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Abstract

Risk factors for blunt cerebrovascular injury (BCVI) may differ between children and adults, suggesting that children at

low risk for BCVI after trauma receive unnecessary computed tomography angiography (CTA) and high-dose radiation.

We previously developed a score for predicting pediatric BCVI based on retrospective cohort analysis. Our objective is to

externally validate this prediction score with a retrospective multi-institutional cohort. We included patients who un-

derwent CTA for traumatic cranial injury at four pediatric Level I trauma centers. Each patient in the validation cohort was

scored using the ‘‘Utah Score’’ and classified as high or low risk. Before analysis, we defined a misclassification rate

<25% as validating the Utah Score. Six hundred forty-five patients (mean age 8.6 – 5.4 years; 63.4% males) underwent

screening for BCVI via CTA. The validation cohort was 411 patients from three sites compared with the training cohort of

234 patients. Twenty-two BCVIs (5.4%) were identified in the validation cohort. The Utah Score was significantly

associated with BCVIs in the validation cohort (odds ratio 8.1 [3.3, 19.8], p < 0.001) and discriminated well in the

validation cohort (area under the curve 72%). When the Utah Score was applied to the validation cohort, the sensitivity

was 59%, specificity was 85%, positive predictive value was 18%, and negative predictive value was 97%. The Utah Score

misclassified 16.6% of patients in the validation cohort. The Utah Score for predicting BCVI in pediatric trauma patients

was validated with a low misclassification rate using a large, independent, multicenter cohort. Its implementation in the

clinical setting may reduce the use of CTA in low-risk patients.
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Introduction

Previous studies have suggested that blunt cerebrovascular

injury (BCVI) complicates 0.03–0.9% of pediatric traumatic

brain injuries (TBIs).1–4 BCVI can lead to ischemia and neurologic

morbidity, especially in the absence of prompt recognition and

treatment.2,5 In adults, the use of computed tomographic angiog-

raphy (CTA) of the head and neck to screen patients for BCVI3,6–9

based on well-established risk factors described by the Denver and

Memphis criteria6,7,10 may be cost effective,8 but the patterns of

intracranial injury in children differ from those in adults.9 In ad-

dition, the low incidence of BCVI in children has led to speculation

that children with TBI are inadequately screened1; thus, more

CTAs, which require high-dose radiation and are linked to greater

risk of future neoplasms,11–13 are performed in children.14

We previously identified independent risk factors for BCVI

specific to children and developed a clinical prediction rule to

identify and screen high-risk pediatric patients.14 Our retrospective

cohort study included 234 patients, 36 of whom had a BCVI.

Multivariate regression analysis identified Glasgow Coma Scale

(GCS) score £8, focal neurological deficit, fracture through the

carotid canal, petrous temporal bone fracture, and hypodensity

on CT consistent with ischemia as independent risk factors

for BCVI.14
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We created a prediction score ranging from 0 (least likely) to 11

(most likely) identifying children at high risk for BCVI (Table 1). A

value £2 yielded a 7.9% probability of BCVI whereas a ‘‘Utah

Score’’ of ‡3 portended a 39.3% risk (Table 2).14 The primary

objective of the current study was to use an independent, multi-

center sample to externally validate the Utah Score for widespread

use. We also evaluated the fit of the adult Denver criteria for BCVI

risk to our pediatric cohort to assess whether these criteria are

appropriate for assessment of pediatric patients. We hypothesize

that the Utah Score will accurately predict BCVI and perform better

than the adult Denver criteria when applied to children.

Methods

Patient population

The multicenter validation cohort comprised patients treated at
three pediatric Level I trauma centers: Monroe Carell Children’s

Hospital (MCCH), Nashville, Tennessee; St. Louis Children’s
Hospital (STLCH), St. Louis, Missouri; and Texas Children’s Hos-
pital (TCH), Houston, Texas. Like the training cohort at the
University of Utah/Primary Children’s Hospital (PCH), the retro-
spective validation cohort included all pediatric patients who un-
derwent CTA of the head or neck for suspected BCVI during the
11-year study period ( January 1, 2003–December 31, 2013). Multi-
institutional Institutional Review Board approval was obtained.

CT scanning across centers was uniform. The proprietary brand
of CT scanners used in the study varied from institution to insti-
tution, but the overall scanning protocol and technique were sim-
ilar, using either a 64- or 320-slice scanner with 1-mm slice
thickness with intravenous contrast infusion with Isovue 370 or
Omni 300.

