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Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability in people younger than 45 and is a significant public

health concern. In addition to primary mechanical damage to cells and tissue, TBI involves additional molecular mechanisms

of injury, termed secondary injury, that continue to evolve over hours, days, weeks, and beyond. The trajectory of recovery

after TBI is highly unpredictable and in many cases results in chronic cognitive and behavioral changes. Acutely after TBI,

there is an unregulated release of glutamate that cannot be buffered or cleared effectively, resulting in damaging levels of

glutamate in the extracellular space. This initial loss of glutamate homeostasis may initiate additional changes in glutamate

regulation. The excitatory amino acid transporters (EAATs) are expressed on both neurons and glia and are the principal

mechanism for maintaining extracellular glutamate levels. Diffusion of glutamate outside the synapse due to impaired uptake

may lead to increased extrasynaptic glutamate signaling, secondary injury through activation of cell death pathways, and loss

of fidelity and specificity of synaptic transmission. Coordination of glutamate release and uptake is critical to regulating

synaptic strength, long-term potentiation and depression, and cognitive processes. In this review, we will discuss dysre-

gulation of extracellular glutamate and glutamate uptake in the acute stage of TBI and how failure to resolve acute

disruptions in glutamate homeostatic mechanisms may play a causal role in chronic cognitive symptoms after TBI.
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Introduction

Traumatic brain injury (TBI) is a leading cause of morbidity

and mortality worldwide, resulting in an estimated 10 million

hospitalizations or deaths per year.1 Injury is most likely during

three distinct age periods: early childhood, late adolescence, and

late adulthood.2 Within the United States, TBI is the primary cause of

mortality in individuals younger than 45. The majority of TBIs result

from automobile accidents, followed by falls and recreational in-

juries.2 Additionally, members of the active duty military are at el-

evated risk of TBI, with an estimated incidence of TBI among

wounded soldiers as high as 22%.3 TBI involves both primary me-

chanical damage to brain tissues as well as molecular cascades that

propagate injury into surrounding tissue, a phenomenon known

as secondary injury.4 These metabolic effects include unregulated

neurotransmitter and ion release, cell swelling, diffuse axonal injury,

free radical production and oxidative stress, mitochondrial dys-

function, inhibited ATP production, inflammation, and altered gene

transcription.4–9 These secondary events further exacerbate the ef-

fects of the primary injury, increasing blood–brain barrier damage,

edema, ischemia, and hypoxia—ultimately augmenting the cell

death process.4,8 Due to these secondary processes, TBI continues to

evolve over weeks and months, making behavioral outcomes, par-

ticularly in mild injuries without focal lesions, difficult to predict.10,11

Increases in extracellular glutamate play an important role in

initiating secondary injury cascades. Extracellular glutamate levels

are regulated by a family of plasma membrane excitatory amino acid

transporters (EAATs), localized to post-synaptic neurons and as-

trocytes.12 In the initial stages of TBI, extracellular glutamate levels

increase and glutamate buffering and clearance is impaired.13 Loss

of synaptic fidelity due to increased extrasynaptic glutamate sig-

naling may mediate persistent cognitive and emotional symptoms

after TBI. Intracellular signaling in response to injury changes lo-

calization and binding efficiency of glutamate transporters and

impairs regulation of extracellular glutamate levels. Altered gluta-

mate buffering and reuptake modulate synaptic function, leading to

neuroplastic changes in learning and memory.14 Thus, if acute

deficits in regulation of extracellular glutamate persist chronically,

they may form the molecular basis for the long-term cognitive and

emotional deficits many persons afflicted with TBI exhibit.
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Animal Models of Traumatic Brain Injury

