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Modifications in the strengths of synapses are thought to underlie
memory, learning, and development of cortical circuits. Many
cellular mechanisms of synaptic plasticity have been investigated
in which differential elevations of postsynaptic calcium concentra-
tions play a key role in determining the direction and magnitude
of synaptic changes. We have previously described a model of
plasticity that uses calcium currents mediated by N-methyl-D-
aspartate receptors as the associative signal for Hebbian learning.
However, this model is not completely stable. Here, we propose a
mechanism of stabilization through homeostatic regulation of
intracellular calcium levels. With this model, synapses are stable
and exhibit properties such as those observed in metaplasticity and
synaptic scaling. In addition, the model displays synaptic compe-
tition, allowing structures to emerge in the synaptic space that
reflect the statistical properties of the inputs. Therefore, the
combination of a fast calcium-dependent learning and a slow
stabilization mechanism can account for both the formation of
selective receptive fields and the maintenance of neural circuits in
a state of equilibrium.

Synaptic plasticity as a physiological basis for learning and
memory storage has been extensively investigated. Induction

of bidirectional synaptic plasticity has been shown to depend on
calcium influx into the postsynaptic cell (1, 2). In a previous
paper, we proposed a model of bidirectional activity-dependent
synaptic plasticity that depends on the calcium currents mediated
by N-methyl-D-aspartate receptors (NMDARs) (3). In this
model, which we henceforth denote calcium-dependent plastic-
ity (CaDP), the direction and magnitude of synaptic changes are
determined by a function of the intracellular calcium concen-
tration: basal levels of calcium generate no plasticity, moderate
ones induce depression, and higher elevations lead to potenti-
ation (4). At a synapse, the amount of neurotransmitter bound
to NMDARs provides information on the local, presynaptic
activities, whereas back-propagating action potentials signal the
global, postsynaptic activities. This association between pre- and
postsynaptic activities thus forms the basis for Hebbian learning.
Analysis and simulations have shown that this model can explain
the rate-, voltage-, and spike timing-dependent plasticity as
consequences of, respectively, the temporal integration of cal-
cium transients, the voltage-dependence of NMDAR conduc-
tances, and the coincidence-detection property of these recep-
tors (3, 5). In addition, numerous experimental results support
the idea that NMDARs play key roles in activity-dependent
development and refinement of synapses because of their per-
meability to calcium ions (6–11).

However, typical of associative forms of plasticity rules, CaDP
is not completely stable. Excessive neural excitation generates
high levels of depolarization, favoring calcium entry into the
dendrites and thus promoting synaptic potentiation. Such po-
tentiation further enhances the excitability of the cell. In this
paper, we complement CaDP with a biologically motivated
method of synaptic stabilization. We propose an activity-
dependent regulation of calcium levels that counteracts sus-
tained increases or decreases of neuronal excitability. Calcium
mediates a myriad of cellular processes in addition to synaptic

plasticity, and under certain conditions, it can be deleterious
(12). Mechanisms exist that control the flux of calcium in the
various compartments of the cell and through its various sources.
There are a variety of calcium sources including voltage- and
receptor-dependent channels, as well as release from the intra-
cellular stores. Therefore, many possible pathways of control
coexist. We have previously shown that modifications of the
NMDAR intrinsic properties can modify the CaDP learning
curves (3, 13). In the interest of presenting a concrete and
relatively simple model, we implement calcium homeostasis
through an activity-driven regulation of NMDARs. If other
pathways prove to be important, they can easily be incorporated
into our model.

We show that such a regulation results in a learning dynamics
comparable to those observed in homeostatic forms of synaptic
modifications, such as synaptic scaling (14, 15) and metaplastic-
ity (16, 17). In scaling, chronic increase (decrease) in the global
levels of cellular activity weakens (strengthens) the synaptic
weights. In metaplasticity, sustained increase (decrease) in neu-
ral activities makes further potentiation (depression) more dif-
ficult to be elicited. At first sight, these properties seem in
contradiction to classical results from experience-dependent
synaptic modifications, such as long-term depression (LTD) and
long-term potentiation (LTP). These types of plasticity require
that synaptic strengths increase with high, and decrease with low,
levels of neural excitation. Through our implementation, we
propose that LTP and LTD share the same pathways as the
homeostatic forms of plasticity, with the latter occurring in a
time scale longer than the former. In addition, our results suggest
that scaling and metaplasticity could be alternative manifesta-
tions of similar processes, recruited to maintain a working level
of dendritic calcium.

