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Background: Twenty to 40% localised RCC patients may experience recurrence after curative surgery. Limited miRNA predictors
have been identified for ccRCC recurrence.

Methods: Through a multi-phase study design, we analysed miRNAs in tissues obtained from 203 ccRCC patients. Paired t-test
was used for tumour–normal comparisons and Cox regression model was performed to compute hazard ratios (HRs) and
corresponding 95% CIs.

Results: A 17-miRNA signature was identified that can concordantly classify 495% of tumour/adjacent normal samples. Significant
enrichment was found as 6 out of 17 miRNAs were associated with obesity (binomial probability¼ 0.001). Decreased levels of miR-
204-5p and miR-139-5p were each associated with an approximately three-fold increased risk of recurrence (Po0.01). Risk score
was generated based on expressions of miR-204-5p and miR-139-5p, and the trend test was significant in both discovery and
validation sets (Pfor trendo0.05). Striking MST reduction was observed for patients with a high-risk score (high vs low: discovery, 9.4
vs 497.7 months; validation, 20.8 vs 470.3 months). Expressions of miR-204-5p were also associated with body mass index
(b¼ 5.64, Po0.001). Significant inverse correlations were observed and validated between miR-204-5p and 13 obesity-related
genes (ro0, Po0.01).

Conclusions: We identified 17 miRNAs dysregulated in ccRCC tissues and showed that low expressions of miR-204-5p and miR-
139-5p were associated with the higher risk of recurrence. The link between miR-204-5p and ccRCC recurrence may be partially
mediated by regulating the expression of targeted obesity-related genes.

Kidney cancer remains one of the top 10 most common cancers for
both males and females in the United States (Siegel et al, 2016).
Over 80% of kidney cancers are composed of renal cell carcinoma
(RCC) and the major histological type is clear cell RCC (ccRCC).
Smoking, history of hypertension, and obesity are the three
established risk factors for RCC (Chow et al, 2010). It has been
estimated that B20–40% of localised patients may experience
disease recurrence after curative therapy (Janzen et al, 2003) and
five-year survival rate is only 11.7% for the patients with distant
metastasis (Howlader et al, 2013). Previous studies have reported

that clinical stage (Fergany et al, 2000; Leibovich et al, 2003; Russo
et al, 2008), grade (Leibovich et al, 2003; Russo et al, 2008), tumour
size (Leibovich et al, 2003), and microvascular invasion
(VanPoppel et al, 1997) are associated with the recurrence or
progression. Interestingly, in contrast to its association with an
increased risk for RCC development, being obese may reduce the
risk of recurrence and increase the overall survival (Yu et al, 1991;
Parker et al, 2006). However, the complete set of predictors for
RCC recurrence has not been well established, underscoring the
need for new biomarkers to identify those at high risk.
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MiRNAs are a class of noncoding RNAs of 18–25 nucleotides in
length. MiRNAs bind to the 30-untranslated region (UTR) of their
target genes, typically resulting in gene silencing by triggering the
degradation of the target mRNA. MiRNAs are promising
biomarkers for the cancer risk and prognosis due to its stability
and functionality (Bartel, 2004). Multiple miRNA signatures for
RCC tumorigenesis have been generated by performing quantita-
tive real-time PCR, microarray, or next-generation sequencing
(Jung et al, 2009; White et al, 2011; Osanto et al, 2012). Recently,
The Cancer Genome Atlas (TCGA) has completed genome-wide
profiling of miRNAs in samples of various types of cancer,
including ccRCC. A signature based on levels of miR-10b, miR-21,
miR-204, miR-30a, miR-143, and let-7a has been reported by
TCGA, which may distinguish ccRCC patients with favourable
survival (Cancer Genome Atlas Research N, 2013). High levels of
miR-21 were correlated with worse survival in another study
(Faragalla et al, 2012). Knowledge regarding the role of miRNAs in
relation to RCC recurrence is still limited. One study reported that
levels of miR-143, miR-26a, miR-145, miR-10b, miR-195, miR-126,
and miR-127 were decreased in RCC patients with recurrence
(Slaby et al, 2012). In another study, a 4-miRNA signature was
generated consisting of miR-10b, miR-139-5p, miR-130b, and
miR-199b-5p (Wu et al, 2012). However, the sample sizes of these
previous studies have been relatively small.