Given the high incidence of TBI, its deleterious effects, and the

inability to invasively study the progression of the injury in hu-

mans, various animal models have been developed to investigate

the pathophysiology of TBI. Because of their smaller size and cost

effectiveness, rodents are the primary animals used to model TBI.4

However, versions of these have been adapted for use in non-rodent

models, such as pig.15 These experimental models mimic various

aspects of human TBI, allowing for comparison of injury type,

location, region, and severity.16 Four primary injury models in

rodents are commonly used: fluid percussion injury (FPI), con-

trolled cortical impact (CCI), weight-drop impact acceleration

(WDIA), and blast injury.4

Fluid percussion injury

The FPI model of injury is perhaps the most widely-used and

well-characterized model of TBI.17 FPI injury is produced by

striking of a pendulum to the back of a fluid reservoir, generating a

wave of pressure through an opening in the skull onto the dural

surface that results in temporary displacement and mechanical

deformation of the brain. FPI injuries are scalable to produce mild,

moderate, or severe TBI, and by adjusting the position of the cra-

niotomy in relation to the sagittal suture, can produce midline or

lateral models of injury, with lateral positioning being the most

common.4 FPI produces both focal and diffuse injury, including

subdural hematoma, intracranial hemorrhage, brain swelling, and

axonal shearing characteristic of TBI pathology in humans.18 Ad-

ditionally, FPI reliably produces the cognitive and behavioral

deficits associated with TBI in humans.19 FPI is used due to its

reproducibility and the ease with which injury severity can be ad-

justed; however, the need for a craniotomy, the cost of the FPI

device, and a high mortality rate due to compromises in brainstem

function are limitations of the model.20

Controlled cortical impact

The CCI model uses a pneumatic impactor device to drive a rigid

rod into the surface of the exposed brain.21 The model induces

deformation of the cortex around the injury site and generates

widespread degradation to cortical, thalamic, and hippocampal

brain regions, resulting in tissue loss, axonal shearing, and contu-

sion.21 A primary advantage of this model is the ease with which

factors such as velocity and depth of injury can be controlled.4

The extent of cortical displacement correlates with both histo-

pathological markers of neuronal dysfunction and behavioral

deficits; thus, the model can be easily adjusted to fit experimen-

tal parameters.22 CCI represents a more focal injury than other

commonly-used models, which can have implications in behav-

ioral and anatomical characterizations.20 However, the low mor-

tality rate and reproducible pathology make CCI a useful model for

biomechanical studies of TBI.4

Weight-drop impact acceleration

The WDIA model induces trauma via a free falling guided

weight striking a metal disk cemented to the rodent’s skull.23 A

scalable injury is achieved by varying the mass of the weight and

the distance that it falls.4 The impacting force generates rapid ac-

celeration of the brain within the skull, resulting in diffuse brain

injury, including petechial hemorrhage and edema in regions from

the cortex to the brainstem without fracturing the skull.16 WDIA

produces characteristic pathological features, including widespread

and bilateral axonal and neuronal damage and extensive diffuse

axonal injury, as well as similar behavioral and cognitive defects

found in FPI and CCI models.4 While cost effective and useful in

evoking diffuse axonal injury, this model has drawbacks due to the

relative variability in injury severity.20 Despite this, the WDIA

model is useful for the study of multiple concussions, an area of

increasing importance in the study of sport-related injuries.

Blast injury models

In recent combat operations, explosive blast forces, such as those

generated by an improvised explosive device, posed considerable

risk of TBI to deployed personnel.3 Even individuals who do not

experience any external injuries subsequent to an explosion can

experience TBI as a result of the forces generated by the blast.3 In

order to understand the mechanisms involved in the propagation of

the injury from an explosive force, animal models have been de-

veloped that seek to recreate the blast injury. In these models, a

shock tube and compression forces simulate non-impact blast in-

juries.3 Characteristic features of blast injury include cerebral

edema, hyperemia, and delayed vasospasm, as well as diffuse ax-

onal injury.4 Blast injuries also lead to behavioral and cognitive

deficits similar to other models of TBI.4 The largest drawback to

blast models is the difficulty in standardizing the injury procedure

and in replicability of results between research groups.24

The Tripartite Synapse and Glutamate
in the Healthy Brain

Glutamate release

Glutamate release, activity as a ligand, and reuptake involves the

coordinated action of pre- and post-synaptic neurons, as well as

astrocytes.25 Receptors, enzymes, and transporters comprise a neu-

ron–astroglia coupled system modulating synaptic, perisynaptic, and

extrasynaptic glutamate levels.26,27 In the pre-synaptic neuron, glu-

tamine may be converted to glutamate by glutaminase and packaged

by vesicular glutamate transporters (VGLUT1-3) for release into

the synapse.28,29 Once released, free glutamate in the extracellular

space activates post-synaptic receptors, is removed into astrocytes

by glutamate transporters, or spills over into the extrasynaptic

space. Glutamate in the synapse may occupy and activate ionotropic

(N-methyl-D-aspartate (NMDA) receptor, a-amino-3-hydroxy-

5-methyl-isoxazole propionate (AMPA), and kainate) or metabo-

tropic glutamate receptors on both neurons and astrocytes.25,30,31

Repetitive activation of excitatory synapses increases synaptic

strength, a process known as long-term potentiation (LTP).32 LTP

and the related phenomenon long-term depression (LTD) exist in

excitatory synapses in brain regions implicated in learning and

memory.32 LTP initiation requires localized increase in intracellular

calcium in the dendritic spine, typically via activation of NMDA

receptors, which gate both calcium and sodium ions.32 Magnesium

ions block the receptor channel at physiological concentrations in a

voltage-dependent manner. Partial depolarization of the cell mem-

brane, usually via activation of the AMPA receptor, extrudes these

magnesium ions. Therefore, both pre-synaptic glutamate release and

AMPA receptor-mediated post-synaptic depolarization are typically

required for NMDA receptor–mediated calcium influx.33 Various

receptor-associated proteins for both NMDA and AMPA can then

form signaling complexes within the post-synaptic density, modu-

lating content, morphology, and function, and ultimately initiating

LTP.34,35
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Neuronal and glial glutamate transporters