We also investigate the implications of a slow stabilizing
mechanism on the collective dynamics of the synapses. A familiar
property of single neurons is their input selectivity: their re-
sponse is typically tuned to a particular subset of the stimuli that
they receive. This can arise from selectively strengthening some
synapses, whereas depressing others in other words, through
synaptic competition. The emergence of structure in the synaptic
space should reflect the nature of the input statistics. Here, we
show that our model neuron is sensitive to temporal correlations
among the input spike-trains in a manner similar to spike
timing-dependent plasticity (STDP) (18). Furthermore, after
sequential, random presentations of a set of input rate patterns,
the neuron develops selectivity to only one of these patterns. This
is comparable to traditional rate-based learning models such as
the Bienenstock–Cooper–Munro (BCM) rule (19). This finding
suggests that synaptic homeostasis could be an essential aspect
of learning that participates not only in synaptic growth control,
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but also in the emergence of time- and rate-sensitive structures
in the synaptic space.

Methods
Learning Rule. According to CaDP (3), calcium currents through
NMDARs Ii depend both on a function fi of the glutamate
binding, and on a function H of the postsynaptic depolarization
level

Ii � gfi�t�H�V�. [1]

Upon the arrival of a presynaptic spike at synapse i, fi reaches
its maximum value. Part of it decays exponentially with a fast
time constant; the remainder decays slowly. Analogously, upon
the triggering of a postsynaptic spike, the back-propagating
action potentials reaches its peak value and decays as a sum of
two exponentials. The voltage dependence of the H function
describes the magnesium blockage of the NMDARs (20). Intra-
cellular calcium [Ca]i is integrated locally, and decays passively
with a time constant �,

d�Ca� i

dt
� I i �

�Ca� i

�
. [2]

The synaptic weights are updated as

dwi

dt
� ���Ca� i����Ca� i � �wi� , [3]

where �([Ca]i) is a calcium-dependent learning rate, � is a
U-shaped function of calcium, and � is a decay term. The
detailed implementation has been presented (3), and the pa-
rameter values can be found in the supporting information,
which is published on the PNAS web site.

Model of Stabilization. In this paper, the control of dendritic
calcium concentrations is implemented through a slow, activity-
dependent regulation of the NMDAR permeability, which de-
pends on the time-integrated membrane voltage. If the postsyn-
aptic voltage is chronically low, NMDAR conductance increases
to allow more potentiation; if it is persistently high, the conduc-
tance decreases.

The specific dynamic equation

dg
dt

� ��k�� V � V rest�
2 � k��g � k�gt [4]

can be derived from a kinetic model of NMDAR insertion and
removal, with parameter gt and transition rates k� and k�(V �
Vrest)2, respectively. For simulation details and parameter values,
see supporting information.

Simulation Methods. Following the methodology detailed in ref.
18, we simulate an integrate-and-fire point neuron, with 100
excitatory and 20 inhibitory synapses. Only excitatory synapses
are plastic. Each synapse receives a Poisson spike-train whose
parameter is the mean input rate of that synapse (see supporting
information).

To introduce correlation into a subset of spike trains, we adopt
the model described in ref. 21. Let the number of correlated
inputs be Nc. Given a correlation parameter c (0 � c � 1), and
an input frequency r, we pregenerate N0 Poisson events with rate
r, where N0 � Nc � 	c(1� Nc). At each time step, these events
are randomly distributed among the Nc synapses. Redundancy
results from the fact that N0 � Nc. Thus, coincident spikes will
occur with a higher-than-chance probability without affecting
the mean rate within each spike train. We also simulate two
independently correlated groups (or channels), each consisting

of Nc � 50 synapses. The same procedure described above is
applied to each channel, using two different sets of N0 Poisson
events. Only excitatory synapses receive correlated inputs.

