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Current structural genomics projects are yielding structures for
proteins whose functions are unknown. Accordingly, there is a
pressing requirement for computational methods for function
prediction. Here we present PHUNCTIONER, an automatic method for
structure-based function prediction using automatically extracted
functional sites (residues associated to functions). The method
relates proteins with the same function through structural align-
ments and extracts 3D profiles of conserved residues. Functional
features to train the method are extracted from the Gene Ontology
(GO) database. The method extracts these features from the entire
GO hierarchy and hence is applicable across the whole range of
function specificity. 3D profiles associated with 121 GO annota-
tions were extracted. We tested the power of the method both for
the prediction of function and for the extraction of functional sites.
The success of function prediction by our method was compared
with the standard homology-based method. In the zone of low
sequence similarity (�15%), our method assigns the correct GO
annotation in 90% of the protein structures considered, �20%
higher than inheritance of function from the closest homologue.

functional residue � function prediction � structural genomics

Increasingly, protein structures are being determined without a
knowledge of the function of the molecule. Proteins with

unassigned function began to accumulate in the Protein Data
Bank (PDB) (1) 6 years ago, and their number is growing
exponentially (see supporting information, which is published on
the PNAS web site). Today, there are �500 proteins annotated
as ‘‘hypothetical’’ in PDB (roughly 1 per 50 entries). This gap is
expected to increase dramatically as a consequence of structural
genomics projects in which high-throughput methods are applied
to determine the conformations of numerous proteins in a
genome-wide strategy (e.g., ref. 2). One major motivation of
structural genomics projects is that the determination of the
structure of a protein provides insight into its molecular func-
tion, which is a step toward understanding its cellular function.
The current structure–function gap clearly shows that more
powerful bioinformatics techniques for function prediction are
urgently needed (3–5). Recently, several groups have developed
algorithms to identify functionally important residues often
employing sequence conservation and�or structural information
(see below). However, identification of function residues is
distinct from actually assigning a function to the protein. Here
we present an automated structure-based method for function
prediction.

The complexity of protein function makes the establishment
of any functional classification problematic (6, 7). Today, an
extensively used functional classification is derived from the
Gene Ontology (GO) project (8). By means of GO, one can
establish a functional hierarchy that progresses from general
functions to more specific functions. As exemplified in GO,
protein function ranges from the very general (e.g., enzyme
activity) through broad terms (e.g., hydrolase) down to more
specific terms (e.g., hydrolysis of O-glycosyl compounds). The
aim of function prediction is to cover as many of these GO levels
as possible.

There are several sequence-based approaches for function
prediction. A simple and widely used strategy is the identifica-
tion of a high sequence similarity between proteins of known and
unknown function that is then used to transfer the specific
function. However, as shown by several general analyses (9–11),
lower levels of sequence similarity can only be used to transfer
general functions, and, even then, this approach is not reliable.
Other widely used sequence-based methods employ specific
profiles and related hidden Markov models with several prom-
inent strategies now available from the InterPro resource (12).
An alternate approach, developed by Hannenhalli and Russell
(13), extracts subfamily-specific functional sites and then uses
these sites to assign proteins to functional subclasses (see
Discussion). In addition, there are methods that do not rely
directly on sequence similarity (e.g., refs. 14–16).

Structural information provides valuable insight into protein
function (17). But just recognizing that two proteins have similar
3D folds in the absence of clear sequence identity does not imply
similar function (18–21). One must identify a similarity both in
sequence and spatial location of the key functional residues
between the proteins of known and unknown function. The
alternative scenario of convergent evolution that results in the
key functional residues being hosted on different folds (e.g., the
serine proteases subtilisin and trypsin) is rare (e.g., ref. 20).
Based on these observations, a number of approaches success-
fully use 3D templates (a set of residues in a 3D layout) known
to be associated to functions (i.e., enzyme active sites) to scan
new structures against the profile library (22–24). A drawback of
these methods is their inability to locate 3D profiles automati-
cally. In their current form, these approaches can be applied only
to functional templates already described in the literature;
moreover, they restrict the sequence variation allowed in the
templates.