Data collection

At each center, the trauma and radiology databases were queried
to identify trauma patients screened for BCVI with CTA of the head
or neck. Mechanism of injury was categorized as either motor
vehicle accident, pedestrian versus vehicle, >1-story fall, non-
accidental trauma, or other. Clinical information included initial
GCS on neurosurgical evaluation, presence of focal neurological
deficits on initial examination, and mode of treatment for TBI
(medical vs. surgical). Radiological variables included presence of
petrous temporal bone fracture or fracture through the carotid canal
as defined in the original article.14

We abstracted any concomitant intracranial injury (epidural,
subdural, or subarachnoid hemorrhage), presence of hypodensity
on CT imaging consistent with ischemia, Rotterdam score15 (a 6-
point score based on noncontrast CT findings that predicts 6-month
mortality in moderate and severe TBI),16 and CTA radiation dose.
We recorded whether dedicated cervical spine imaging was per-
formed, and if so, the modality, cervical spine injury type, level of
injury, and fracture through the foramen transversarium. We also
recorded discharge disposition (home vs. other).

The primary outcome of interest, BCVI, was indicated by the
presence of internal carotid artery or vertebral artery injury and
grade of injury diagnosed by CTA. Each injury was classified ac-
cording to the Denver grading scale for BCVI.17 Grade 1 injury is
characterized by intimal irregularity with <25% narrowing, Grade 2
injury is a dissection or presence of intramural hematoma with
>25% narrowing, Grade 3 injury is the presence of a pseudoa-
neurysm, Grade 4 injury is an occlusion, and Grade 5 injury is
transection with extravasation.17

Statistical analysis

Study data were collected and managed using REDCap hosted at
the University of Utah.18 All data analysis was performed in a de-
identified manner at the lead site.

Data were summarized using means and standard deviations
(SDs) for continuous variables and counts and frequencies for
categorical variables. The demographic, clinical, and radiographic
variables were compared among centers using an analysis of var-
iance for continuous variables and v2 for categorical variables.

The validation analysis began by scoring each patient in the
validation cohort using the Utah Score (n = 411). After scoring,
patients were classified as high (score ‡3) or low (score £2) risk.
The score was split into two categories for two reasons: first, the
risk of BCVI based on patient score was clearly dichotomized
based on statistics alone (score of 2 = 6.7% probability of BCVI vs.
score of 3 = 32.4% probability of BCVI; Table 2), and second, a
dichotomized score would be most helpful in making a binary
clinical decision during the initial trauma evaluation: to screen
the patient or not. Patients were categorized in a 2 · 2 table asses-
sing risk versus the presence/absence of BCVI. This comparison
was analyzed using the Fisher exact test. We calculated percent

Table 1. Utah Score

Utah Score variables Score

Glasgow Coma Scale score £8 1
Focal neurological deficit 2
Carotid canal fracture 2
Petrous temporal bone fracture 3
Cerebral infarction on computed tomography 3

11

Total possible score ranges from 0 to 11.
Reproduced with permission from Ravindra, V.M., Riva-Cambrin, J.,

Sivakumar, W., Metzger, R.R., and Bollo, R.J. (2015). Risk factors for
traumatic blunt cerebrovascular injury diagnosed by computed tomogra-
phy angiography in the pediatric population: a retrospective cohort study.
J. Neurosurg. Pediatr. 15, 599–606.

Table 2. The Pediatric BCVI Prediction Score

Score
No. of

patients
Probability of

BCVI* (%)

0 92 6.5
1 56 10.7
2 30 6.7
3 37 32.4
4 9 44.4
5 7 57.1
6 2 50
7 0 -
8 1 100.0
9 0 -

10 0 -
11 0 -

*The probability in the study population of having a BCVI with this
score; dashes in this column denote missing data because of no patients
with this score (the statistical significance of the model was p < 0.001.

In the single study cohort from Primary Children’s Hospital, a patient
with a score £2 had a 7.9% probability of blunt cerebrovascular injury and
a patient with a score ‡3 had a 39.3% probability of blunt cerebrovascular
injury.

Reproduced with permission from Ravindra, V.M., Riva-Cambrin, J.,
Sivakumar, W., Metzger, R.R., and Bollo, R.J. (2015). Risk factors for
traumatic blunt cerebrovascular injury diagnosed by computed tomogra-
phy angiography in the pediatric population: a retrospective cohort study.
J. Neurosurg. Pediatr. 15, 599–606.
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misclassification, sensitivity, specificity, positive predictive value,
and negative predictive value. Before the study, validation was
defined as a misclassification rate of <25%.19

A logistic regression model was developed for the Utah Score
risk categorization and its association with BCVI. Using this
model, we calculated the area under the curve or discrimination for
the dichotomized Utah Score.