Spatial patterns of rate distribution are presented to the cell
as follows. For square patterns (where the rates are piecewise
constant functions of the synaptic position), the synaptic vector
with 100 synapses is divided into Np nonoverlapping channels
with 100�Np synapses each. Every 500 ms, one of these channels
is randomly chosen to receive stimulus rate r*; the remaining
groups receive rate r 
 r* (see Fig. 5A). For bell-shaped patterns
(where the rates are Gaussian functions of the synaptic position),
Gaussian functional forms with amplitude A and width � are
added to a constant, ‘‘background’’ rate r (see Fig. 6A). For each
pattern, the peak rate r* � r � A is at a different synapse
position. If there are Np patterns, the peak positions are the
synapses 100�Np, 200�Np, . . . 100. For example, a pattern with
peak rate at synapse 50 is described by

	�n� � r � A exp�� �n � 50�2

2�2 � , [5]

where 	(n) is the input rate at synapse n. Every 500 ms, one of
these patterns is randomly chosen and presented to the cell. It
should be noted that these are the instantaneous rates of the
inhomogeneous Poisson spike trains and not the frequencies of
regularly firing stimuli.

All of our simulations were performed by using the same set
of parameters. However, to speed up some of the simulations,
both the learning and the stabilization rates were made 100 times
faster in the simulations involving different input statistics
because we are mostly interested in the final state. We have
verified that the fixed point of the system does not change if both
rates are multiplied by the same factor. We run all simulations
with time steps of 1 ms, until the fixed points (or the saturation
limits, if these are present) are reached.

Results
Homeostasis. It has previously been shown that CaDP alone is
unstable (13). For low and high input rates, the synapses depress
and potentiate until the saturation limits are reached. Comple-
menting the model with a mechanism of calcium-level homeosta-
sis introduces a stable fixed point to the synaptic weight dynam-
ics. To illustrate this, we simulate a neuron receiving
homogeneous Poisson spike trains at a given rate until the fixed
point is reached, and repeat the procedure for rates spanning the
interval (5 and 60 Hz).

The final weight distribution is stable and finite for all input
rates in the range presented (Fig. 1A). In addition, the values of
the fixed points decrease for increasing rates. This property is
reminiscent of the results observed in synaptic scaling experi-
ments (15). In fact, the distribution of the synaptic weights is
unimodal (Fig. 1B), similar to the results obtained from the
theoretical formulations of scaling (22). Although the weights
scale down, the output rates still increase monotonically with
increasing input rates (Fig. 1C; for comparison, we also show the
input–output relation in the absence of the stabilization mech-
anism). This differs from previously proposed models proposed
to stabilize spiking neurons, where roughly the same output
levels are achieved regardless of the input rate (22–24). If the
input rate holds information about the stimulus, maintaining the
input–output relationship could be important for the propaga-
tion of such information across the different layers of processing
in the brain.

Depression of the weights with increasing input rate is in
apparent contradiction with the well known results of experi-
ments using rate-based LTD- and LTP-inducing protocols (7, 8,
25). To address this issue, we investigate the full temporal
dynamics of the synaptic weights when the input rates are
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switched from a reference level (10 Hz) to a higher (30 Hz) or
a lower value (5 Hz). The temporal evolutions of the synaptic
weights are shown in Fig. 2. In a short time scale, switching input
rates from 10 to 30 Hz results in LTP (Fig. 2 A), and changing
the rates from 10 to 5 Hz produces LTD (Fig. 2B).

The effects of homeostasis are only manifested in a longer
time scale, leading to a 33% down-scaling of the weights in the
former case, and a 46% up-scaling in the latter. This finding is
in agreement with observations that the time scale for LTD and
LTP induction is on the order of seconds or minutes, whereas the
induction of metaplasticity and scaling takes hours to days. Our
results suggest that long-term plasticity (LTD and LTP) and
neuronal homeostasis (metaplasticity and scaling) could both
share the same biological pathways of synaptic modifications,
differing only in the respective time scales.

Selectivity to Temporally Correlated Spike Trains. The unimodal
synaptic distribution presented previously resulted from an input
environment that contained no structure. To demonstrate that

patterned distribution can arise under stabilized CaDP, we
present spike trains with different statistical structures to the
simulated neuron. We first divide the synaptic vector into two
channels: one has synapses receiving spikes with a higher-than-
chance probability of arriving together; the other receives un-
correlated Poisson spike trains.