In this study, we set out to accomplish two aims. First, identify a
miRNA signature for tumorigenesis through a multi-stage design
to provide a better insight of miRNAs dysregulated in ccRCC.
Second, identify miRNAs associated with ccRCC recurrence and
explore their associations with obesity.

MATERIALS AND METHODS

Study population and sample collection. A total of 135 MD
Anderson ccRCC patients were involved in the present study. The
details of the study population have been reported previously
(Clague et al, 2009). There were no age, sex, ethnicity, or cancer-
stage restrictions on recruitment. Patient demographic variables,
tobacco and alcohol use history, weight and height to calculate
body mass index (BMI), and medical history were obtained by in-
person interview. For smoking history, a never smoker was defined
as an individual who had never smoked or had smoked o100
cigarettes. Those subjects who had quit smoking 412 months
before diagnosis/recruitment were considered former smokers.
Clinical information was abstracted from patient medical records,
including clinical stage, grade, comorbidities, tumour size,
pathological stage, histology, treatment, and clinical outcomes.
We also collected tumour and adjacent normal tissues from a
subset of patients (Hildebrandt et al, 2012). We utilised 32
tumour–normal pairs and 32 unpaired tumour samples from 64
patients in the discovery. Tumour–normal pairs were collected
from all 71 patients in the validation. External independent data set
consisted of 68 ccRCC tumour–normal pairs was downloaded
from the TCGA portal (https://tcga-data.nci.nih.gov/tcga/).

The study flowchart is shown in Figure 1. For tumour–normal
comparisons, three data sets consisting of data generated from 32,
68, and 71 pairs of ccRCC tumour and adjacent normal tissues
were used. For testing the association with ccRCC recurrence, 64
(31 recurrence vs 33 non-recurrence) and 71 tumour samples
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Figure 1. Study flowchart.
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(29 recurrence vs 42 non-recurrence) were utilised in the discovery
and validation phases, respectively. ccRCC patients without
recurrence were frequency matched to patients with recurrence
by age, sex, and clinical stage (I and II/III and IV) in the validation.
The study protocol was approved by the MD Anderson Cancer
Center Institutional Review Board. All participated patients
provided written informed consent.

Lab procedures
Discovery phase. Total RNA was extracted from 32 pairs of
ccRCC tumour and adjacent normal tissues, and 32 unpaired
ccRCC tumour tissues. Total RNA was isolated using the mirVana
RNA Isolation Kit (Life Technologies, Gaithersburg, MD, USA).
Labelled cDNA was synthesised, amplified, and purified from
300 ng total RNA using the TotalPrep RNA Amplification Kit (Life
Technologies). Each sample was then hybridised to Human-6 v2
Expression BeadChips and read using the BeadStation 500 scanner
(Illumina, San Diego, CA, USA) to generate gene expression data
(Hildebrandt et al, 2012). MiRNAs were profiled using Illumina
Sentrix Array Matrix 96-well MicroRNA Expression Profiling
Assays. After quality control (calling rate o80% and excluding
non-mature miRNAs), 300 mature human miRNAs remained for
the final analyses.

Validation phase. Same protocols for total RNA isolation, reverse
transcription, and PreAmp were used for the 71 pairs of ccRCC
tumour and adjacent normal tissues in the validation.

Selection of miRNAs for validation. There were two parts of
validation for our study. First, for tumour–normal comparisons,
candidate miRNAs with significant differential expressions
between 32 paired ccRCC tumour–normal tissues from the
discovery (Po0.01), and the association was also significant in
the same direction in the TCGA data set (4200 reads per million
miRNA mapped, Po0.01) were selected. For the association of
recurrence, significant miRNAs in univariable Cox regression
(Po0.01) were selected for the analysis in the validation set.

MiRNA expression by Fluidigm Microfluidics Dynamic Arrays.
Selected miRNAs were measured using high-throughput BioMark
HD Real-Time PCR system (Fluidigm, South San Francisco, CA,
USA). Briefly, reverse transcription was carried out as described
above using pooled miRNA primers with 150 ng of total input
RNA. Pre-amplification was performed with pooled Taqman assay.
PCR products were cleaned up using an enzymatic digestion
approach by Exonuclease I (New England Biolabs, Ipswich, MA,
USA). After pre-amplification, a 5 ml sample mixture was prepared
for each sample. The IFC controller HX (Fluidigm) was used to
distribute the sample mix and assay mix from the loading inlets
into the 96.96 Dynamic array reaction chips. After loading, the
chip was placed in the BioMark instrument for real-time PCR at
95 1C for 10 min, followed by 40 cycles at 95 1C for 15 s and 60 1C
for 1 min. Data were analysed with Real-Time PCR Analysis
Software in the BioMark instrument (Fluidigm).