Given the difficulties in actually predicting function, as a step
toward this goal several groups have focused on the identifica-
tion of functional sites and regions. Early work considered fully
conserved residues (25). This approach was extended to the
detection of family-specific conservation (residues responsible
for specificity) (26–30). 3D structural information has also been
used to detect functionally important residues and regions, either
alone (31–34) or in combination with sequence information
(35–39). Recently, a method has been developed (40) that can
extract 3D profiles automatically from a set of 3D structures
without the need of a structural alignment. This method has been
successfully applied to a number of proteins. However, the
approach cannot handle hydrophobic residues and imposes
restrictions both on the number of positions in the profiles and
on the number of residue types at each position. This method has
not yet been tested on function prediction.
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Here we propose PHUNCTIONER, a new automated method for
the prediction of function based on the identification of func-
tional sites. Our approach is based on several concepts. First,
structural alignments of homologous proteins can more accu-
rately establish sequence alignments between proteins than
would be obtained by sequence-based methods alone. Second,
the GO classification provides a powerful approach to group
proteins with similar function. Third, the GO classification
provides hierarchical and extensive classification of functions.
Fourth, residues contributing to function for an entire homolo-
gous family will tend to be conserved throughout the family,
whereas residues responsible for the specificity of a subfamily
will only be conserved within that subfamily.

We tested the ability of the method to predict function and to
locate functional sites and compared these with standard
sequence-based approaches.

Methods
Fig. 1 shows a schema of the method. Proteins with the same GO
annotation (8) are extracted from the FSSP (Families of Struc-
turally Similar Proteins) database of structural alignments (41).
Conserved residues in these alignments are extracted and used
to generate position-specific scoring matrices (PSSMs). A struc-
ture of unknown function would be scanned against the library
of PSSMs, and a confident match is used to assign function to the
structure.

Extraction of the ‘‘Function-Determining’’ Residues. Structural align-
ments were taken from the FSSP database (41) in October of
2001. Each FSSP structural alignment is filtered by removing
proteins with �35% sequence identity with any other in the
alignment, proteins with structural similarity �6.0 (FSSP Z
score), and proteins annotated as ‘‘mutant.’’

The resulting alignment is split into different subalignments
(Fig. 1), one for each GO term. The sets of PDB chains in these
subalignments may overlap because a chain with more than one

GO term can be present in more than one subalignment. The
mapping between GO (June 2003) and PDB is taken from the
GO Annotation project (42). Subalignments with fewer than
four sequences are omitted.

The conservation for position i (Ci) in one of these subalign-
ments is calculated as

Ci � sim�aij, aik� ,

where j and k run for all pairs between the sequences in the
subalignment; sim(aij, aik) is the similarity between the residues
of sequences j and k in position i in accordance with the
McLachlan substitution matrix (43).

To assess how conserved a position is with respect to the whole
subalignment, the Z score of its conservation is calculated as

Zi �
Ci � C�

�
,

where C� is the average conservation value of all of the positions
in the subalignment, and � is the standard deviation. Positions
with Zi higher than a given threshold (Zcut) are taken as the
conserved positions. Positions with Zi in the whole original FSSP
alignment (before splitting) higher than another cutoff (Zocut)
are excluded from this set because they are conserved through
all subalignments possibly because of structural (not functional)
requirements. This set of positions (profile), extracted automat-
ically, can be considered as the ‘‘function determinant’’ of a given
GO ‘‘function’’ in a given structural family (Fig. 1). To exclude
profiles with low conservation, we impose an additional filter by
calculating the average entropy of the whole set of positions and
allowing only profiles with an average entropy (AvS) lower than
a given cutoff AvScut. The average entropy for a profile of length
n is

Fig. 1. Schema of the method. (A) Initial filtered structural alignment. This alignment contains proteins with different functional annotations (depicted here
with different colors). Ideally, such an alignment would contain only a few conserved positions because of structural constraints. (B) Splitting of the initial
structural alignment into function-specific subalignments according to the functional annotations of the proteins. Conservation patterns due to functional
reasons become visible in those subalignments. The conserved residues in those subalignments, which can be interpreted as the function-determinant
subalignments and mapped into the 3D structure, are used to construct PSSMs. (C) These PSSMs are used to assign a new structure to the corresponding function
by scoring the sequence against the profiles in the search for the one where it fits better (thick arrow).
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AvS �

�
i�1

n �
k�1

20

pik�log2pik

n
,

where pik is the fraction of sequences in position i having the
residue type k.