EAATs are the most significant means of extracellular glutamate

regulation and are expressed in neurons and glia throughout the

brain in a region- and cell-specific manner.36,37 EAAT1 and EAAT2

are primarily localized to astroglia, while EAAT3-4 and EAAT5 are

primarily localized to neurons and the retina, respectively.36,38

EAATs mediate glutamate transport by an electrogenic exchange of

3 Na+, 1 H+, and 1 glutamate molecule into the cell and 1 K+ ion out

of the cell, with the net inward movement of positive charges.38–40

The glial transporters are situated in perisynaptic processes facing

the synaptic cleft.41 In the prefrontal cortex, glial transporters ac-

count for the majority of synaptic glutamate reuptake.42,43 Cortical

homogenates from EAAT2-deficient mice exhibit less than 5% of

uptake activity, compared with wild-type mice,44 and additional

investigations show that EAAT2 accounts for more than 90% of the

glutamate reuptake activity in most brain regions.45

Following EAAT-mediated uptake into astrocytes or neurons,

glutamate may enter the tricarboxylic acid cycle via conversion to a-

ketoglutarate, be converted to glutamine and transported back into

the synapse, or be released into the extracellular space by a variety of

mechanisms.46 Depending on the cell type, recovered glutamate also

may contribute to lactic acid formation. Lactate production is favored

in astrocytes, while lactate breakdown is favored in neurons.47 Lactate

is efficiently shuttled from astrocytes to neurons and may be a pre-

ferred energy substrate in neuronal structures enveloped by astrocytic

processes.47 Metabolism of glutamate in the synaptic terminals is

necessary both to provide sufficient energy to sustain transmission

and to replenish transmitter pools.48 Consequently, inadequate as-

trocytic reuptake in response to neuronal activity may both increase

signaling though extrasynaptic glutamate receptors as glutamate

spills out of the synapse and/or fail to sustain neuronal energy

requirements and transmitter pools during periods of high demand.

Regulation of glutamate reuptake

The expression of EAATs is regulated on multiple levels, in-

cluding transcription, messenger RNA (mRNA) splicing, protein

synthesis, and post-translational modification.38 Receptor tyrosine

kinase (RTK) signaling appears to represent a primary starting

point for second messenger cascades, converging on the mitogen-

activated protein kinases (MAPKs) p42 and p44, and ultimately

regulating expression of EAAT2. The dual phosphorylation of p42/

p44 MAPKs at threonine-202 and tyrosine-204 increases expres-

sion levels of EAAT2 in the presence of neuron-conditioned media,

while inhibition of RTKs by the cell-permeable typhostin A23

blocks the induction of EAAT2.49 Growth factors can bypass the

RTK-p42/44 MAPK pathway and still influence the expression of

EAAT2 by directly activating transcription factors such as cAMP-

responsive element modulator, cAMP responsive element-binding

protein (CREB), and activating transcription factor 1 (ATF-1), al-

though the induction of EAAT2 via these pathways is weaker than

through RTK activation.49

Akt kinase also regulates the expression of EAAT2 by increasing

its rate of transcription.50 Transfection with a dominant-negative

AKT lentiviral vector decreased the effects of epidermal growth

factor signaling on EAAT2 expression in astrocyte cultures, while

constitutively active AKT increased EAAT2 expression, protein

levels, and transport activity in a dose- and time-dependent man-

ner.50 Growth factor activation of PI-3K can activate not only Akt,

but also increases phosphorylation of p42/44 MAPKs, suggesting a

converging network regulating EAAT2 expression.51 Thus, in-

creased activity of a number of intracellular signaling pathways

regulate EAAT2 expression, with RTK signaling cascades, p42/44

MAP kinases, and AKT protein kinase representing key mediators

promoting EAAT2 expression.

Glutamate uptake also may be regulated through either seques-

tration of transporters into intracellular storage sites or by ubiquitin-

mediated degradation of transporters. Of primary importance in

selective EAAT downregulation is the activity of protein kinase C

(PKC). PKC has differential effects on the EAAT subtypes; in mixed

neuronal and astrocyte cultures, activation of PKC rapidly (within

minutes) decreased cell-surface expression of EAAT252 and in-

creased surface expression of the neuronal transporter EAAT3.53

These differential effects are thought to represent a switching

mechanism from astrocytic to neuronal glutamate uptake. However,

as astrocyte transport represents the primary uptake mechanism, the

overall effect in a mixed-cell culture would be reduced reuptake and

elevated extracellular levels of glutamate.53 The deletion of amino

acids 475–517 on EAAT2 abolishes the effects of PKC-induced

internalization, indicating a carboxyl-terminal phosphorylation site

on the transporter.52 This decrease in cell-surface expression did not

correspond with a reduction in total cellular levels of EAAT2, sug-

gesting the immediate effect of phorbol ester activation of PKC

involves internalization of the transporter to an intracellular se-

questration site.53 Internalization can be blocked in astrocyte cultures

expressing a dominant-negative variant of clathrin54 or by inhibition

of the ubiquitin enzyme E1,55 demonstrating an ubiquitin-dependent,

clathrin-mediated endocytic mechanism of sequestration.