The effects of correlation can be observed through the
spike-triggered presynaptic event density (STPED), which mea-
sures the average number of presynaptic spikes arriving with a
lag �t before or after a postsynaptic spike. In Fig. 3A, we plot the
STPED for an input rate of 10 Hz and in the absence of plasticity.

Fig. 1. Stabilizing effects caused by calcium homeostasis. (A) The averaged final weights scale down with increasing input activity. (B) The final weight
distribution is unimodal when the input consists of structureless Poisson spike trains. Black, 30-Hz input activity; gray, 10-Hz input activity. (C) The final response
rate is an increasing function of the input rate whether there is homeostatic regulation (solid line) or there is not (dotted line). However, the gain is smaller in
the presence of a stabilization mechanism. Results are shown after 2 h and 46.7 min of simulated time in the presence of homeostasis, and after 1,000 stimulating
pulses in its absence.

Fig. 2. Different time scales of synaptic modification. (A) When the input
activity increases from a reference value (10 Hz) to a higher rate (30 Hz), the
synapses are transiently potentiated (blue line). The effects of homeostasis
manifests on a much longer time scale. The evolution of the NMDAR conduc-
tance is also shown (green line). (B) Similarly, when the input decreases from
the reference to a lower rate (5 Hz), the synapses first undergo depression,
then potentiation.

Fig. 3. Selectivity to correlated inputs. (A) The STPED shows the number of
presynaptic events that occur at different time lags with respect to a postsyn-
aptic event. The STPED peaks immediately before a postsynaptic spike for the
correlated (blue) channel but is flat for the uncorrelated (red) channel. Results
are for a input rate of 10 Hz, and intervals were binned at every 10 ms. (B) The
final weight distribution is bimodal, and the correlated group is selectively
potentiated (synapses 50–100 are zero, and thus hardly visible in the figure).
The segregation is only possible with the implementation of a homeostatic
calcium control.

Yeung et al. PNAS � October 12, 2004 � vol. 101 � no. 41 � 14945

N
EU

RO
SC

IE
N

CE



The STPED peaks immediately before �t � 0 for the correlated
group (blue). For the uncorrelated group (red), the STPED is
flat. This finding indicates that coincident spikes have a greater
chance of eliciting a postsynaptic spike. Therefore, due to the
spike timing-dependent property of CaDP, presynaptic spikes
that precede postsynaptic spikes are selectively potentiated.
Excessive potentiation subsequently triggers homeostastic reg-
ulation, which in turn depresses the uncorrelated channel. The
final weight distribution is thus segregated into strong, corre-
lated synapses and weak, uncorrelated ones, as depicted in
Fig. 3B.

Such segregation is robust across a wide range of spike train
parameters, such as the spike rate r, correlation strength c, and
number of correlated units Nc (Fig. 4). The weights of the
correlated synapses decrease as the input rate increases, showing
again the effects of homeostasis (Fig. 4A). Furthermore,
strengthening the correlation increases segregation (Fig. 4B).
Finally, if more synapses are correlated, their average weight
is weaker, suggesting that, when many inputs arrive together,
less potentiation is needed to control the neuronal response
(Fig. 4C).

This model differs in an important aspect from existing
learning rules where STDP potentiates synapses that receive
temporally correlated spike trains. Here, patterned weight dis-
tribution only emerges if the input is structured. In the some
formulations of STDP, bimodal distribution of weights arises
even when the stimuli are nonstructured Poisson spike trains
(18). One also should notice that robust segregation between the
correlated and the uncorrelated channels is only possible with
the stabilization mechanism we introduced here. Previous sim-
ulations have shown that, without stabilization, such segregation
is only achieved within a narrow range of input rates: the weights
are all potentiated or all depressed for rates slightly above or
below this range (26).

Independently Correlated Channels. We have extended the tem-
porally correlated environment from one correlated and one
uncorrelated channel to two independent correlated channels.
Under this condition, the two groups compete with each other
until one of them gains control over the postsynaptic firing.
The final states are similar to the ones presented above (see
supporting information). However, because the correlation
parameter c is the same for both groups, the winning group is
random at each run. In addition, the time course can be
significantly different across runs. These properties illustrate

that this system undergoes spontaneous symmetry breaking.
Bias, which can break this symmetry, can be introduced by
changing the correlation strength or the number of synapses of
a group.