Each PCR reaction was done in duplicate and the mean of cycle
threshold (Ct) was calculated. Small nuclear RNAs U44 were used
as internal control for input normalisation. The mean Ct value of
each sample was normalised to the averaged expression of U44
snRNA and then subjected to analysis with 2�DDCt method. Data
were set to missing from further analysis if one of the following
criteria were fulfilled: (1) the generated duplicated Ct values with
over one cycle variance; (2) samples with a Ct value 435; and
(3) miRNAs with a detection rate o80%.

Compilation of obesity-related miRNAs and genes. We com-
piled a list of obesity-related miRNAs (N¼ 75) from an online
database (Kunej et al, 2013). Sixty nine of 75 miRNAs were covered
in our miRNA microarray. We compiled a list of obesity-related

genes according to four sources: (1) bioinformatics tool Text-mined
Hypertension, Obesity, and Diabetes Candidate Gene Database
(Dai et al, 2013). We restricted genes to those reported by three
or more studies and further reviewed these genes in details.
Two-hundred and sixteen candidate genes remained in further
analysis. (2) Online database of obesity-related genes: integra-
tomics TIME (Kunej et al, 2013). (3) Obesity-relevant pathways
selected from Biocarta, KEGG and Reactome pathway databases.
Fifteen pathways included in our list were: adipocytokine signalling
pathway (KEGG, 67 genes), type II diabetes mellitus (KEGG, 47
genes), insulin signalling pathway (KEGG, 137 genes), insulin
signalling pathway (BioCarta, 22 genes), IGF-1 signalling pathway
(BioCarta, 21 genes), leptin pathway (BioCarta, 11 genes), PPAR
signalling pathway (KEGG, 69 genes), metabolism of lipids and
lipoproteins (Reactome, 478 genes), peroxisomal lipid metabolism
(Reactome, 21 genes), P53-hypoxia pathway (BioCarta, 23 genes),
mTOR signalling pathway (KEGG, 52 genes), mTOR pathway
(BioCarta, 23 genes), energy-dependent regulation of mTOR by
LKB1-AMPK (Reactome, 18 genes), oxidative phosphorylation
(KEGG, 135 genes), and mitochondrial fatty acid beta oxidation
(Reactome, 14 genes). (4) Genes close to GWAS confirmed loci for
BMI or obesity. We downloaded the list consisted of 43 studies
from a Catalog of Published Genome-Wide Association Studies
(http://www.genome.gov/gwastudies/). The keywords used for
searching were: BMI, obesity, obesity (early-onset extreme), obesity
(extreme), BMI (interaction), adiposity, fat body mass, and weight.
We included both upstream and downstream genes closest to the
SNP if it is located in the intergenic regions. Loci with genome-
wide significant SNPs (Po5� 10� 8) were eligible to be studied.
One hundred genes were included after duplicates being removed.
In total, we compiled a list consisted of 2051 obesity-related genes.

Prediction of target genes for miRNA. We used a web-based
analytical tool: ToppMiR (Wu et al, 2014) (https://toppmir.cchm-
c.org/) to search putative miRNA targets for obesity-related
miRNAs. It searches for any evidence of putative target genes for
miRNAs through multiple prediction tools, including: mirSVR,
miRTarbase, MsigDB, TargetScan, miRecords, PicTar and PITA.