In contrast to short-term activation of PKC, long-term exposure

to phorbol ester was accompanied by an overall decrease in total

cellular EAAT2 expression.54 Lysosomal inhibitors attenuate this

decrease in EAAT2 protein, suggesting a cellular mechanism by

which PKC modulates EAAT2 levels under physiological or

pathological conditions.54 In summary, astrocytic and neuronal

kinase signaling mechanisms may positively or negatively regulate

EAAT expression and transport activity through transcriptional

control or regulation of cell surface expression in a time- and

concentration-dependent manner.

Extrasynaptic glutamate signaling

Removal of glutamate from the synaptic cleft involves: 1) the

high affinity binding of glutamate by perisynaptic transporters (e.g.,

EAAT2) and 2) the transport of bound glutamate by the transporter

across the plasma membrane.41,56 Once bound, glutamate may be

‘‘unbound’’ or released instead of transported across the plasma

membrane.41,56 The relatively low rate of transport of bound glu-

tamate relative to its binding affinity suggests that the EAATs first

act as buffers for released glutamate.41 Thus, glutamate molecules

may bounce from one transporter-binding site to another until

transported, thereby limiting glutamate spillover from the synaptic

cleft into extrasynaptic areas.

Glutamate levels in the extracellular milieu are tightly regulated,

as activation of extrasynaptic glutamate receptors has potent effects.

LTP and LTD can be readily induced in the adult cortex by acti-

vation of extrasynaptic GluN2B-containing NMDA receptors.57,58

While several regions have well characterized glutamate spillover

between excitatory synapses, such as the cerebellum and hippo-

campus, there is ongoing debate regarding the extent of glutamate

diffusion in other regions, including the frontal cortex, where

spillover of glutamate may detrimentally lead to loss of input

specificity and activation of cell death pathways.59–65 Mathematical

models suggest that glutamate may diffuse and activate NMDA

receptors within a radius of 0.5 lm from the release point.27 Thus,
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the spatial arrangement of glutamate synapses, their glutamate

transporter buffering zones, and extrasynaptic glutamate receptors

will determine the extent and effect of glutamate spillover.66,67

Glutamate in Acute TBI

Neurotoxicity

Elevated extracellular glutamate levels, such as through appli-

cation of exogenous glutamate and related analogues into nervous

tissue, are extremely toxic to cells.68,69 In humans, severe TBI

results in elevated cerebrospinal fluid glutamate that may persist in

some brain structures for days or perhaps weeks.70,71 Following

severe TBI in rats, microdialysis determination of extracellular

glutamate levels found a 9-fold increase over non-injured control

rats.72 High levels of glutamate deplete ATP stores due to over-

stimulation and the energy expenditure involved in reuptake.68 TBI

also transiently increases extracellular potassium levels by 6-fold

above baseline.7 The effects of increased extracellular glutamate

and potassium on ionic homeostasis and ATP expenditure are ex-

acerbated by changes in astrocytic potassium conductance fol-

lowing TBI.73 Resting astrocytes are able to effectively remove

glutamate from the synapse due to their high potassium conduc-

tance and a negatively charged resting membrane potential main-

tained in part by the inwardly rectifying potassium channel

KIR4.1.74 Conditional knockout of the KIR4.1 result in cells with a

diminished capacity to transport glutamate.75,76 KIR4.1 is not well

studied after TBI; however, it was downregulated along with GLT-

1 (EAAT2) from 4 h to at least 72 h after CCI in mice.77 The central

role of potassium channels in the fidelity of glutamate transport

highlights the importance of sodium/potassium gradient, as well as

ATP production in recovery from TBI.

Increases in extracellular glutamate in TBI also disrupt ionic

homeostasis of sodium and calcium. Supra-physiological activa-

tion of glutamate receptors increases intracellular levels of sodium

ions and leads to swelling of cells from osmotic pressure.78 Other

pathologic effects of increased extracellular glutamate involve the

actions of the neurotransmitter on ionotropic glutamate receptors

that are calcium channels.7,79 Calcium is a critical signaling mol-

ecule governing myriad cellular processes and as such is tightly

regulated with intracellular concentrations maintained around

100 nM.79 Prolonged increases in intracellular calcium disrupt

mitochondrial production of ATP and activate proteases and ki-

nases, including nitric oxide synthase. Increased activity of these

enzymes may generate reactive oxygen species, disrupt cytoskel-

etal architecture, and increase transcription of genes associated

with apoptosis pathways.79 Thus, the pathological results of in-

creased extracellular glutamate are mediated in part by increases in

intracellular levels of sodium and calcium, leading to cell swelling

and the activation of deleterious signaling pathways, respectively.