In a Bayesian analysis, we applied likelihood ratios from the
original model (training cohort at PCH)14 to the validation cohort to
compute the post-test probability for the high- and low-risk di-
chotomizations for the Utah Score and compare with the actual or
observed probabilities found in the validation cohort. Data were
analyzed using SAS v.9.3 software.

To compare our pediatric Utah Score with previous models
based on adult trauma data, we applied the Denver criteria (pre-
diction model) to our entire cohort of pediatric patients (n = 645).
The Denver criteria for screening for BCVI in adults include GCS
<6, petrous temporal bone fracture, diffuse axonal injury, and Le-
Fort Type II and III fractures for carotid artery injury and cervical
spine for vertebral artery injury.10 We calculated the observed

probabilities within each of the Denver strata (0–4) by scoring each
child within the entire cohort (n = 645). We had not specifically
collected diffuse axonal injury as a variable and used intracra-
nial contusions as a proxy. Our observed percentages were di-
rectly compared with the predicted probabilities from Biffl and
associates.10

More recent modifications to the Denver criteria suggest addi-
tional risk factors, but these were added via a descriptive non-
analytical method without presenting quantifiable risk prediction,
which was included in the original article.20 Therefore, meaningful
comparisons of risk prediction were only possible with the data
and analysis presented in that article.

Results

Patient population characteristics

At the four centers, 645 pediatric patients were evaluated for

BCVI with CTA of the head or neck (mean age 8.6 years, 63.4%

male) during the 11-year study period. The validation cohort

Table 3. Clinical and Imaging Characteristics for Patients at All Centers

Total (n = 645)

Primary
Children’s
Hospital
(n = 234)

Monroe
Carrell

Children’s
Hospital
(n = 312)

St. Louis
Children’s
Hospital
(n = 53)

Texas
Children’s
Hospital
(n = 46)

Differences
between

training and
validation

cohort
(p value)*

Age (years) – SD 8.6 – 5.4 8.3 – 4.9 8.6 – 5.4 12.3 – 5.2 6.1 – 6.1 <0.001
Male sex (%) 409 (63.4) 149 (63.7) 191 (61.2) 40 (75.5) 29 (63.0) 0.14
Race (%) <0.001

White 433 (67.1) 163 (69.7) 224 (71.8) 34 (64.2) 12 (26.1) -
Black 87 (13.5) 1 (0.4) 57 (18.3) 17 (32.1) 12 (26.1) -
Hispanic 71 (11.0) 32 (13.7) 21 (6.7) 0 (0) 18 (39.1) -
Asian 7 (1.1) 1 (0.4) 2 (0.6) 1 (1.9) 3 (6.5) -
Other 46 (7.1) 37 (15.8) 7 (2.2) 1 (1.9) 1 (2.2) -

Mechanism of injury (%) <0.001
Motor vehicle accident 193 (29.9) 60 (25.6) 109 (34.9) 20 (37.7) 4 (8.7) -
Pedestrian vs. vehicle 53 (8.2) 37 (15.8) 15 (4.8) 0 (0) 1 (2.2) -
Fall >1 story 28 (4.3) 18 (7.7) 4 (1.3) 4 (7.5) 2 (4.3) -
Nonaccidental trauma 25 (3.9) 4 (1.7) 8 (2.6) 2 (3.8) 11 (23.9) -
Other blunt 88 (13.6) 44 (18.8) 29 (9.3) 1 (1.9) 13 (28.3) -
Penetrating 130 (20.2) 11 (4.7) 109 (34.9) 10 (18.9) 0 (0) -
Ground-level fall 86 (13.3) 42 (17.9) 20 (6.4) 11 (20.8) 13 (28.3) -
Hanging 42 (6.5) 18 (7.7) 18 (5.8) 5 (9.4) 2 (4.3) -