Statistical analysis. MiRNAs that had been detected in o80% of
samples were excluded. Continuous host characteristics were
analysed using Student’s t-test, whereas categorical variables were
analysed using Pearson’s w2-test. miRNA array data were quantile
normalised (Bolstad et al, 2003) and log2 transformed in the
discovery set, whereas reads per million miRNA-mapped values
were obtained from TCGA miRNA-seq data and CT values
generated from Fluidigm platform were used. For tumour–normal
comparisons, paired Student’s t-test was performed to compare
levels of normalised miRNAs between ccRCC tumour and adjacent
normal pairs. Fold change was calculated as normalised miRNA in
tumour samples divided by normalised miRNA in paired adjacent
normal tissues for both the TCGA and our miRNA mircoarray
data. In the validation, fold change was calculated using 2�DDCt

method (2�DDCt¼ 2� ((CtmiRNA in tumour�CtRNU44 in tumour)�
(CtmiRNA in normal�CtRNU44 in normal))). For discovery phase analysis
of recurrence, the normalised levels of miRNAs were directly
compared between the patients with and without recurrence. In the
validation, relative quantification (RQ) was calculated as
2� [(CtmiRNA�CtmiRNA mean)� (CtRNU44�CtRNU44 mean)] in tumour
tissues using Ct value of each miRNA. Levels (RQ) of miRNAs
were dichotomised according to the median level in patients
without recurrence. The associations between 300 miRNAs and
obesity were tested in the adjacent normal tissues in the discovery
phase, using univariable and multivariable linear regression model.
The adjustment included age, sex, smoking status, and history of
hypertension. Pearson’s correlations were conducted to compare
the correlations of fold changes of miRNAs identified for the
tumorigenesis signature between data sets. Kaplan–Meier survival
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curves and Cox regression models were performed to test
dichotomised miRNAs in association with recurrence-free survival.

To test whether the identified miRNAs were enriched to be
obesity related, we calculated the binomial probability for
observing the exact number or more miRNAs that are obesity
related in the present study, given the assumption that 23 miRNA
are obesity related (Po0.05 in the multivariable linear regression
model and listed in the Integratomics TIME database;
Supplementary Table S5) among 300 miRNAs tested (probability
of event is 23/300¼ 0.077). Pearson’s correlations were conducted
for the predicted miRNA–mRNA pairs using our ccRCC miRNA
and mRNA microarray data from our discovery phase
(Nsample¼ 64) and the TCGA ccRCC level 3 tumour miRNA and
mRNA-seq data (Nsample¼ 236, both Pearson’s correlation
Po0.01). To maintain consistency, the TCGA mRNA data were
also log2 transformed. All tests were performed using STATA 13.0
(College Station, TX, USA) and R 3.01. The heatmaps were
generated using GenePattern (v3.1, Broad Institute, Cambridge,
MA, USA). The hierarchical clustering algorithm with Pearson’s
correlation as column distance measure and pairwise average
linkage as clustering method were used.

RESULTS

The study flowchart is shown in Figure 1. Host characteristics of
135 ccRCC patients recruited at MD Anderson are shown
(Supplementary Table S1). The proportions of male (80.6% vs
39.4%), current smoker (22.6% vs 12.1%), and late-stage patients
(III and IV, 71.0% vs 21.2%) are higher in the 31 patients with
recurrence, compared with 33 patients without recurrence in the
discovery. We frequency matched 29 patients with recurrence to 42
patients without by age, sex, and clinical stage in the validation.

MiRNAs differentiating ccRCC tumour–normal pairs

Discovery. One-hundred seventy miRNAs were dysregulated in
the 32 ccRCC tumour samples compared with their adjacent
normal samples (Po0.01; Supplementary Table S2). The fold
change ranged from 0.14 to 10.4 with miR-514a-3p being most
downregulated and miR-122a-5p being most upregulated.

First validation. Significant miRNAs identified in the discovery phase
were tested using data from 68 TCGA ccRCC tumour–normal pairs.
Thirty three of 170 miRNAs were significantly dysregulated with the
same up/downregulated trend in tumours (Po0.01; Supplementary

Table S2). The fold change ranged from 0.03 to 13.6 with miR-141-3p
being most downregulated and miR-155-5p being most upregulated.
The scatter plot showed the correlations between fold changes of
expressions of the 33 candidate miRNAs in the discovery and TCGA
validation data sets (Supplementary Figure S1A). The correlation
coefficient was 0.96 (Po0.001).