In the absence of calcium, glutamate-mediated increases in in-

tracellular sodium can lead to pathological cell swelling and cell

death in hippocampal cultures.80 However, changes in intracellular

sodium and calcium ions have disparate effects on mixed cortical

cultures. In an extracellular environment with physiological con-

centrations of both sodium and calcium, neurons exhibited imme-

diate morphological changes followed later by significant cell

degradation and death. Removal of both ions from the extracellular

environment was protective to the cells, even with prolonged glu-

tamate exposure. However, ion substitution studies (cell cultures

with extracellular environments lacking one of the two ions) sug-

gested unique roles for each of these ions in the excitotoxic cascade.

Mixed-cell cultures in a calcium-free media exhibited morphological

changes, including increased swelling and granulation, but were

largely spared from cell death and returned to previous size within an

hour.81 Cultures in media where choline was substituted for sodium

showed markedly less swelling and other morphological changes

when exposed to toxic glutamate levels, but exhibited roughly the

same amount of cell death as cultures with both ions at physiological

levels.81 These results indicate that the acute excitotoxic event pre-

cipitated by sodium appears to be transient and largely non-toxic to

cortical cells, while the glutamate induced changes in calcium ion

concentrations play a key role in subsequent cell death by over-

whelming the calcium regulatory mechanisms and activating

downstream signaling pathways.5 Thus, in clinical TBI, it is likely

that the calcium-regulated mechanisms responsible for cell death are

overwhelmed and contribute to widespread neuronal cell death.

Pathophysiological activation of downstream signaling pathways

depends on changes in calcium levels, calcium’s route of entry into

the cell, and the location of its release from intracellular storage.5 Of

particular importance for glutamate mediated neurotoxicity is the

ionotropic NMDA receptor. Studies examining calcium’s level and

route of entry into the cell found that absolute levels of intracellular

free calcium roughly corresponded with neuronal survival, but

survival was better predicted by the route of calcium entry and

duration of calcium loading.82 Neuronal cell cultures were likely to

survive excessive intracellular calcium levels when entry occurred

through voltage-sensitive channels triggered by cell depolarization;

however, similar levels produced by prolonged ligand-gated (glu-

tamate) activity resulted in significantly more cell death.82 These

effects seem to be restricted to glutamate’s activity on NMDA re-

ceptors, as increases in calcium stimulated by glutamate from non-

NMDA receptors did not have the same impact on cell survival.82

The neurotoxic effects of glutamate-evoked calcium influx are

likely due to activity of the NMDA receptor signaling pathways that

promote cellular degeneration.82

Transporters in acute TBI

Antisense oligonucleotide knockdown of EAATs show they are

critical for maintaining glutamate below toxic levels. EAAT2 knock-

down significantly increased hippocampal cell death, compared with

controls, after TBI.83 Knockout of either GLAST (EAAT1) or GLT-1

in mice yields excitotoxic levels of glutamate similar to those ex-

perienced following TBI.84 These studies demonstrate the central

role of astrocytic EAATs, especially EAAT2, in the maintenance of

extracellular glutamate within physiological norms, and illustrate

how the pathology of TBI can be exacerbated when EAAT function

or expression is compromised. Studies in astrocyte cultures suggest

that the half-life of EAAT2 is longer than 24 h85; thus decreases in

EAAT2 expression in the hours immediately following TBI86 might

not be accounted for solely by altering transcription or translation of

the transporter. Along with degradation of EAAT2 by caspase-3,87

modulation by PKC could possibly represent a mechanism by which

the secondary injury phase of TBI induces dysfunction in glutamate

reuptake transporters and exacerbates the deleterious effects of

elevated extracellular glutamate.

Astroglial injury and/or death, caspase-mediated degradation of

glutamate transporters, reversal of sodium-calcium exchanger, and

reversal of sodium-dependent glutamate transporters are all im-

plicated in acute TBI pathology.87–89 CCI models demonstrate an

early and consistent loss of EAAT2 protein in the ipsilateral cortex

beginning 4–6 h after injury and persisting past 72 h.86 In studies

utilizing lateral FPI, EAAT2 expression in the ipsilateral cortex

may not change during the first 24 h; however, decreases in the
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ipsilateral cortex are reported at 7 days post-injury.88,90,91 More-

over, decreases may be in a specific splice variant for EAAT2,

suggesting a shift in the cellular or subcellular localization of this

transporter in TBI.91

These findings in animal models replicate analyses of human

postmortem brain in which protein levels of the astrocytic gluta-

mate transporters may be decreased.88,92 Compared with moderate

EAAT2 staining found in control patients, extensive EAAT2

staining is present in the ipsilateral cortex of TBI cases, with sur-

vival times between 1 and 24 h post-injury, indicating an increase in

EAAT2 expression in this region.92 In survival times less than 1 h

or longer than 24 h, weak and sporadic EAAT2 staining patterns

were observed. These data suggest dynamic regulation of EAAT2

expression after TBI. This transient increase in EAAT2 expression

between 1 and 24 h may represent a compensatory reaction to the

elevated extracellular glutamate levels following TBI. At longer

survival times, patients exhibit a decrease in EAAT2 expression,

possibly as a result of the activity of intracellular signaling path-

ways promoting EAAT2 degradation. It is worth noting that short-

term TBI survival is correlated with a higher injury severity93; thus,

these findings likely reflect the influence of both of these factors on

EAAT2 expression.