Death (%) 29 (4.5) 16 (6.8) 10 (3.2) 3 (5.7) 0 (0) 0.27
Rotterdam score >3 40 (6.2) 10 (4.3) 26 (8.3) 3 (5.7) 1 (2.2) 0.29
Radiation dose{ (mGy-cm) – SD mean 682.8 – 383.4 - - - - -

median 644 [393–876]
Any intracranial injury (%) 278 (43.1) 153 (65.4) 61 (19.6) 28 (52.8) 36 (78.3) <0.001
Epidural 55 (8.5) 31 (13.2) 14 (4.5) 3 (5.7) 7 (15.2) 0.40
Subdural 130 (20.2) 65 (27.8) 37 (11.9) 12 (22.6) 16 (34.8) 0.17
Subarachnoid hemorrhage 109 (16.9) 54 (23.1) 31 (9.9) 10 (18.9) 14 (30.4) 0.31
Contusion 133 (20.6) 66 (28.2) 25 (8.0) 20 (37.7) 22 (47.8) 0.02
Cervical spine injury (%) 53 (8.2) 26 (11.1) 23 (7.4) 2 (3.8) 2 (4.3) 0.50
Multiple facial fractures, frontal

sinus fractures, Lefort type II
or III fractures (%)

139 (21.6) 70 (29.9) 55 (17.6) 12 (22.6) 2 (4.3) 0.04

Fracture through the foramen
transversarium (%)

14 (2.2) 10 (4.3) 2 (0.6) 2 (3.8) 0 (0) 0.08

Discharge disposition home (%) 517 (80.2) 165 (70.5) 274 (87.8) 35 (66) 43 (93.5) <0.001

SD, standard deviation.
*Excludes Primary Children’s Hospital patients.
{Data available for 168 patients.
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included 411 patients (mean age 8.7 years, 63.3% male) from three

medical centers (TCH, MCCH, STLCH), whereas the training

cohort (PCH) had 234 patients (mean age 8.3 years, 63.7% male)

(Table 3).

The training cohort had a higher incidence of motor vehicle

accident and pedestrian versus vehicle than the other centers; this

corresponded to the higher acuity of trauma and the higher death

rate in the training cohort than in the validation cohort.10 There

were 29 deaths in total (4.5%). The number of intracranial injuries

varied significantly among the hospitals; two-thirds of patients

(65.4%) in the training cohort had associated intracranial injury

(i.e., hematomas and/or contusions), and there was a wide variation

among the validation centers (19.6–78.3%) ( p < 0.001).

Within the validation cohort (n = 411 patients), 22 arterial in-

juries (18 carotid and 4 vertebral artery) were identified (Table 4),

yielding a 5.4% prevalence of BCVI. Most were low-grade injuries

(Grade 1 63.4%; Grade 2, 9.1%; Grade 3, 13.6%; Grade 4, 4.6%;

Grade 5, 4.6%). A total of 68.2% of patients with BCVI in the

validation cohort received treatment: antiplatelet therapy (seven

patients), anticoagulation (four patients), endovascular treatment

(two patients), or open surgery (two patients).

Utah Score variables

Within the validation cohort, 83 (20.2%) patients had a GCS £8,

75 (18.2%) patients had a focal neurological deficit, 29 (7.1%)

patients had a fracture through the carotid canal, 35 (8.5%) patients

had a petrous temporal bone fracture, and 30 (7.3%) patients

had hypodensity on CT consistent with ischemia (Table 4). Most

notably for the primary outcome of BCVI, the validation cohort

had a lower prevalence of BCVI (5.4%) than the training cohort

(15.4%).

Assessment of Utah Score

Each patient in the validation cohort was scored using the Utah

Score and classified as high (score ‡3) or low (score £2) risk and by

the presence or absence of BCVI (Table 5). The high-risk Utah

Score was significantly associated with BCVI with an odds ratio of

8.1 [3.3, 19.8] ( p < 0.001). The score discriminated well, with an

area under the curve of 72%. When the Utah Score was applied to

the validation cohort, we found a sensitivity of 59%, specificity of

85%, positive predictive value of 18%, and a negative predictive

value of 97%.

The children in the validation cohort with a score of £2 had a

2.7% risk of BCVI, whereas patients with a score of ‡3 had an

18.1% risk of BCVI. In comparison, children in the training cohort

with a score £2 had a 7.9% risk of BCVI and those with a score ‡3

had a 39.3% risk of BCVI.14 The Utah Score misclassified only

16.6% (59 [14.4%] false positives and 9 [2.2%] false negatives) of

patients when applied to the validation cohort, which is signifi-

cantly below the validation threshold of 25%.19

Bayesian analysis, specifically the positive likelihood ratio

(3.59) and negative likelihood ratio (0.47) generated from the

original Utah Score model,14 was used to determine predicted

probabilities of BCVI for the high- and low-risk strata within the

validation cohort. The predicted post-test probability for the high-

risk strata was 17%, which was similar to the observed rate of

18.1%. The predicted post-test probability for the low-risk strata

was 2.6%, which was nearly identical to the observed rate of 2.7%

(Fig. 1). This high level of concordance further strengthens the

external validity of the Utah Score.