Second validation. We further tested these 33 miRNAs in a third
independent data set that consisted of 71 ccRCC tumour–normal
pairs. The final signature consisted of 13 downregulated and 4
upregulated miRNAs across the three independent data sets
(Figure 2; Supplementary Table S2). The correlation between fold
changes of expressions of these 17 validated miRNAs between
discovery and second validation data sets was highly significant
(r¼ 0.90, Po0.001; Supplementary Figure S1B). In clustering
analysis using the 17-miRNA signature, it concordantly classified
495% of samples (Figure 2; Supplementary Figures S2 and S3).
Interestingly, six of these miRNAs were identified to be obesity
related that was significant in the enrichment test (6 out of 17,
binomial probability¼ 0.001; Supplementary Table S5).

MiRNAs associated with ccRCC recurrence

Discovery. The results of univariable Cox regression identified
three upregulated and five downregulated miRNAs in patients with
recurrence (dichotomised, Po0.01; Supplementary Table S3). The
most significant upregulated and downregulated miRNA in
patients with recurrence was miR-365a-3p (hazard ratio
(HR)¼ 0.32, 95% CI¼ 0.15–0.68, P¼ 0.003) and miR-204-5p
(HR¼ 3.15, 95% CI¼ 1.47–6.76, P¼ 0.003), respectively. The
miRNA expressions were also modelled as continuous predictors
which showed persistent associations.

Validation. Two of the eight miRNAs were significantly asso-
ciated with ccRCC recurrence in the validation set (dichotomised,
Po0.01; Table 1). In the univariable model, low levels of miR-204-5p
was associated with a significantly increased three-fold risk of
ccRCC recurrence (HR¼ 3.01, 95% CI¼ 1.34–6.80, P¼ 0.008).
Similar results were found for miR-139-5p (HR¼ 2.79, 95%
CI¼ 1.29–6.03, P¼ 0.009). The associations remained significant
and the strengths subtly changed with the adjustment of covariates
(Supplementary Table S4). Consistent associations were observed
when modelling miRNAs levels in continuous form (Table 1;
Supplementary Table S4). Striking reduction in recurrence-free
median survival time, from 4107.2 months to 46.2.0 months
(Plog-rank¼ 0.002) and 62.9 months to 25.0 months (Plog-rank¼ 0.006)
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Figure 2. Heatmap for MDACC discovery set of miRNA tumour–normal comparisons. A full colour version of this figure is available at British
Journal of Cancer online.
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was observed for low miR-204-5p levels in the discovery and
validation set, respectively. Similarly, the decrease was observed
from 4113.5 months to 39.5 months (Plog-rank¼ 0.002) and 70.3
months to 25.0 months (Plog-rank¼ 0.006) for low miR-139-5p
levels in the discovery and validation set, respectively
(Supplementary Figure S4). Risk score derived from miR-139-5p
and miR-204-5p was able to stratify our study population into
high-risk, intermediate and low-risk groups (Figure 3). The
increasing risk of recurrence with higher-risk score was consis-
tently observed in the discovery and validation sets in the
multivariable Cox regressions (Pfor trendo0.05; Table 2).

Target gene prediction for miR-204-5p and test for the
correlations. Obesity-related miR-204-5p (b¼ 5.64, Po0.001;
Supplementary Table S5) was associated with both ccRCC
tumorigenesis (Figure 2) and recurrence. The test of enrichment
was not significant (one out of two, binomial probability¼ 0.148).
Of 2051 obesity-related genes (Supplementary Table S6), 406 were
predicted to be regulated by miR-204-5p. We further tested the
correlation between miR-204-5p expression and gene expression
levels for each of the 395 genes that were available in the same
samples (Supplementary Table S7). Eighteen pairs exhibited
significant inverse Pearson correlations (Po0.01) with receptor
tyrosine kinase-like orphan receptor 2 (ROR2) being most
significant (r¼ � 0.53, P¼ 1.46� 10� 6). We conducted the same
correlation analysis for the genes in the TCGA data and 13
miRNA-gene pairs remained highly statistically significant
(Table 3). The P-value reached 10� 22 for insulin-like growth
factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) that was most
significant in TCGA data set.

DISCUSSION

In the present study, several miRNAs identified were obesity
related. Most interestingly, obesity-related miR-204-5p was
associated with both ccRCC tumorigenesis and recurrence.
Furthermore, miR-204-5p was consistently inversely correlated
with 13 obesity-related genes in two independent data sets.