While astrocytic EAATs are responsible for the majority of the

removal of glutamate from the extracellular space, the neuronal

EAATs also are affected by TBI. Increases in expression of EAAT4

were found in hippocampal astrocytes 3 to 7 days following lateral

FPI.94 This finding is interesting in that EAAT4 is typically ex-

pressed in neurons.57 EAAT4 expression in hippocampal astrocytes

may represent an endogenous neuroprotective mechanism or may

be part of a phenotypic switch in reactive astrocytes.94 Other

studies have found similar instances of phenotypic switching of

typically ‘‘astrocytic’’ EAATs onto neuronal processes. For ex-

ample, hypoxia results in early loss of EAAT2 in the pig hippo-

campus, which is followed by the aberrant induction of an EAAT2

splice variant in neuronal cell types.95 Additionally, detection of an

alternately spliced variant of EAAT1 in neuronal cell cultures

following hypoxia is an early and highly sensitive marker for

neurons at risk of cell death, as normal expression of glutamate

transporters may be negatively modulated by co-expression of

these splice variants.96 Similarly, engineered expression of EAAT2

on neuronal cell types increases vulnerability to excitotoxicity in

hippocampal slice cultures.97 It is plausible that glial EAAT ex-

pression in neurons may be a compensatory attempt by the brain to

offset increases in extracellular glutamate following TBI; however,

these efforts may ultimately harm neuronal tissue by making it

more vulnerable to excitotoxicity due intracellular glutamate levels

beyond the buffering or metabolic capacity of neurons.98

Extracellular glutamate concentrations may modulate the ex-

pression of glutamate transporters. Exposure of cultured cortical

astrocytes to high levels of extracellular glutamate (20 mM) de-

creased EAAT2 expression by 25 and 40% following 24 h or 72 h

exposure times, respectively.99 The decline in protein expression

was not due to astrocyte death, but corresponded to increased

glutamine synthetase protein. The decline in transporter expression

was not attenuated by non-competitive antagonists for NMDA or

AMPA receptors, supporting a receptor-independent mechanism

for decreased transporter expression.99 In summary, the acute ef-

fects of TBI on expression of glutamate transporters are mediated

by a number of paracrine and intracellular signaling factors influ-

encing the function, location, and phenotype of the transporters.

Long-term compromises in the tripartite glutamate system exac-

erbate the pathological effects of the primary injury and contribute

to the persistent deficits in cognition characteristic of the secondary

injury phase.

Glutamate in Chronic TBI

Glial dysfunction

Eight weeks following moderate lateral FPI, hippocampal cell

loss was accompanied by increased gliosis and increased GFAP

staining in the thalamus, frontal cortex, and hippocampus, indi-

cating a persistent abnormality in astrocytes.100 Additionally,

single-cell polymerase chain reaction analysis of glial acidic fi-

brillary protein (GFAP)–positive astrocytes found a dramatic shift

in gene expression 14 days after ischemic injury in populations of

reactive astrocytes.101 Reactive astrocytes have increased expres-

sion of transcripts for EAAT1, synaptosomal-associated protein 25

(SNAP25), and glutamate receptor subunits, indicating that these

cells may be starting to express ‘‘neuronal’’ genes such as SNAP25

and some of the neuronal hyperpolarization activated cyclic nu-

cleotide gated potassium channels (HCNs).101

Few studies have evaluated glutamate levels in chronic

(>14 days post-injury) animal models of TBI. A series of studies

implicated chronic dysregulation of glutamate in chronic TBI by

examining late onset behavioral morbidity as indicated by in-

creased whisker sensitivity following diffuse experimental TBI.

Over 8 weeks following moderate midline FPI, rats in both injured

and sham experimental conditions received manual whisker stim-

ulation, and behavioral responses were recorded. While sham in-

jury animals were ambivalent or soothed by whisker stimulation,

animals in the injury condition demonstrated aggravated behavioral

responses beginning at 1 week post-injury, which became signifi-

cant at 4 weeks and persisted throughout the rest of the 8 weeks.102

A follow up study examining the molecular underpinnings for this

increased whisker sensitivity supported hypersensitive glutamate

circuitry as a possible causal mechanism.103 Microelectrode array

studies found increased extracellular glutamate levels in the ventral

posterior medial hypothalamus, compared with sham-injured ani-

mals, 4 weeks following injury.103 Imaging studies after human

TBI suggest the balance of glutamate and the inhibitory transmitter

c-aminobutyric acid (GABA) may be chronically altered after

TBI.71,104,105 Thus, persistent impairments in glutamate circuitry

represent a possible mechanism for the chronic cognitive and

emotional symptoms experienced by some patients after TBI.

