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ABSTRACT

Three-dimensional density maps of biological specimens from cryo-electron microscopy
(cryo-EM) can be interpreted in the form of atomic models that are modeled into the
density, or they can be compared to known atomic structures. When the central axis of a
helix is detectable in a cryo-EM density map, it is possible to quantify the agreement
between this central axis and a central axis calculated from the atomic model or structure.
We propose a novel arc-length association method to compare the two axes reliably. This
method was applied to 79 helices in simulated density maps and six case studies using cryo-
EM maps at 6.4–7.7 Å resolution. The arc-length association method is then compared to
three existing measures that evaluate the separation of two helical axes: a two-way distance
between point sets, the length difference between two axes, and the individual amino acid
detection accuracy. The results show that our proposed method sensitively distinguishes
lateral and longitudinal discrepancies between the two axes, which makes the method
particularly suitable for the systematic investigation of cryo-EM map–model pairs.

Keywords: axis, cryo-electron microscopy, fitting, helix, image, protein structure, secondary

structure, spline.

1. INTRODUCTION

The Electron Microscopy Data Bank (EMDB) archives three-dimensional (3D) density maps, also

referred to as 3D images, which exhibit a wide range of spatial resolution levels, from about 2 Å to more

than 80 Å. Density maps with better than 10 Å resolution are frequently linked to corresponding atomic

models or structures deposited in the Protein Data Bank (PDB). In rare cases, corresponding atomic struc-

tures of the same specimen are solved at atomic resolution with complementary biophysical techniques. In

most cases, atomic models are either derived directly from reliable near-atomic resolution maps at about 3 Å

resolution or indirectly from a more challenging interpretation of lower resolution maps. Many atomic

models derived from density maps at medium resolution of 4–8 Å are based on the fitting of known atomic

structures (Rossmann, 2000; Wriggers and Birmanns, 2001; Schröder et al., 2007). In contrast, de novo
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modeling does not rely on a known atomic structure (Lindert et al., 2009; Al Nasr et al., 2010, 2012; Baker

et al., 2011; Al Nasr et al., 2014; Al Nasr and He, 2016). However, despite active development of the de novo

approach (Baker et al., 2011; Biswas et al., 2012, 2015, 2016; Lindert et al., 2012; Al Nasr et al., 2014; Al

Nasr and He, 2016), no mature tool exists for deriving atomic models for medium-resolution density maps.

Due to diverse origins, reliability, and quality of the deposited cryo-electron microscopy (cryo-EM)

map–model pairs, it is common to see local variations in maps when compared to atomic models or

structures (Fig. 1). These variations can be due to conformational variability, map artifacts, modeling error,

or other systematic differences (Wriggers and He, 2015). For example, the helix in Figure 1A has a strong

cylinder characteristic, but the density in Figure 1B, at the same density threshold, does not resemble a

cylinder despite being part of the same density map. A similar problem may occur in a b-sheet, a turn, or a

loop. As more and more map–model pairs are being deposited in the databases, there is a need to quantify

the level of local similarity of such structural features.

Secondary structure elements such as helices and b-sheets are the most striking structural features visible

in medium-resolution images. In general, helices become visible in cryo-EM maps at resolution levels

better than about 10 Å, whereas b-sheets begin to be visible at resolution levels better than about 8 Å

(Baker et al., 2007). Various computational methods have been developed to detect helices and b-sheets

( Jiang et al., 2001; Kong et al., 2004; Dal Palu et al., 2006; Baker et al., 2007; Zeyun and Bajaj, 2008),

including recent methods SSEhunter, SSELearner, VolTrac, and SSETracer (Baker et al., 2007; Rusu and

Wriggers, 2012b; Si et al., 2012; Si and He, 2013). As more methods become available to detect secondary

structure elements from medium-resolution density maps, it becomes important to quantify the geometry of

the detected features. As a first step toward this aim, we focus on helices in this article.

The accurate measurement of the discrepancy between an atomic representation of the helix and the

corresponding cryo-EM density of the helix is needed for two purposes: (1) to validate the accuracy of

secondary structure detection techniques for cryo-EM density maps and (2) to quantify the agreement of

map–model pairs of a helix as part of a validation of the map or model (Wriggers and He, 2015). Since a

helix appears as a cylinder in the density map, its axial line forms a natural fiducial marker for it. In

numerical applications, this axis line is typically represented by a set of points with sub-Angstrom spacing

that is centered in the cylindrical density (Wriggers and He, 2015). In this study, we investigate the problem

of quantifying the agreement between a set of points located at the central axis of a helix (red points in

Fig. 1C) and the atomic model of a helix (ribbon in Fig. 1C). This article compares four measures for

estimating such agreement.