Many miRNAs in our signature for tumorigenesis overlap with
findings from the previous studies. For example, overexpressed
miR-34a, miR-155, miR-210, and under-expressed miR-10a/b,
miR-30a, miR-141, miR-200a/b/c, miR-204, miR-500a, and miR-
532 were reported by Jung et al (2009) and Juan et al (2010). Our
findings support the role of these miRNAs played in the
development of the disease. Moreover, the highly significant
correlation coefficient between fold changes of expressions of
validated dysregulated miRNAs across different data sets demon-
strated the robustness of our findings. With the incorporation of a
three-stage design that strengthens our findings, we further refined
miRNA profiles of ccRCC tumorigenesis.

Both miR-204-5p and miR-139-5p were identified as most
influential miRNAs for ccRCC pathogenesis in the network
analysis (Butz et al, 2014). Interestingly, low expression of
miR-204 was the key feature (together with high levels of
miR-21) of discriminatory miRNA group 2 identified by original
TCGA analysis, in which the patients had worst prognosis
compared with other groups (Cancer Genome Atlas Research N,
2013). However, limited studies have focused on the role of these
miRNAs in the development of ccRCC recurrence. Our observa-
tion of association between decreased level of miR-204-5p and
shorter RCC recurrence-free survival is novel. In a previous study,
lower levels of miR-204-5p were observed in RCC patients who
progressed to metastatic disease compared with those without
progression. However, it is not clear what covariates were adjusted
in their analyses (Gowrishankar et al, 2014). It has been suggested
that miR-204-5p may function as a tumour suppressor. Higher
expressions of miR-204-5p have been observed in breast and
gastric cancer tissues obtained from patients free from disease
metastasis (Li et al, 2014). In vitro studies have shown that
overexpression of miR-204-5p could markedly suppress cell
migration and invasion in different cell lines (Chung et al, 2012;
Qiu et al, 2013; Ying et al, 2013). Previous studies also have
reported the tumour suppressive function of miR-139-5p in
cancer recurrence or metastasis. In one study, reduced level of
miR-139-5p was found in tissues obtained from ccRCC patients
with recurrence after nephrectomy (Slaby et al, 2012). However,
miR-139-5p was not selected for validation. In other studies, it was
consistently downregulated in ccRCC metastatic samples and
oesophageal squamous cell carcinoma tissues obtained from
patients with lymph node metastasis (Wu et al, 2012; Liu et al,
2013). miR-139-5p was also found to be associated with ccRCC
survival in some studies but not all (Osanto et al, 2012; Wu et al,
2012). Our findings further support the role of miR-139-5p as a
tumour suppressor in cancers, including ccRCC, although addi-
tional studies are required to validate our findings.

Interestingly, several miRNAs identified in this study were
obesity related. One caveat is that our study was not ideal to
identify or confirm whether the associated miRNAs are obesity
related. The obesity-related miRNAs were defined based on
association tests in our own samples with relatively small sample
size and large number of comparisons. Therefore, we can only
make a suggestive inference. Studies using samples collected from
healthy subjects and with larger sample size would be more
appropriate to achieve this goal. However, we further used a
database to consolidate our observations.

Obesity has been related to later recurrence and favourable
survival in RCC patients (Yu et al, 1991; Kamat et al, 2004; Parker
et al, 2006). Studies showed that comparing with those with
normal BMI, obese RCC patients had 450% reduced risk of
recurrence and longer survival (Yu et al, 1991; Parker et al, 2006).
However, the exact mechanisms involved in these processes have
been elusive. Therefore, our exploratory analysis for miR-204-5p

Table 1. Univariable Cox regression of miRNAs and ccRCC recurrence in the discovery and validation phases

Discovery Validation

miRNA
Up/down in patients

with recurrence HR 95% CI P-value HR 95% CI P-value Obesity related
miR-204-5pa Down 0.55 0.35–0.86 0.009 0.85 0.77–0.94 0.001 Yes

High expressionb Ref.
Low expressionb 3.15 1.47–6.76 0.003 3.01 1.34–6.80 0.008

miR-139–5pa Down 0.39 0.23–0.68 o0.001 0.74 0.62–0.88 o0.001 No
High expressionb Ref.
Low expressionb 3.10 1.45–6.62 0.003 2.79 1.29–6.03 0.009

aUnivariable Cox regression with miRNAs (�DDCt) modelled as continuous variables.
bLevels were dichotomised according to median level in non-recurrence patients.
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Figure 3. Five-year recurrence-free survival curves for miR-204-5p and miR-139-5p. (A, B) Kaplan–Meier curves of miR-204-5p in the discovery/
validation. (C, D) Kaplan–Meier curves of miR-139-5p in the discovery/validation.