Application of Denver criteria to a pediatric data set

The probability of BCVI predicted by the Denver criteria in an

adult patient with no risk factors was 20% compared with a 93%

risk of BCVI with four risk factors. In our pediatric cohort, we

found those with zero Denver criteria had a 2.9% risk of BCVI

versus 25.7% with three risk factors (we had no patients with four

risk factors). Although these criteria showed an escalating proba-

bility of injury with more criteria, they grossly overestimated BCVI

probability in all five strata (in some cases by a factor 7) (Table 6).

Therefore, the use of the Denver criteria in children would lead to

overscreening with CTA and unnecessary exposure to radiation.

Table 4. Number (%) of Patients Presenting with Each Risk Factor in the Utah Score at Each Hospital

Total
(n = 645)

Primary
Children’s
Hospital
(n = 234)

Monroe
Carrell

Children’s
Hospital
(n = 312)

St. Louis
Children’s
Hospital
(n = 53)

Texas
Children’s
Hospital
(n = 46)

Differences
among

validation
cohort

(p value)*

Arterial injury (BCVI) 58 (9.0) 36 (15.4) 10 (3.2) 6 (11.3) 6 (13.0) 0.003
Glasgow Coma Scale score £8 190 (29.4) 107 (45.7) 57 (18.3) 17 (32.1) 9 (19.6) 0.07
Focal neurological exam 99 (15.3) 24 (10.3) 53 (17.0) 7 (13.2) 15 (32.6) 0.002
Fracture through carotid canal 89 (13.8) 60 (25.6) 23 (7.4) 6 (11.3) 0 (0) 0.08
Petrous temporal bone fracture 53 (8.2) 18 (7.7) 22 (7.1) 9 (17.0) 4 (8.7) 0.06
Cerebral infarction on CT 44 (6.8) 14 (6.0) 23 (7.4) 3 (5.7) 4 (8.7) 0.84

BCVI, blunt cerebrovascular injury; CT, computed tomography.
*Excludes Primary Children’s Hospital.

Table 5. Validation of the Utah Score

with Data from the Validation Cohort

+ BCVI - BCVI

High risk
(score ‡3)

True positives False positives 72
13 59

Low risk
(score £2)

False negatives True negatives 339
9 330

22 389 Total 411

BCVI, blunt cerebrovascular injury.
Odds ratio 8.1 (3.3, 19.8). Fisher’s exact test p value <0.001.
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Discussion

In this study, we externally validated the Utah Score on a cohort

from three centers with a total of 411 patients. The Utah Score was

significantly associated with BCVIs in the validation cohort and

discriminated well with an area under the curve of 72%. The Utah

Score misclassified only 16.6% of the patients at the three valida-

tion sites. For pediatric trauma patients, GCS score £8, focal neu-

rological deficit, a fracture through the carotid canal, petrous

temporal bone fracture, and hypodensity on noncontrast head CT

are independent risk factors for BCVI. The Utah Score, which

combines and weights these predictors, can be applied to help

stratify patients into high- and low-risk categories to suggest

whether screening with CTA should be performed (Fig. 2, Fig. 3).

In this multi-institutional validation study, we found the Utah

Score displayed good fit and discrimination, on par with the per-

formance of other predictive models for other varying clinical

conditions.21,22 An additional advantage of the Utah Score is its

ease in use and availability to all pediatric trauma care providers.

The patient population at the four centers demonstrated hetero-

geneity in several variables, which strengthens the validation of the

Utah Score. Specifically, the cohort from TCH demonstrated lower

FIG. 2. Case example the use and application of the Utah Score
for predicting blunt cerebrovascular injury (BCVI). A 10-year-old
boy struck by a vehicle presented with a Glasgow Coma Scale
score of 3, nonfocal neurological examination, no fracture through
the carotid canal, a contralateral petrous temporal bone fracture
(A, arrow), and no evidence of cerebral infarct on computed to-
mography (B). This patient is thus ‘‘high risk’’ with a Utah Score of
4, which yields a 44.4% probability of BCVI (Table 2). Computed
tomographic angiography demonstrated a left internal carotid artery
injury with pseudoaneurysm formation (C, arrow). This was con-
firmed with digital subtraction angiography (D, arrow).