Construction of the PSSM. Each profile is converted to a PSSM
(Fig. 1) by using the Gribskov–Luethy–Eisenberg method (44).
For a profile composed by n positions, a matrix of n positions by
20 residue types is constructed where the entry i, j is given by

Pij � �
k�1

20

Wki�sim�k , j� ,

where k runs over the 20 residue types. sim(k, j) is the similarity
(43) between the residue type k and the one represented by the
jth column of the profile. Wki represents the fraction of residue
type k in position i in the subalignment determined by logarith-
mic weighting (44),

Wki �

ln� 1 � � fki

�N � 1�
� �

ln� 1
�N � 1��

,

where fki is the absolute frequency of residue type k in position
i of the subalignment. The score of a set of n residues against one
of these profiles is calculated as

S � �
i�1

n

Pik,

where k is the residue type in the ith position. This score is
converted to a Z score by shuffling the n positions 5,000 times,
rescoring against the profile, and calculating the corresponding
average (S�) and standard deviation (�s). The PHUNCTIONER Z
score provides a measure of the reliability of the prediction, with
a high positive score indicating a confident prediction:

Z �
S � S�

�s
.

Testing the Method. For each sequence in a given filtered FSSP
structural alignment, we removed it from the alignment, rebuilt
the subalignments and corresponding PSSMs without it, and
calculated the Z score of this sequence against each one of these
PSSMs.

We compared this method with a simple assignment by
sequence identity. For each sequence in the FSSP file, we
calculated the percentage of sequence identity with all of the
others. We converted these values to Z scores by shuffling the
query sequence 2,000 times and obtaining the average and
standard deviation of the percentage of identity. So, for a given
sequence, we obtained a ranked list of PSSMs (representing their
corresponding GO terms), and�or a ranked list of sequences. To
compare both methods on the same set of proteins, we evaluated
the cases in which at least one profile and one sequence in the
corresponding lists match the query sequence. For these cases,
we evaluated how frequently the high-scoring subalignments
actually correspond to functions performed by the query protein
and how frequently the high-scoring sequences have at least one
function in common with the query protein. More than 50% of

the lists contain four profiles or more, 13% contain three
profiles, 20% contain two profiles, and 17% contain only one
profile.

Our method is intended primarily to be used when there is no
strong sequence similarity with proteins of known function
(otherwise alternate methods for function transfer can be used).
To simulate this scenario, we repeated that experiment and
removed proteins with a sequence identity higher than a given
threshold with the query sequence. To assess how both methods
work for the different levels of function specificity, we repeated
the tests and considered only GO terms belonging to a level in
the GO ‘‘hierarchy’’ higher than a certain value.

With this procedure, we obtained 4,753 subalignments (pro-
files) comprising 121 different GO terms in different levels of the
GO hierarchy. We tested the method on sets of proteins ranging
from 2,011 to 6,168. Because of the organization of the FSSP
database and the eventual presence of more than one structural
domain, a protein can be in more than one structural alignment
and hence be evaluated more than once, which allows for the
assignment of different GO terms (different top scores) to a
single protein.