In addition, several studies indirectly examine the roles of gluta-

mate transporter expression, glutamate reuptake, and extracellular

glutamate in chronic FPI using novel pharmacological therapeutics.

Pharmacological blockade of sodium channels, which inhibits glu-

tamate release, attenuated GFAP immunoreactivity 2 weeks fol-

lowing moderate-to-severe lateral FPI.106 Another study found

treatment with riluzole, a pharmacological agent which inhibits so-

dium channels and decreases glutamate release, decreased cortical

lesion size 2 weeks following moderate parasagittal FPI.107 Further,

microtubule-associated protein 2 immunoreactivity 2 weeks after

moderate lateral FPI was reduced following treatment with the glu-

tamate receptor antagonist kynurenate, compared with untreated

animals.108 These studies indirectly demonstrate the role of gluta-

mate in chronic TBI by showing that inhibiting glutamate release or

modulating glutamate receptors decreases chronic pathophysiology.

Signaling in chronic TBI

Signaling events regulating glutamate neurotransmission also

are altered in chronic TBI models. Extracellular signal-regulated
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kinase (ERK) and CREB activation was decreased in hippocampal

slices following a stimulation protocol 12 weeks after parasagittal

FPI; in this same study, resting-state levels of phospho-CREB

protein were decreased in the hippocampus, suggesting persistent

signaling abnormalities.109 Interestingly, ERK and CREB are pos-

itive modulators of EAAT2 expression.49,51 Decreased activity in

this signaling pathway is consistent with diminished EAAT ex-

pression and activity. Further, ERK and CREB are molecular

markers of memory consolidation, and disruptions in these path-

ways downstream of glutamate neurotransmission may contribute to

the chronic cognitive difficulties observed after TBI. Using elec-

trophysiological measures, one group found increased frequency of

spontaneous inhibitory post-synaptic currents in the dentate gyrus 1

month after FPI, while another found decreased capacity for LTP in

mild, moderate, and severe TBI 8 weeks after injury.110,111 These

data suggest a mechanism for persistent alterations in the molecular

correlates of learning and memory in the chronic FPI model of TBI.

There may be a threshold level of LTP that is required to initiate

protein synthesis–dependent consolidation of memory112; thus, the

reduced capacity for LTP found 8 weeks following TBI represents a

potential mechanism for the cognitive impairment exhibited in both

human patients and animal models of TBI.

Glutamate reuptake mechanisms are closely linked to the elec-

trophysiological changes reported in chronic TBI discussed above.

In the hippocampus, baseline (i.e., ‘‘normal’’) LTP in the CA1

subfield is associated with increased glutamate reuptake; for ex-

ample, fear conditioning increased EAAT-dependent reuptake, and

blockade of EAAT3 co-localization with the NMDA receptor–

signaling complex attenuated synaptic strength.14 In a similar study

in ischemia, a disorder where glutamate excitotoxicity is believed

to play a similar role as in TBI, transient global ischemia decreased

protein expression of EAAT2 in area CA1 of the hippocampus

corresponding to decreased amplitude of glutamate evoked cur-

rents from astrocytes in this area.113 Further, reverse transcrip-

tion polymerase chain reaction demonstrated diminished EAAT2

mRNA in post-ischemic cells in hippocampal area CA1.113 These

FIG. 1. Progression of traumatic brain injury. Schematic representation of changes in glutamate release, reuptake, and activity based
on data from rodent models of traumatic brain injury. In normal brain (pre-injury), there is dense perisynaptic localization of glutamate
transporters, which shapes synaptic transmission and neuroplasticity via the buffering and removal of glutamate from the synaptic cleft.
During primary injury, several mechanisms may lead to diminished glutamate uptake, including changes in transporter expression,
signaling pathway activation, and/or proteolytic degradation of transporter protein. We posit that transporter expression and localization
is altered during secondary and chronic injury in a manner that serves to protect surviving neurons from additional injury. Finally,
consolidation of neuroplastic changes during chronic injury may include alterations in glutamate release and reuptake, contributing to
the cognitive defects found in chronic traumatic brain injury. MAPK, mitogen-activated protein kinase; K+, potassium; Na+, sodium;
JNK, c-Jun N-terminal kinase; PKA, protein kinase A; PKC, protein kinase C; PI3K-Akt, phosphoinositide 3-kinase-protein kinase B;
PSD95, post-synaptic density 95; TGFb, transforming growth factor beta; Ca2+, calcium; EAAT, excitatory amino acid transporter;
GPCR, G-protein-coupled receptor; GFAP, glial fibrillary acidic protein; NMDA, N-methyl-D-aspartic.
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results suggest that disruption in EAAT2 expression and function

contributes to astrocytic cell death in the hippocampus, and that

glutamate reuptake is important for maintaining synaptic strength

and initiating LTP in the hippocampus. Thus, impairment of glu-

tamate reuptake could account for observed electrophysiological

deficits in this region in chronic TBI.

