Cip/Kip family cyclin-
dependent kinase inhibitors, such as Cdkn1a (p21), Cdkn1c
(p57, Kip2), and several genes downstream of p53 [19, 20, 24,
32, 42, 43, 56]. In fact, p21 and p57 are frequently expressed
in differentiating neuroprogenitors [57]. The NAD-dependent
deacetylase Sirt1 has been shown to co-localise with TLX in
neuroprogenitors [58]. In HEK293 cells, TLX enhances the
expression of Sirt1 through binding to the TLX-
activating element in the Sirt1 promoter. Moreover, Tlx
knockdown diminishes Sirt1 protein expression in
neuroprogenitors [58]. Additionally, TLX controls the
timing of the postnatal genesis of astrocytes by modulat-
ing the BMP-SMAD signalling pathway [59]. TLX binds
to the enhancer region of BMP4 to repress its expression
in the NSCs, and BMP4 is upregulated in nestin-
expressing cells from Tlx mutant mice [59].

Biological Functions

During the development of mouse brain, the expression of Tlx
is restricted to the ventricular zone [20]. A detailed inspection
of this region displayed a gradient of Tlx along the dorsal-to-
ventral axis in the telencephalon [3]. Even though Tlx mutant
mice display no abnormality at birth, the Tlx gene is required
in embryonic brains for the building of superficial cortical
layers [60]. In the cortex, the timing of neurogenesis is regu-
lated by TLX [61] and the formation of lateral telencephalic
progenitor regions [62]. Mature Tlx knockout mice display
reduced cerebral hemispheres [63] and retinopathies due to
deficient cell proliferation and decreased neuroprogenitors
[32, 49, 50, 64]. Structures developing late in these mice are

diminished in size, such as the upper cortical layers, the hip-
pocampal dentate gyrus, and the olfactory bulbs—the active
neurogenetic regions [19]. Transducing Tlx into Tlx-null cells
will rescue their capacity to proliferate and self-renew [19].
Adult Tlx mutants exhibit enhanced aggressiveness, de-
creased copulation, epilepsy, and learning disabilities [43,
63, 65]. Conversely, in Tlx transgenic mice, hippocampal
neurogenesis was stimulated, resulting in enhanced learning
and memory [66]. This might suggest that the status of adult
neuroprogenitors in the SGZ and the reduced neurogenesis
precede neuropsychiatric conditions such as cognitive deficits
and mood disorders [23], as described below.

Astrocyte markers are repressed by Tlx expression in NSCs
[16], i.e. GFAP and aquaporin. The suppressor gene Pten is also
involved, suggesting that the transcriptional repression is essen-
tial in maintaining their undifferentiated state [19, 32]. In the
SGZ of Tlx-mutant mice, there is a significant decrease of stem
cell proliferation and a deficiency in spatial learning, whereas
no effect is seen on contextual fear conditioning, diurnal vari-
ation, or locomotion [43]. Retinal neuroprogenitors expresses
Tlx in the mouse during retinal neurogenesis [49, 50]. In Tlx-
mutant mice, the normal retinal cell types are specified early,
but the number of cells in each layer later progressively de-
creases, ending as malformation of the vascular system [50].
Studies of conditional depletion of Tlx that will save visual
function suggested that blindness at least partially is related to
the cognitive defect and other behavioural abnormalities ob-
served in these mice [43, 67, 68]. Additionally, Tlx-mutant
animals suffer from defects in retinal vasculature, reaffirming
the role for Tlx in the assembly of fibronectin matrices secreted
by proangiogenic astrocytes [64].

TLX and Neural Stem Cells

In the developing brain, the primary role of TLX is to prevent
a precocious differentiation of NSCs [20, 61] and to maintain
them in an undifferentiated state [19, 42]. These undifferenti-
ated precursor cells are the driving force behind the formation
of a complete and functional CNS [69]. TLX plays an impor-
tant role in leading NSCs to the neurogenic niche [42]. The
microvascular vessels of the SVZ is critical for the stem cell
niche in activating and maintaining NSCs through Wnt, EGF,
and other renewal and survival factors produced by the endo-
thelial cells of blood vessels [109]. Hypoxia also plays an
essential role for stem cell renewal [110], partly by enhancing
the expression of Tlx [25, 27], which, in turn, binds and se-
questers VHL, resulting in stabilisation of HIF-α [25]. Most
of NSC expresses TLX that induces Wnt7a and increases
HIF-α, resulting in stabilisation of the vasculature in the stem
cell niche [111]. All these molecules synergise in maintaining
the stem cell niche.