Table 2. Risk group stratification using risk score generated from miR-204 and miR-139

Discovery Validation

Risk groupa HRb 95% CI P-value Ptrend HRb 95% CI P-value Ptrend

Univariable
Low RS Ref. Ref.
Intermediate RS 2.69 0.87–8.34 0.087 1.78 0.64–4.92 0.271
High RS 8.00 2.60–8.34 o0.001 o0.001 4.67 1.80–12.1 0.002 0.001

Multivariable
Low RS Ref. Ref.
Intermediate RS 1.15 0.31–4.32 0.834 2.89 0.87–9.57 0.082
High RS 3.45 0.81–14.7 0.094 0.035 6.91 1.94–24.6 0.003 0.003
aAbbreviations: Low RS¼ low-risk score consists of high levels of miR-204 and miR-139; Intermediate RS¼ intermediate-risk score consists of high level of either miR-204 or miR-139; High
RS¼ high-risk score consists of low levels of both miRNAs.
bMulitivariable model 1: adjusted for age, gender, clinical stage, smoking, hypertension, and obesity (BMIo30 vs BMI4¼ 30).
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and obesity deserves further investigations. Overexpressed miR-
204-5p was shown to promote adipocyte differentiation and
increase lipid droplet accumulation in mesenchymal stem cell lines
(Huang et al, 2010; Alexander et al, 2011). In this study, the
expression of miR-204-5p was also positively associated with BMI.
Thus, miR-204-5p may contribute to ccRCC recurrence through its
link with obesity. In addition, we observed several putative target
genes regulated by miR-204-5p, which includes IGF2BP2. IGF2BP2
binds to the 50-UTR of the IGF2 mRNA transcripts and
subsequently represses the translational process (Nielsen et al,
1999). Increasing evidence supports its association with obesity
and cancer risk (Sandhu et al, 2003; Livingstone, 2013). Several
GWAS have also linked a common variant located in IGF2BP2
(rs4402960) to risk of type 2 diabetes (Saxena et al, 2007; Scott
et al, 2007; Zeggini et al, 2007).

Another gene of interest is ADAM12, which is also involved in
the IGF receptor signalling pathway (Kveiborg et al, 2008). The
overexpression of ADAM12 has been reported in various cancers
(Wewer et al, 2005). Its protease and adhesion activities, stimulation
on cell proliferation, and increased resistance to apoptosis may
contribute to the progression of tumours (Kveiborg et al, 2005,
2008). Therefore, we hypothesised that miR-204-5p may serve as an
intermediate between obesity and recurrence, potentially through
IGF signalling (Supplementary Figure S5).

Our study has several strengths. The sample size of the present
study is relatively large in comparison to other studies. Impor-
tantly, independent data sets were used to validate our findings.
The miRNAs remained significant in the multivariable model,
which indicates their independent prognostic value. In addition,
to increase the likelihood that the predicted miRNA–mRNA
relationships are plausible, we used a prediction tool that integrates
multiple prediction algorithms and evaluated the correlations in
two independent data sets. We also recognised several limitations
of our study. Although the findings were validated in independent
internal/external data sets, the possibility of false positives still
exists. In addition, the correlation tests were exploratory that
laboratory-based experiments are required to validate the putative
miRNA–mRNA relationships. Another limitation is that our data
set is not ideal to investigate the relationship between miRNAs and
obesity. Finally, the curated obesity-related gene set includes genes
having various biological functions that the genes are not ‘obesity
related’ only. However, there is no well-defined obesity-related
gene set that could be found in any commonly used databases,
including BioCarta, KEGG, Reactome, and GO.

Our findings may have clinical implications in predicting
ccRCC patients who are at higher risk of recurrence and provide
new insights of mechanisms involved in the link between
obesity and ccRCC recurrence. However, more efforts are
warranted to establish the exact biological mechanisms for the
interplay of obesity, miRNAs and their targeted genes, and ccRCC
recurrence.
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