Results
Structure-Based Function Prediction. Fig. 2 shows the accuracy of
PHUNCTIONER and SEQID in predicting the correct GO term for
different sets of parameters. We quantify the percentage of cases
in which the first hit predicted by a method is correct (Fig. 2 A).
For most sets of parameters, PHUNCTIONER outperforms SEQID.
The accuracy of PHUNCTIONER ranges from 75% to �90%,
depending on the parameters, whereas the accuracy of SEQID
ranges from 60% to 90%. The results show that PHUNCTIONER
can reliably assign function in zones of low sequence identity,
where SEQID fails. A ‘‘sign test’’ (45) demonstrates that this
method is significantly better than SEQID at �20% sequence
identity (data not shown). As expected, the accuracy of SEQID
improves as we permit hits with more similar sequences (15–
30%). For the 30% sequence identity cutoff, the accuracy of both
methods is comparable, and SEQID outperforms PHUNCTIONER
for some sets of parameters. The accuracy of PHUNCTIONER
improves as we restrict the test set to more informative profiles
(AvScut from 1.4 to 1.0; see supporting information) and as we
discard very general (unspecific) functions (GO level from 2 to
3) at the expense of obtaining predictions for less proteins.

For a user, it is important to have an estimation of the likely
number of true- and false-positive predictions. Formally this can
be represented by a receiver operator characteristic curve
(ROC) that plots (1-specificity) against the sensitivity (see Fig.
2B). A perfect method, able to recover all true hits without any
false positive would be represented by a point in the upper left
corner of the graph, whereas a random method that produces
equal numbers of true- and false-positive predictions uniformly
distributed across all scores would be a diagonal from (0,0) to
(1,1). We calculated the ROC curves with the scores of the first
hit for the cases when there are no hits with appreciable sequence
identity (�15%). This curve shows the ability of the method in
discriminating true from false hits for various Z-score cutoffs.
ROC curves can also be used to compare methods, and Fig. 2B
shows that PHUNCTIONER is better than SEQID for any cost ratio
(sensitivity versus specificity).

A user of the method would examine the Z score to obtain an
indication of the reliability of the prediction. We calculated the
relation between the Z score of the first hit and the number of
true and false positives (Fig. 2D). The number of false positives
in the first position is lower than the number of true ones, and
the false positives are shifted to lower scores. So, as we restrict
Z scores to higher values, the proportion of true positives
increases. For example, if we restrict to Z scores �6.0, 88% of
the cases are correct (i.e., 88% of the predictions are true
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positives), and if we Z restrict scores to �10.0, 95% are correct
(but at expense of having lower coverage). The corresponding
values for coverage are 57.0% of the proteins for a Z score �6.0
and 11.5% for a Z score �10.0).

Example of Structure-Based Functional Assignation. We applied our
method to a structural genomics target, the hypothetical
protein MTH538 (PDB ID code 1EIW) (46). This protein has
the structure of two-component system receiver domains
(CheY), nucleotide triphosphate (NTP)-binding proteins, and
f lavodoxins. Experiments show that it binds Mg2� but not
f lavin mononucleotide. A sequence search with PSI-BLAST (47)
finds the COG (48) family COG1618 (‘‘putative ATPases or
kinases’’), although the protein does not have the classical
NTP binding motifs. Our method assigns this protein to the
‘‘two-component response regulatory activity’’ (GO term
GO:0000156; Z score � 4.96) and to the ‘‘Mg2� ion binding
activity’’ (GO term GO:0000287; Z score � 7.07) annotations.
Interestingly, the residues automatically detected by the
method as responsible of the Mg2� binding activity (residues
13, 19, 70, and 71) map in similar regions to the ones whose
resonances shift after Mg2� titration in NMR experiments
(46): residues 13, 15, 55–56, 77, 92–95, and 99. Our method
could not test the protein against f lavin-related GO terms
because profiles could not be generated. The method clearly
‘‘rejects’’ the assignment of the protein to NTP binding
functions (GTP or ATP) by producing very bad Z scores for
them (0.80 for GTP binding and 1.71 for ATP binding). Thus,
our method clearly detects that the protein does not fit in the
NTP-binding motifs, despite the global sequence signals de-
tected by PSI-BLAST. Although these features were already
identified through extensive manual inspection of sequences
and structures, our method identified them automatically. Our
method also predicts three additional functions that do not
match what is known so far about the protein: Ca2� binding (Z
score � 5.18), transcription factor [Z score � 3.44; because of
profiles derived from receiver domains of transcription factors
(a false positive)], and transferase [Z score � 2.10 (another
possible false positive)]. Refer to Fig. 2 for expected ratios of
false positives associated with these scores.

