Skip to main content
. 2017 Jan 8;9(1):1–17. doi: 10.4254/wjh.v9.i1.1

Table 3.

Utility of significantly altered (P < 0.05) metabolites in accurately predicting hepatocellular carcinoma (hepatocellular carcinoma cases vs patients with cirrhosis)

Ref. Platform Comparison Class prediction methodology Classification accuracy or sensitivity/specificity AFP sensitivity/specificity
Patterson et al[29] UPLC/ESI-QTOF-MS HCC (n = 20) vs cirrhosis (n = 7) Random forest 96.3 -
Chen et al[30] Integrated GC/QTOF-MS + UPLC/QTOF-MS HCC (n = 82) vs healthy (n = 71) OPLS-DA 100.0 -
Wu et al[31] SELDI-TOF MS HCC (n = 48) vs cirrhosis (n = 54) or healthy (n = 42) GRO-α + thrombin light chain PS20 Protein immunoassay 89.6/89.6 69/83
Cao et al[32] UPLC/QTOF-MS HCC (n = 23) vs cirrhosis (n = 22) PLS-DA 67.0 -
Gao et al[33] NMR HCC (n = 39) vs cirrhosis (n = 36) PLS-DA 45.7 -
Wu et al[34] GC/MS HCC (n = 20) vs healthy (n = 20) PCA with ROC curve analysis AUC=88.3; AUCAFP = 92.5 when combined with AFP -
Soga et al[35] LC/MS-MS HCC (n = 32) vs HCV-only (n = 35) or cirrhosis (n = 18) Multiple logistic regression; ROC curve analysis 88.1 0.760
Wang et al[38] UPLC-MS HCC (59) vs cirrhosis (20) or NHC (20) PLS-DA, ROC curve analysis CSA 79.3/100 CSA + AFP20 96.4/100 UPLC-MS 100/100 AFP20 74/38 AFP200 52/90
Zhou et al[39] UPLC-QTOF-MS HCC (n = 69) vs cirrhosis (n = 28) PLS-DA, ROC curve analysis AEA 88.0 PEA 82.0 AEA + PEA 88.0 -
Nahon et al[40] NMR Small HCC (n = 28) vs cirrhosis (n = 93); Large HCC (n = 33) vs cirrhosis (n = 93) OPLS Small HCC: 61.0/100.0 Large HCC: 100.0/100.0 -
Yin et al[41] RPLC/QTOF-MS; HILIC/QTOF-MS HCC (n = 25) vs cirrhosis (n = 24) or healthy (n = 25) OPLS RPLC: 61.8 HILIC: 57.0 RPLC + HILIC = 63.6 -
Li et al[42] UPLC/QTOF-MS HCC (n = 8) vs cirrhosis (n = 6) or healthy (n = 6) (murine samples) OPLS-DA 88.2 -
Budhu et al[43] Training set1: GC/MS + UPLC/MS-MS; Testing set2: Affymetrix GeneChip Training set: Stem-like aggressive HpSC-HCC (n = 15) vs Mature hepatocyte less aggressive MH-HCC (n = 15); Testing set: HpSC-HCC and MH-HCC (n = 217) Multivariate analysis 172.0/83.0, AUC = 0.830 272.0/91.0, AUC = 0.860 -
Fitian et al[45] UPLC/MS-MS + GC/MS HCC (n = 30) vs HCV-cirrhosis (n = 27) Random forest 72% 12-HETE 73.3/69.2 AFP20 63.3/83.6
ROC analysis 15-HETE 83.3/59.3
Aspartate 100/51.9
Glycine 83.3/63.0
Serine 73.3/85.2
Phenylalanine 73.3/81.5
Homoserine 70.0/85.2
Sphingosine 58.3/86.7
Xanthine 63.3/88.9
2-Hydroxybutyrate 76.7/77.8
Gao et al[46] GC-TOF/MS HCC (n = 39) vs HBV-cirrhosis (n = 52) Random forest (validation set) 96.8% in HCC vs HBV-cirrhosis 100% in HBV-cirrhosis vs HBV -
100% in HBV vs NHC
ROC analysis (validation set) 100/95.2 HBV vs NC
83.3/100 HBV-cirrhosis vs HBV
76.9/83.3 HCC vs HBV-cirrhosis
Bayes discriminant function model (validation set) 76.9% HCC 100% HBV-cirrhosis
94.1% HBV
100% NHC

Classification accuracy describes the capacity of the metabolomic classification technique to accurately predict the group of each study subject. UPLC: Ultrahigh-performance liquid chromatography; AEA: Anandamide; OPLS: Orthogonal projection to latent structure; PCA: Principal component analysis; PEA: Palmitylethanolamide; PLS-DA: Partial least squares-discriminant analysis; MS: Mass spectrometry; TOF: Time-of-flight; GC: Gas chromatography; HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus; GRO-α: Growth related oncogene-alpha; ROC: Receiver operator characteristic; NHC: Normal healthy controls; AFP20: AFP performance at the cutoff of 20 ng/mL; AFP200: AFP performance at the cutoff of 200 ng/mL.