Moreover, whole-genome RNA-sequencing has revealed
that Tlx coordinates many signalling pathways, regulating
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NSC behaviour [42]. TLX-positive cells in adult SVZ are
relatively quiescent stem cells, and inactivation of TLX in
these cells leads to a loss of neurogenesis in the SVZ [24, 56].

In the SVZ of the adult brain, Tlx is expressed in astrocyte-
like quiescent or slowly cycling stem cells, named B cells [8,
9], being necessary for the transition of radial glia into adult
NSCs [56]. Tlx is expressed both in quiescent and active
transit-amplifying NSCs, C cells, in the SVZ [8, 21]. Tlx-
inducible mutation eventually leads to a loss of neurogenesis
in this region, whereas its overexpression leads to increased
neurogenesis of NSCs. The increased neurogenesis prevents
age-dependent exhaustion of NSCs. This will even make
small glioma-like lesions progress to aggressive gliomas, pro-
moted by p53 inactivation [24, 56]. This finding suggests Tlx
to be a critical regulator of self-renewal in the NSCs of SVZ.

In the developing mouse embryo, Tlx emerges early at em-
bryonic day (E) 8 in the ventricular zone, where NSCs and
neuroprogenitors reside [3, 20, 61]. As cortical neurones are
generated between E11 and E17, the expression of Tlx within
the ventricular zone will reach its maximum at E13, diminishing
by E16 [71]. In Tlx-mutant mice, neuroprogenitors undergo pro-
liferation with shorter cell cycles fromE9.5 to E12.5, resulting in
precocious maturation [61]. In these mice, at E14.5, NSCs are
decreased in number and undergo slower cell cycles [20]. The
deficiency observed during the development of Tlx-mutant mice
described above caused reduced cortical depth and size of the
dentate gyrus, as well as a smaller forebrain [60]. The impaired
limbic system manifests as abnormal behaviours of Tlx-mutant
mice [63]. Similarly, adult NSCs, however small their popula-
tion, also require Tlx in order to remain in a proliferative state. In
these mice, NSCs may differentiate into glial cells expressing
GFAP and aquaporin—markers of astrocytes [19].

The reduced number of cortical layer neurones and the
defective limbic system found in Tlx-mutant mice are, more-
over, also seen in Pax6 [72] and in T-box transcription factor
(Tbr2) mutants [73]. Tbr2 mutants behave as aggressively as
Tlx-mutant mice. The interaction between Tlx and Pax6 [20]
facilitates formation of the pallido-subpallidal boundary, as
noted above [62]. This suggests that Tlx and Pax6 cooperate
to control the differentiation of radial glia into late neurogenic
progenitors in the SVZ [73]. Thus, it is likely that deletion or
mutation of Tlx may alter Tbr2 expression, and its deficient
expression may partly lead to the defects seen in Tlx mutants.

TLX and Disorders in the Nervous System

Recently, large genome-wide studies have revealed links be-
tween neuropsychiatric diseases and gene variations. As men-
tioned elsewhere, loss of the Tlx (NR2E1) gene in mice leads
to thinner superficial cortical layers and fewer subsets of
GABAergic interneurones in the neocortex [65]. Mutant adult
mice display microencephaly, involving hypoplasia in the ol-
factory bulbs, entorhinal cortex, amygdala, hippocampus, and

part of the medial temporal lobe [65]. These animals are ag-
gressive and exhibit decreased anxiety as well as signs of
reduced memory. As expected, Tlx transgenic mice demon-
strate higher hippocampal neurogenesis, resulting in better
learning and memory [66]. Prior to resident-intruder chal-
lenges, the aggressive behaviour of Tlx-mutant mice was di-
minished by a selective 5-HT2A/C receptor antagonist. This
suggests that this 5-HT2 receptor is involved in the mechanism
behind aggression [68]. As for the basis of conditioned emo-
tional responses, inactivation of the amygdala will prevent
fear conditioning to both cue and context, whereas hippocam-
pal dysfunction prevents fear conditioning to context only [74,
75]. Thus, both amygdala and hippocampus may be affected
by the loss of Tlx. Dysfunctions of the limbic system are
implicated in several psychiatric disorders [65].