We include four additional examples of function prediction for
hypothetical proteins in supporting information. The Z scores
range from 1 to 4 when one would expect roughly equal numbers
of true and false predictions. Inspection of the information about
the function of these proteins suggests that our method is
providing several reasonable functional annotations.

Extracted Function-Determinant Residues. In addition to the pre-
diction of function, our method automatically detects sets of
residues (3D profiles) associated to GO terms (Fig. 1). Fig. 3A
shows the residues automatically extracted by this method for
the GO term ‘‘GTP-binding activity’’ (GO:0005525) in the
1ctqA.fssp structural alignment, mapped on the structure of
the Ras oncogene (PDB ID code 1CTQ). All of the residues
lie around the bound nucleotide accounting for the GTP-
binding activity function. This profile is highly specific as
indicated by the average value of 7.1 for the PHUNCTIONER Z

(Parameters: Zcut, 2; Zocut, none; GO level, 3; AvScut, 1.4.) The corresponding
PHUNCTIONER Z score for some point is also indicated. TP, true positives; FN, false
negatives; TN, true negatives; FP, false positives. (C) Regions of sequence
identity (seqid.; between the query sequence and the found hit) where both
methods found a correct hit in the first position. The percentage of cases for
which both methods found a correct hit in the first position at each level of
sequence identity is shown. (D) Relationship between the PHUNCTIONER Z score
of the first hit and the number of true (black) and false (gray) positives.
(Parameters: Zcut, 2; Zocut, none; GO level, 2; AvScut, 1.4.)

Fig. 2. Evaluation of the PHUNCTIONER method and SEQID in function predic-
tion. (A) Percentage of correct predictions in the first position of the ranking
lists of both methods. The black bars represent the PHUNCTIONER method, and
the gray bars represent the SEQID method. The sets of columns represent
different values for the sequence identity and GO-level cutoffs (values are
shown on the left). In all of the cases, the Zcut parameter is 2, no Zocut cutoff is
applied, and the AvScut cutoff is 1.0. See supporting information for extended
versions showing other sets of parameters. (B) Receiver–operator-character-
istic curves of both methods for the �15% sequence identity test set.
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score for all proteins in the alignment with GTP-binding
activity. In contrast, the average Z score for proteins without
GTP-binding activity (including the highly similar ATP-
binding activity) against this profile is only 1.1.

To illustrate the differences between this and other methods,
we calculated other sets of functional residues one would obtain
for this GTP-binding function by using different strategies:

1. Conserved residues in the sequence alignment of a family of
proteins having that GTP-binding function (Ras). We ob-
tained the multiple sequence alignment for this family from
the HSSP (Homology-Derived Secondary Structure of Pro-
teins) database (49), removing redundant sequences (�95%
sequence identity). We used three cutoffs of conservation
according to the HSSP VAR parameter (sequence variability
on a scale of 0–100). These conserved residues largely map
to the nucleotide-binding site, but they are also in other parts
of the protein, reflecting other functions of Ras beside the
GTP-binding in which we are interested (Fig. 3B).

2. Family-dependent conserved residues were obtained from
the same multiple sequence alignment by using two different
methods: SEQUENCESPACE (26) (selecting positions present
in more than three subfamilies) and MTREEDET, which
implements the Mutational Behavior method (29) (using a
correlation cutoff of 0.6). These methods identified residues
that are to some extent located in the nucleotide binding site,
but mainly in the regions conferring specificity to the dif-
ferent subfamilies. Most of the residues clearly identify the
surface known to be implicated in the interaction with
different Ras effectors (down in Fig. 3C) (50). Again, those
positions are only slightly related to the GTP-binding activity
GO term, and not exclusively to it.

3. Conserved residues for all of the proteins annotated with that
GO term. In general, it is impossible to align the large
number of proteins associated to a given GO term because
they comprise very divergent sequences.