FIG. 1. (A) Bayesian analysis using original study likelihood ratios (LR). (B) Pre-test probability converted into pre-test odds and
multiplied by positive and negative LR for high and low-risk groups, yielding post-test odds, then converted back to post-test probability
and compared with (C) observed probability of blunt cerebrovascular injury from the validation cohort.

Table 6. Application of the Denver Criteria

to the Entire Cohort of Pediatric Trauma Patients

with Blunt Cerebrovascular Injury

Patients with carotid
artery injury (n = 51)

Patients with vertebral
artery injury (n = 8)

Score

Predicted
by the
Denver
score Observed

Predicted
by the
Denver
score Observed

0 20% 10 (2.9%) 3% 4 (0.7%)
1 33–48% 18 (10.3%) 33% 4 (11.4%)
2 56–74% 14 (15.2%) - -
3 80–88% 9 (25.7%) - -
4 >93% 0 (0) - -

PREDICTING BCVI IN CHILDREN: THE ‘‘UTAH SCORE’’ 395



acuity than was seen at the other three centers. This likely reflects

the fact that TCH did not become a Level I Trauma center until

2008–2009.

Although the sensitivity of the Utah Score was only 59%, the

specificity was 85%. Thus, the Utah Score can be used to help rule in

BCVI and suggest the need for CTA. Although it is desirable to have a

high sensitivity for a screening tool such as the Utah Score, the ability

to rule in disease with a high clinical suspicion to obtain further

imaging can be invaluable. The positive predictive value of the score

is quite low at 18%, but the negative predictive value was extremely

high at 97%; thus, we can say with high certainty that patients deemed

as low risk (score £2) have a low likelihood of having a BCVI. This is

especially important to avoid missing a crucial diagnosis.

We developed the Utah Score to stratify patients to high- and

low-risk groups. Among the original cohort, patients with a score

£2 had a 7.9% risk of BCVI, whereas patients with a score ‡3 had a

39.3% risk of BCVI.14 In the validation cohort, patients with a score

of £2 had a 2.7% risk of BCVI, whereas patients with a score of ‡3

had an 18.1% risk of BCVI. If there is strong clinical suspicion of

BCVI despite a low prediction score, delayed magnetic resonance

angiography may be considered as an alternative screening mo-

dality that avoids radiation in lower-risk patients.23,24 Risk mod-

eling in adults has guided BCVI screening in practice (the Denver

Criteria)10; patients with no risk factors for blunt carotid injury and

for whom screening is not recommended have a 20% risk of

BCVI14; comparatively, we have defined a pediatric population at

much lower risk.

Whereas Kopelman and colleagues3 concluded that the risk

factors for BCVI in children are similar to those in adults and

recommended applying the Eastern Association for the Surgery of

Trauma (EAST) guidelines6 to the pediatric trauma population, we

identified GCS £8, focal neurological deficit, fracture through the

carotid canal, petrous temporal bone fracture, and hypodensity on

CT as risk factors for BCVI in children14; we suggest that these

criteria be used when evaluating children for BCVI.

Similarly, we applied the original Denver criteria to the total

cohort of patients (n = 645) and found that it poorly predicted BCVI

in comparison with the Utah Score (Table 6). Because the Denver

criteria grossly overestimated BCVI probability in all five strata, its

use in children would lead to overscreening with CTA and un-

necessary exposure to radiation and is not recommended. Brunetti

and associates25 demonstrated that CT accounts for 32% of radio-

logic studies performed, but 91% of the total radiation dose; the

average radiation dose per child was 17.9 mGy.

In this study, we found a mean (– SD) dose-length product of

682.8 – 383.4 mGy-cm with a median of 644 (mGy-cm (range 393–

876) among the 168 patients in the total cohort for whom the in-

formation was available. CTA of the head and neck involves

2–4 mGy of radiation exposure; thus, reducing the number of CTAs

performed would significantly decrease the overall radiation ex-

posure to children being assessed for trauma.

We suggest that use of the Utah criteria for screening for BCVI

will lead to a reduction in radiation exposure by targeting CTAs

for the most at-risk population. Radiation dose varies significantly

with age and center, so it is difficult to say exactly how much more

radiation exposure any given patient receives because a CTA was

performed during the trauma evaluation. Takei and coworkers,26

however, summarized the mean dose-length products (DLP) for

noncontrast head CT in children across six countries. By combining

the age groups from the study, the mean radiation exposure DLP for

noncontrast head CT was 543 mGy-cm.