Mutation of the NR2E1 gene has been related to micro-
cephaly. Studies have been carried out on coding, un-translat-
ed, and regulatory sequences, as well as on evolutionary con-
served non-coding regions [22]. Alterations were observed in
the non-coding regulatory region, and a number of candidate
mutations have been identified in patients with severe cortical
disorders [22]. Interestingly, the evolutionary constraint in the
coding region of NR2E1 was strong when compared to many
other genes examined for gene diversity.

The NR2E1 region on chromosome 6q21-22 has been re-
lated to bipolar disorder (BP), especially in patients with man-
ic episodes and a distinct heredity (bipolar I). This link has
also been described in schizophrenia (SZ), as well as in some
neurological disorders [76–78]. In addition, a meta-analysis of
BP demonstrated the strongest genome-wide linkage at 6q21-
22 [79]. Profiling of miR expression in SZ and BP post-
mortem brains as well as genome-wide association studies
(GWAS) have indicated miRs in the aetiologies of these dis-
orders [80]. TLX is targeted by several miRs, among which
miR137 displayed the highest degrees of gene variation in a
GWAS study of SZ and BP [81]. Administration of lithium
and other mood stabilisers seems to downregulate the miR let-
7 family in both treatment responders and non-responders
[81]. The let-7 family has also been suggested to affect syn-
aptic development [82], and its expression in the brain can be
modulated by sleep deprivation [83]. miR9-3p has been re-
ported to associate with SZ as well [84]. The miR field is
continuously expanding as new non-coding RNAs are being
discovered. Associations between miRs and TLX are likely to
be increasingly found in neuropsychiatric disorders.
Moreover, these miRs might be used as therapy targets for
regulation of Tlx in both positive and negative ways, depen-
dent on the specific target and function.

TLX and Tumour Stem Cells

Several studies indicate that brain tumour stem cells (BTSCs)
may derive from NSCs. The most striking supporting
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evidence is that there are numerous similarities between these
cell types. Accumulating evidence also indicates that different
malignant tumours, including brain cancers, contain cells that
maintain features of tissue-specific stem cells and are malig-
nant [85–90]. BTSC expresses nestin, Musashi-1, Sox2, and
MELK, all of which are also expressed in adult NSC [85,
89–91]. Cancer stem cells (CSCs) are capable of self-
renewal and multipotent lineage differentiation, and these
cells have been isolated from numerous tumours.
Particularly for brain tumours, research groups have advocat-
ed that a hierarchical concept of tumour development [87, 91]
is applicable in many cases. BTSCs are at the top of the hier-
archy similar to NSCs, and are able to self-renew and differ-
entiate—which might go wrong (Fig. 1) [87].

In aggressive brain tumours, the existence of BTSC was
demonstrated using a nucleostemin-based murine model [92].
Further evidence has been presented describing CSCs to exist
within ependymomas [91], glioblastoma multiforme [93], as-
trocytomas [94], and medulloblastomas [87]. What mecha-
nisms lead to NSC transformation? For instance,
ependymomas have been shown to be derived from CSC
and to carry localization-specific radial glia phenotypes [91].
Additional evidence for the hypothesis that BTSCs are de-
rived from NSCs evolves from the fact that numerous brain
tumours develop in the SVZ where NSCs are located [93,
100]. Indeed, Tlx is expressed in adult NSCs [19, 21, 56, 74,
93]. The high degree of similarity between NSCs and BTSCs
is a potential source of inspiration in identifying efficient tar-
gets and in designing novel treatments.

In glioblastoma, many of the signalling pathways that con-
trol stem cell development are aberrant as for the EGF receptor
and the PDGF α-receptor. Other examples of stem or

progenitor cell determinants being up-regulated and maybe
playing a role in gliomagenesis include the transcription fac-
tors Tlx [93], Oct4 [95], Olig2 [96], and the stem cell markers,
i.e. CD15, CD133, and nestin [87, 97–99], as well as markers
of different neuroepithelial cells.

As for the peripheral nervous system (PNS) tumours, over-
expression of TLX has been demonstrated in high-risk neuro-
blastoma (NB)—the childhood tumour of embryonic origin
derived from the adrenosympathetic branch of neural crest
cells (NCCs) [27]. When tumour-initiating cells (TICs) are
enriched by tumour spheres, Tlx expression increases [27],
and the side population cells are enriched (in manuscript).
NCCs are highly plastic and mobile cells, being able to form
both neuroepithelial and mesenchymal cells. Thus, tumours
derived fromNCC, such as NB and melanoma, maintain these
properties, making them difficult to target.