This example illustrates the kind of functional positions our
method is detecting and the differences with the existing meth-
ods. The alternate methods will generally be unable to extract the
residues exclusively responsible for a general GO function except
when it is highly specific.

Discussion
We have developed a method (PHUNCTIONER) for the prediction
of protein function and the concomitant identification of func-
tionally important residues. The approach is fully automated and

considers the entire spectrum of function in terms of specificity.
The method is based on the widely used GO classification, and
it employs structural superpositions to extract the profiles in the
library and thus can be applied to proteins for which purely
sequenced-based methods would not be applicable. Our bench-
mark shows that the approach is more effective than sequence–
homology-based methods, especially in the twilight zone of
function annotation.

There are several limitations in the current implementation
of the method. First, it cannot generate a profile for a function
hosted on more than one fold as a result of convergent
evolution. But convergent evolution of function is rare because
the evolutionary relationship between function and structure
is mainly the result of divergence (e.g., ref. 20). Second, the
requirement of structural information plus the need of four or
more homologous or analogous structures to build a profile
limits the coverage of the method. Third, the method is
restricted to identifying functions associated with proteins of
known structure.

In terms of accuracy, many false negatives of the method are
due to profiles with low information content. Actually, the
results improve when restricting the test set to more specific GO
levels or low entropy profiles (see Results) but with a corre-
sponding decrease in coverage. There are also false positives,
some of them with very clear profiles, for which we do not have
an explanation.

Our approach has similarities to some recently proposed
strategies. The method of Hannenhalli and Russell (13) is also
based on the extracted subfamily-specific residues to assign
proteins to subfamilies. However, their method can only assign
subclasses to proteins already known to belong to a class (thus
requiring high sequence identity). So, their method is intended
to work at high levels of function specificity. However, an
advantage of their method is that it does not require structural
information.

Other methods for function prediction are based on the
matching of structures to amino acid 3D profiles (22–24). The
advantages of our method are the ability to locate previously
unreported 3D profiles automatically and the richer represen-
tation of their sequence composition with PSSMs. A step toward
the automatic generation of 3D profiles without the requirement
of being previously reported comes from the method of
Wangikar et al. (40). However, their approach is restricted in the
profile size, its inability to handle any kind of residue (including
hydrophobic), and the lack of flexibility associated with the
PSSM representation of the profiles. Moreover, their method

Fig. 3. Different ways to extract functional residues associated with the GTP-binding activity GO annotation (GO:0005525). The nucleotide (GTP) is shown in
green. (A) Residues extracted with the method described here. The residues are represented in spacefill and in red. (B) Conserved residues in the sequence
alignment of Ras, a protein annotated with GTP-binding activity. In decreasing order of conservation, positions with VAR � 10 are shown in black, positions with
10 � VAR � 15 are shown in dark-blue, and positions with 15 � VAR � 20 are shown in light-blue. (C) Family-dependent conserved residues extracted from the
same alignment as in B. Residues predicted by the SEQUENCESPACE program (26) are shown in blue, residues predicted by the MTREEDET program (29) are shown in
red, and residues predicted by both methods (like the well studied Glu-37, which is marked with an arrow) are shown in purple. Other views of the structures
are available in supporting information.
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has not been tested in function prediction but only in the
generation of 3D profiles.

An important consequence of our work is the generation of
‘‘3D templates’’ (profiles) for a large number of GO terms, some
of them without previously associated ‘‘functional residues.’’
These profiles could be used with the other methods described
for matching 3D structures and 3D profiles not based in struc-
tural alignments (22, 24, 40).

As with most predictions, the accuracy values obtained are not
perfect; hence, any result of this method has to be taken as a
hypothesis for further investigation. Our method will benefit in

both accuracy and coverage from the expansion of functional
and structural databases. Because the method is fully automatic,
it could be coupled to the pipeline of structural genomics
projects to have automatic prediction of function and functional
sites for the outgoing structures when no clear sequence infor-
mation is available.
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