Selectivity to Patterns of Input Rate. The results we presented so far
use stationary input patterns: the synapses within a channel are
either correlated or uncorrelated throughout the simulation. In
addition, the mean input rate is the same across all inputs.
However, sensory receptive fields typically develop in natural,
nonstationary environments where different groups of synapses
are transiently excited at different times. To explore whether, in
addition to temporal correlations, our model neuron also de-
velops selectivity to nonstationary patterns of input rate, we
deliver inhomogeneous Poisson spike trains with instantaneous
rates defined as a function of synaptic position and of time.
Because the patterns change rapidly, compared with the rate of
learning, the mean input is statistically homogenous across
synapses. Nonetheless, in each case, the neuron develops selec-
tivity to only one of the patterns presented.

Fig. 5B shows an example of the temporal evolution of the
weights when four square patterns with the lower rate r � 10 Hz
and the higher r* � 40 Hz are presented to the cell. Symmetry
breaking occurs and the synapses evolve to a state such that the
neuron responds most strongly to pattern 2. Because the patterns
switch randomly during training and all of the weights start with
the same initial condition, the selected pattern is random at each
run.

The results hold for different numbers of patterns, as well as
for different rate intensities. Fig. 5C compares the final weights
after simulations using two, four, and five patterns, with r � 10
Hz and r* � 40 Hz. Fig. 5D shows the final weights for two
patterns where r � 10 Hz, but with r* � 20, 30, and 60 Hz. All
simulations reach a final state where a single channel is poten-
tiated; the remainder depresses to zero. The precise values of the
synaptic weights are consistent with the ongoing homeostatic
regulation. Because only a subset of the synapses becomes
nonzero, their final weights are stronger than those presented
above. Similarly, the fewer synapses are present in the potenti-
ated subset, or the lower the input rate, the more these synapses
are strengthened.

An alternative environment is one where the input rates are
distributed as mutually overlapping bell-shaped patterns. Fig. 6A
shows an example using four Gaussian patterns with background
rate r � 10 Hz, peak rate r* � 40 Hz (Gaussian amplitude A �

Fig. 4. Robustness of input selectivity. (A) The correlated group is selectively potentiated for a wide range of input rates; shown are the averaged final weights
for the correlated (blue) and the uncorrelated (red) groups. The weights of the potentiated group decay with increasing rate in a manner similar to Fig. 1. (B)
Strengthening the correlation parameter c increases the segregation between the two channels. (C) Increasing the number of correlated synapses decreases the
final weights of the correlated channel, indicating that less potentiation is needed for this channel to control the postsynaptic firing.
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30 Hz), and width � � 10 synapses. The evolution of the synaptic
weights can be seen in Fig. 6B, where the neuron develops
selectivity to pattern 3. Fig. 6C shows the final weight distribu-
tion. In this case, it does not have the same width as the input

patterns, but the selected input is unambiguous, as can be seen
by the responses to test stimuli shown in Fig. 6D.

Discussion
Here, we extend our previous work on CaDP and show how two
important cell properties, stability and input selectivity, emerge
from a common framework based on a fast calcium-dependent
synaptic plasticity combined with a slow calcium regulation
mechanism.

Stability is introduced through a slow, activity-dependent
regulation of the dendritic calcium levels. This extends the
‘‘sliding threshold’’ of rate-based Bienenstock–Cooper–Munro
(BCM) to spiking neurons and may serve as a biological basis
for neuronal homeostasis. Our results can be related to
observations in synaptic scaling experiments (Fig. 1). A key
conclusion is that neuronal stabilization processes detected in
different types of experimental protocols (namely, metaplas-
ticity and synaptic scaling) can rely on similar underlying
processes that are involved in the fine control of intracellular
calcium concentrations. Moreover, these slow homeostatic
processes can coexist with LTD and LTP within the same
formalism (Fig. 2). Plasticity at different time scales might be
due to different cellular mechanisms. However, our results
show that the rapid long-term plasticity and the slow homeo-
static processes can share the same substrate or substrates for
synaptic modification. One prediction of our model is that
transient LTP-inducing stimulation should lead to high eleva-
tions of calcium as shown in the literature (4, 27, 28), but
sustained stimulation should subsequently produce calcium
levels that are similar to baseline levels.