Therapeutics addressing glutamate

Attempts to offset glutamate excitotoxicity following TBI have

largely been disappointing in clinical trials.114 Numerous therapeu-

tics agents have attempted to address the glutamate imbalance using

pre-synaptic glutamate inhibiting agents, competitive and non-

competitive NMDA receptor antagonists, cannabinoid agonists, ni-

tric oxide synthase inhibitors, AMPA antagonists, serotonin ago-

nists, and magnesium sulfates.114,115 While initially promising in

phase II clinical trials, the synthetic cannabinoid receptor agonist

dexanabinol failed to produce statistically relevant improvements in

Glasgow Outcome Score (GOS) in phase III trials.116 The compet-

itive NMDA receptor antagonist selfotel also was brought to phase

III clinical trials with similarly disappointing results. Patients in the

placebo group had statistically similar GOS scores and mortality

rates to those in the drug treatment condition and the study was

discontinued.117 Extracellular magnesium, which endogenously acts

as a non-competitive NMDA antagonist also has been investigated.

However, in moderate-to-severe TBI patients, magnesium sulfate

administration resulted in no significant improvements in survival,

seizure activity, or behavioral outcomes.118 Recent animal studies

attempting to offset the loss of glutamate homeostasis following TBI

involve the use of therapeutic drugs that upregulate glutamate

transporter expression. For example, the b-lactam antibody cef-

triaxone reversed the loss of EAAT2 expression in the ipsilateral

frontal cortex of TBI mice 7 days post-injury and resulted in lower

levels of pro-inflammatory mediators.90,119 A number of additional

compounds, including riluzole, the tricyclic antidepressant amitrip-

tyline (which upregulates EAAT expression), and the beta-carboline

alkaloid harmine (which stimulates EAAT2 activity), show promise

in multiple models of CNS injury and neurodegeneration.120

By focusing on neuronal protection, pharmacological interven-

tion may be ignoring the crucial role of astrocytes in the propaga-

tion and sustainment of the disease state. We posit that there is also

a need for glioprotective agents in therapeutic treatments of chronic

TBI. There is still much to be learned about how traumatic injury

affects EAAT expression, splice variants, trafficking, localization,

activity, and turnover that could identify new therapeutic oppor-

tunities in both acute and chronic secondary injury processes. Ac-

cumulating evidence suggests that comprehensive examination of

the glutamate reuptake mechanism and associated signal trans-

duction processes may be a high yield substrate for understanding

the pathophysiology of excitatory circuits in chronic TBI.

Conclusion

As with the proximal primary injury, alterations in glutamate

homeostasis may represent a driving event in the ongoing patho-

physiology of TBI. Failure to resolve the secondary injury may be

due in part to changes in localization and function of glutamate

transporters and their associated signaling molecules, anchoring

proteins, and metabolic pathways necessary for normal glutamate

transmission (Fig. 1). Given the strong link between proper gluta-

mate reuptake and the maintenance of synaptic strength, LTP, and

learning and memory, dysfunction in glutamate transport systems

could play a causal role in the persistent cognitive symptoms as-

sociated with chronic TBI. Prolonged morphological and molecular

changes in astroglia and astroglial glutamate uptake mechanisms

may be particularly important as a single astrocyte may intercon-

nect with thousands of synapses.121

Diminished glutamate reuptake capacity could have profound

effects on cognitive and behavioral outcomes associated with chronic

TBI. Inadequate management of glutamate in the synapse and glu-

tamate spillover into extrasynaptic domains would affect initiation,

amplitude, and sustainability of LTP and LTD, both of which are

critically important for synaptic efficiency and cognition. Insufficient

astrocytic response to neuronal activity produces electrophysiologi-

cal changes consistent with glutamate spillover from the syn-

apse.122,123 Similar mechanisms may be present in the neocortex in

schizophrenia, an illness with profound cognitive impairment.33

Taken together, these mechanisms may explain the diffuse global

nature of cognitive and emotional symptoms experienced following

TBI; the initial injury may reset glutamate regulatory mechanisms

and molecular systems associated with cognitive performance dur-

ing the secondary injury phase. If not resolved, these changes con-

solidate, resulting in long-term alterations in glutamate homeostasis

which may diminish the ability of neurons to effectively initiate or

maintain synaptic plasticity (Fig. 1). This model suggests a thresh-

old for patient symptomology, below which a patient is asymp-

tomatic but nevertheless increasingly susceptible to developing

chronic symptoms after each subsequent injury or other CNS stress

due to incremental increases in damaged astroglia and associated

signaling deficits.
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