Based on the single-center study for which the Utah Score was

developed, the mean DLP for CTA was 649 mGy-cm. Considering

that all patients who underwent a CTA also underwent a non-

contrast head CT during the trauma evaluation, these patients re-

ceived approximately 2.2 times the radiation exposure as children

who did not undergo a CTA. In this setting, using the Utah criteria

can reduce the increased, additional radiation exposure.

The differences we observed in the fit of the Denver criteria to

adult and pediatric patients are similar to the findings from a single-

center retrospective review of intracranial CT pathology in 870

adults and 336 children evaluated for blunt trauma.9 Although GCS

scores were similar, pediatric patients were more likely to present

with skull fracture and epidural hematoma and less likely to have a

cortical contusion, subdural hemorrhage, or subarachnoid hemor-

rhage.8 This supports the statement that children experience trauma

differently and may have different risk factors for BCVI. This may

be explained by anatomical differences and divergent mechanisms

of injury, both of which also underscore a different risk profile for

BCVI in children compared with adults.

Jones and colleagues2 identified 45 children who had blunt

BCVI; although 72% of asymptomatic injuries met adult screening

criteria, more than two-thirds of patients who presented with acute

neurologic findings did not meet adult screening guidelines, sug-

gesting that screening guidelines need to be modified for children.2

Previous studies of BCVI in pediatric trauma patients have

demonstrated varying rates of arterial injury that have typically

been lower than the rates observed in the training and validation

cohorts in this study.1–4,14 We identified a total of 22 arterial in-

juries in the validation cohort (n = 411) and 58 total among the total

study population (n = 645). Although the majority of injuries were

Grade 1 (63.4%), a large majority required treatment (68.2%), re-

presenting a true clinical finding rather than a diagnosis without

consequence.

The Utah Score created from our cohorts represents a large series

of patients with BCVI; it is a different representation of the prev-

alence of BCVI and the associated risk factors in children. In the

multicenter validation cohort, we found the overall prevalence of

BCVI diagnosed by CTA was 5.4% with variation among the three

FIG. 3. Case example demonstrating the use and application of
the Utah Score for predicting cerebrovascular injury (BCVI). An
8-year-old boy involved in a motor vehicle accident who had a
right temporal epidural hematoma necessitating evacuation had
a Glasgow Coma Scale score of 10 and nonfocal neurological ex-
amination. He had a fracture through the carotid canal (A, arrow),
no petrous temporal bone fracture, and no cerebral infarct on
computed tomography. This patient is low risk with a Utah Score of
2, which yields a 6.7% probability of BCVI (Table 2). Computed
tomographic angiography demonstrated no injury (B, arrow).
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centers, and all centers demonstrated a higher prevalence than

previous studies.

We found that, as in adult patients, petrous temporal bone fracture

is an independent predictor of BCVI7,10; however, we also deter-

mined that fracture through the carotid canal, which is commonly an

indication for ordering CTA on initial evaluation, is an independent

risk factor in children.14 The Utah Score uses a higher GCS score

cutoff to signal BCVI than is suggested in adults and highlights focal

neurologic deficit and hypodensity on noncontrast CT, both of

which are strongly and independently associated with BCVI.14

The difference in risk factors for BCVI between adults and

children can be explained by several different factors, including

response to traumatic injury, autoregulation, developmental anat-

omy and physiology, vessel reactivity, and cerebrovascular circu-

latory reserve. Our initial study and validation clearly demonstrate

that BCVI in children manifests differently than in adults, and thus

an adjustment in screening criteria is required. This is also sup-

ported by data from a large multicenter retrospective cohort study

of 5829 children <15 years of age by Azarakhsh and associates1 that

also highlights the importance of pediatric-specific risk factors and

the potential usefulness of a scoring system. Only 89 of 538 patients

(16.5%) who met adult criteria actually underwent screening for

BCVI, and 23 BCVIs were identified.1

Interestingly, in our cohort of 644 patients, there were 53 chil-

dren (8.2%) with spinal injuries—fracture dislocation, fracture, or

ligamentous injury—and this finding was not associated with BCVI

( p = 0.50). Although there is evidence that injuries to the cervical

spine and spinal cord are less common in children than in adults,27–

32 the prevalence of vertebral artery injury in the validation and

training cohort was 1.24% (8/645); this is close to the incidence

reported in the adult literature, which is between 0.5 and 2%.33–37

The small number of vertebral artery injuries in both the Utah

cohort and the multicenter cohort, however, limits the external

validity of the aforementioned finding.