In many spike timing-dependent learning rules, stability and
competition are conf licting properties. Some learning rules
(18) exhibit strong synaptic competition, giving rise to pat-
terned synaptic weight distribution even in the absence of
structure in the stimulus. However, these rules are typically
unstable and require saturation limits for the synaptic growth.
Other models (22, 24) are highly stable, but competition needs
to be enforced through an additional mechanism. In these
models, stabilization regulates the output rate in such a way
that this is roughly maintained, regardless of the input rate. In
our model, stimuli without structure produce unimodal weight
distributions (Fig. 1). At the same time, patterned inputs
produce a selective potentiation of a subset of synapses (Figs.
3–6). In addition, the input–output relation of the neuron is
positively correlated; this could be important to preserve the
information contained in the input activity. It is important
that stability and competition are consequences of a single
mechanism.

In addition to reproducing the STDP results, our model is
responsive to input rates. We are thus able to achieve selectivity
to rate patterns in a spiking neuron in a manner comparable to
the selectivity obtained in rate-based models (7, 8, 25). Both
rate- and spike-based forms of plasticity have been observed
experimentally in the same preparation (29), and the relation-
ships between the models have been proposed at a phenome-
nological level (30, 31). Here, we show that the interplay between
these two mechanisms, previously shown in a one-dimensional
neuron (3, 13), also is present in a multiinput environment and
could involve subcellular mechanisms of coincidence detection
and temporal integration of metabolites.

In this paper, calcium homeostasis is implemented, for con-
venience and clarity, through a dynamic regulation of NMDAR
permeability. However, evidence for the role of NMDAR in
synaptic stabilization remains conflicting. Many studies reveal
activity-dependent modification of the NMDAR function. These
may involve receptor trafficking (32–34) or modification of its
subunit composition (35–37). However, other experiments indi-
cate that synaptic homeostasis can still be detected when

Fig. 5. Selectivity to nonstatic square patterns of input rate distribution. (A)
An example with four patterns, each pattern consists of 75 inputs at a lower
rate r, and 25 inputs at a higher rate r*. Inhibitory inputs are at 10 Hz. Every
500 ms, one of these patterns is randomly chosen and presented to the cell. (B)
Each of the 100 rows represents the temporal evolution of a synapse over the
50 min of simulated time. The color bar indicates the synaptic strength. In this
case, four patterns are presented, and the neuron develops selectivity to
pattern 2. (C) The averaged final weight of the potentiated channel after
training with two, four, and five patterns (r � 10 Hz and r* � 40 Hz). When only
one channel is potentiated, the remainder collapses to zero. (D) The averaged
final weight of the potentiated channel, with higher rate r* � 20, 30, and 60
Hz (lower rate r � 10 Hz, using two patterns). Selectivity is robust for different
pattern dimensions and amplitudes.

Fig. 6. Selectivity to nonstatic Gaussian patterns of input rate distribution.
(A) In this example with four patterns, each pattern has a width of 10 synapses,
a baseline amplitude of 10 Hz, and a peak amplitude of 40 Hz, but the peaks
are at different positions for each of them. (B) Temporal evolution of the
synaptic weights; the color bar scale is the same as in Fig. 5B. (C and D) The final
weight distribution (C) and the test stimulus (D) indicate that the neuron
becomes selective to pattern 3.
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NMDARs are blocked (38). Calcium can be recruited into the
synapse through numerous cellular pathways that may act in
parallel. The results presented here do not depend on the
particular choice of calcium regulation mechanism but rely on
the assumption that calcium is the signal for triggering both
long-term and homeostatic bidirectional plasticity. The involve-

ment of additional calcium sources can be readily incorporated
into our model.

L.C.Y. is a Brown University Brain Science Program Burroughs–
Wellcome Fellow and a Brown University Physics Department Galkin
Foundation Fellow.
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