The overexpression of Tlx alongside with common genetic
lesions (e.g. mutant p53) will induce gliomas [24, 93, 101].
Tlx-GFP reporter mice overexpressing PDGFB and AKT
were used to develop gliomas with differential GFP expres-
sion [26]. When compared to cells not expressing Tlx-GFP,
cells doing so were largely quiescent, but they could self-
renew and showed an increased sphere formation with
tumour-promoting potential. Remarkably, Tlx-GFP-
expressing cells were different from cells that express other
putative CSCmarkers (i.e. Sox2 and Olig2). This may suggest
that tumours may contain variable CSCs and/or stem and pro-
genitor cells. These observations suggest that Tlx is a potential
molecular target of gliomas [26, 92].

The tumour-suppressor gene Pten was identified as a TLX
target during a global gene expression in a profiling study [42,
43]. Pten and p21 are likely to be the responsible genes for
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NSC self-renewal

NSC prolifera�on

TLX
Atrophins
BCL11A
LSDI
HDACs
VHL

Interac�ng co-regulators

Sox2

SIRT1

LSDI

Pten

miR let-7d

miR 378
miR 9
miR 137 miR let-7b

Pax2

Mmp2
Ascl1
Pou5f p21
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Fig. 1 Relationships between
TLX and its upstream,
downstream, and interacting
molecules are illustrated. Their
hierarchical relations are
indicated by arrow lines (positive)
and cut lines (negative).
Molecules in rectangular boxes
indicate repressors, and circular
boxes activators
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Tlx-induced glioma. Loss of Pten and p53 in adult NSCs leads
to expansion of these cells, resulting in the formation of glio-
blastoma. Cell-cycle regulators and neuronal differentiation
genes, such asTGFbR1 and Dlx2, were upregulated in Tlx
knockout CSCs [42, 43]. These findings agree with prior re-
ports that Tlx represses transcription in controlling CSCs.
HDACs are required for this function of Tlx, which is essen-
tial for maintaining CSC self-renewal [35]. Thus, HDAC in-
hibitors may target CSCs to overexpress Tlx.

Since Tlx-amplified NSCs in combination with other ge-
netic alteration contribute to tumorigenesis in the nervous sys-
tem, Tlx may become a good diagnostic marker and therapeu-
tic target for patients with malignant gliomas. In fact, Tlx is
overexpressed in human glioma and neuroblastoma, suggest-
ing that Tlx is involved in human neural tumour development.
Tlx expression has furthermore been shown to correlate with
poor prognosis and shorter survival of these tumours [24, 27,
56, 101]. Indeed, conditional ablation of Tlx-expressing cells
will slow tumor growth and inhibit CSC self-renewal, which
is associated with induction of senescence and neurogenetic
differentiation [26, 102].

It is important to identify specific CSC targets, since CSCs
contribute to treatment resistance [103]. A recent investigation
of the full Cancer Genome Atlas dataset (that includes other
prognostic factors) indicated that the prognostic importance of
Tlx is related to its low expression of the glioma CpG island
methylator phenotype (G-CIMP), with a single mutation of
isocitrate dehydrogenase 1 (IDH1). Gliomas associated with
IDH1 mutation are considered to be a genetically distinct en-
tity predicting better survival [104]. Thus, Tlx may be a poor
prognostic factor in itself. Nevertheless, its low expression in
G-CIMP patients might reveal the biology in one distinct pop-
ulation of tumours. Future research will demonstrate the im-
portance of CSCs, highlighting Tlx as a novel glioma CSC
marker.

Conclusion

It is urgent to examine different subtypes ofmalignant gliomas
as for other genomic alterations with amplified TLX. Are
there any mutations in the TLX gene? These questions are
also relevant for neuropsychiatric disorders, which are usually
considered to be triggered by combinations of multiple gene
variations and epigenetics—such as methylation and changes
in regulatory RNAs.Moreover, nuclear receptors interact with
a variety of proteins, enabling protein stabilisation, activation,
or degradation. No endogenous ligands or inhibitors of TLX
have as yet been identified, but TLX is indeed a druggable
target since synthetic ligands bind to the TLX-LBP [105].
Understanding the mechanisms of NSC renewal will provide
insights into basic science as well as offer clinically useful
replacement therapies for several disorders in the nervous

system, including tumours. Mapping the TLX-controlled net-
work that regulates these outcomes will be a major step for-
ward in our understanding of NSC self-renewal, neurogenesis,
and possibility to eradicate cancer stem cells.
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