Although catheter angiography is the gold standard for the di-

agnosis of vascular injury, CTA has become the norm for evalua-

tion of traumatic vascular injury in both adults and children because

of its speed, availability, and accuracy. Early CTA with four- and

eight-slice scanners was quite poor at detecting BCVI, but the

sensitivity has improved with advances in CT scanning technology.

Previous data demonstrated that 16-slice scanner CTA has a sen-

sitivity of 100% and specificity of 94% for symptomatic BCVI38; in

addition, in terms of face validity, the incidence of BCVI in the

studied population matched those historically that were diagnosed

with conventional cerebral angiography.

Based on these data and other similar findings, Biffl and col-

leagues39 reversed their previous recommendation that CTA was

not adequate for screening BCVI.40 Further direct comparison by

Eastman and coworkers33 between CTA and digital subtraction

angiography (DSA) in 162 CTAs followed by 146 cerebral an-

giograms demonstrated a sensitivity of 97.7%, specificity of 100%,

positive predictive value of 99.3%, and negative predictive value of

99.3%. A systematic review by Roberts and associates41 examining

the diagnostic accuracy of CTA angiography for BCVI found a

pooled sensitivity of 66% and specificity of 97% for CTA versus

DSA in the detection of BCVI.

Thus, we believe using CTA as the diagnostic tool of choice

during initial contact in the trauma setting is reasonable and reflects

current practice. The Denver criteria were developed using catheter

angiography, but the application to CTA has been endorsed and is

widely applied in the evaluation in adult trauma, although it has not

been independently validated using CTA.

False positives and false negatives are issues inherent to all

screening methods; while clinical prediction scores like ours may

stratify patients into high-risk and low-risk groups, it is important

for the clinician to assess each patient carefully, understand the

limitations of the score, and integrate the tool’s result into clinical

decision-making.

Limitations

This multicenter validation was conducted on a retrospective

cohort, which may limit the accuracy and availability of the med-

ical record. A major limitation is the inclusion of only patients who

underwent CTA for screening. In addition, we included only those

patients who underwent CTA imaging as part of their trauma

evaluation, so we do not know how many patients with identified

risk factors did not undergo CTA for evaluation.

Patients who underwent magnetic resonance or conventional

angiography for initial diagnosis were not captured, impacting the

incidence of BCVI. Further, conventional angiography may have

been used in patients with more severe injuries or higher suspicion

of BCVI, which may bias our results toward lower-grade injuries.

At all four centers examined in this study, however, CTA was the

modality of choice to begin the diagnostic work-up for BCVI in the

pediatric trauma population.

In addition, the original Denver criteria were designed based on

catheter angiography. The Denver grading system was used as a

comparison because it is an analytical method with quantifiable risk

prediction using statistically supported data to screen for adult

BCVI and because EAST trauma guidelines have recommended

its application to the pediatric trauma population. Therefore, we

thought it was critical to compare our clinical prediction score to

these criteria. That comparison may be limited because the Denver

grading system has not been independently validated using CTA.

Only a small number of vertebral artery injuries were identified

in our multi-institutional series, limiting definitive conclusions

about risk factors for vertebral injury and its relationship to cervical

spine injury in children. Although most vascular injuries identified

in our study cohort required treatment (68.2%), CTA may over-

diagnose inconsequential injuries. This may be less of a cause for

concern, however, because CTA is used as a screening test with the

identification of any type of vascular injury as its objective, and

more advanced, invasive imaging including catheter angiography

may be used to confirm this diagnosis.

This study externally validates the Utah Score as a clinical

prediction score for BCVI in pediatric trauma patients, and we

encourage its widespread implementation at other pediatric trauma

centers. Nevertheless, we advise that clinical evaluation and mul-

tidisciplinary decision-making be paramount when making all di-

agnostic and treatment decisions.

Conclusions

We have externally validated the Utah Score for predicting

BCVI in pediatric trauma patients, with a 16.6% misclassification

rate. In pediatric trauma patients, fracture through the petrous

temporal bone or carotid canal, focal neurological deficit, hypo-

density on CT consistent with ischemia, and GCS £8 are inde-

pendent risk factors for BCVI. The validation of these findings and

the Utah Score on a large, multicenter cohort indicates that the

score is appropriate for clinical use.

Physicians can utilize this easy-to-use bedside instrument to

make a more informed decision about screening the at-risk pedi-

atric population with hopes of reducing unnecessary CTA imaging
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for low-risk patients. Although external validation has been com-

pleted, further prospective study and tracking may strengthen

these findings.
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