For helices from different biophysical origins where a structure is available to serve as a reference, it is

straightforward to report the number of helices missed in the detection (false negatives) or incorrectly

detected (false positives), but it is not trivial to provide a suitable geometric measurement of the structural

FIG. 1. Local density variation at helix regions and the problem of evaluation between a set of points and the atomic

model of a helix. The density (gray) at the helix location is superimposed with the atomic model (blue ribbon). The

EMDB ID and the PDB ID are labeled for two cases in (A) and (B). (C) The set of points (red) in the approximate

location of the helix axis is assigned to the density map. The location of the helix axis (green) was calculated from

the atomic model (blue ribbon). EMDB, Electron Microscopy Data Bank; PDB, Protein Data Bank.
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discrepancy. Three methods have been previously used in the evaluation of helical similarity. The first one

considers the length of the axial lines. If the length is within one turn difference from the length of the

central axis of a helix model, the helix is considered a detected helix (Baker et al., 2007). This method

evaluates the longitudinal difference between two lines, but it does not consider the lateral (cross-) dis-

placement of the two axial lines. The second method evaluates individual amino acids and marks an amino

acid as detected if its Ca atom is located within 2.5 Å distance from a designated helix voxel in the image

(Kong et al., 2004). The sensitivity (proportion of true positives) and specificity (proportion of true

negatives) can be calculated accordingly for each protein. There are two drawbacks to the counting of

amino acids. One is that in the original form this method did not provide a measure of accuracy for

individual helices (although we generalize it in Table 1 below to specific helices). The second is that the

total protein accuracy is dependent on the radius threshold, and it is not clear if 2.5 Å is the best choice (we

will test various thresholds shown in Table 1 and also provide a consensus radius for each helix). The third

and more recently introduced method calculates the two-way distance between two sets of points (Si and

He, 2014; He et al., 2015). One set is detected from the density map and the other is calculated from the

atomic model or structure by averaging the geometric center of four consecutive amino acids. This method

(see Section 2) mixes both lateral and longitudinal discrepancies between the axis lines in one parameter.

In this article, we propose a novel arc-length association method that distinguishes the lateral and

longitudinal discrepancies. In Section 2, we introduce our new approach and the statistical validation

techniques used in this article. Section 3 presents a comprehensive systematic comparison of the four helix

distance measures on simulated and experimental density maps with associated atomic structures or

models. Although each of the earlier methods captures a particular aspect of the distance measurement,

there has not been a comprehensive evaluation of their performance. Finally, Section 4 summarizes the

main advantages and disadvantages of the proposed arc-length association method.

2. METHODOLOGY

2.1. The detection of helices in cryo-EM density maps

In a medium-resolution density map, a helix appears as a cylinder, and various methods exist to detect

the location of these helices. We applied SSETracer (Si and He, 2013) to detect the location of helices in a

density map. SSETracer detects helices (and b-sheets) based on a characterization of local density features

such as local structure tensor, local thickness, continuity of the skeleton, and density value. A detected helix

is represented by a set of points located along the central axis of the helix (Fig. 1C). The current im-

plementation of SSETracer contains a modified step in the axis extension to enhance the geometric

characterization of the helix.

2.2. Representation of a helix in an atomic model

The actual axis of a helix was calculated from its atomic structure to compare it with the set of points

detected from the density map. Given the backbone of a helix, the central axis was calculated by averaging

four consecutive geometric centers of amino acids in the helix (Fig. 1C). Since the line formed by such

points is expected to be shorter than the actual axis due to averaging, the end of the axis was determined by

projecting the first/last Ca atom to the line of first/last segment of the axis, respectively. The DSSP

annotation of secondary structures (as available at the PDB web site) was used to define the amino acid

range of a helix in the atomic model or structure.

FIG. 2. The arc-length association method to

compare two splines.
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Table 1. Averaged Radial Distance Between Backbone Centroids and the Helix Axis That

Is Either Calculated From the PDB Structure or Assigned to the Simulated Density Map

Indexa Helix IDb

PDB

Image r80e

Sensitivity (%)f

r100c r80d S2.0 S2.5 S3.0

1 1FLP_1_4-19 1.99 1.98 2.40 53.33 86.67 100.00

2 1HZ4_6_107-123 1.96 1.95 1.86 93.75 100.00 100.00

3 3E46_7_160-171 2.02 1.96 2.24 63.64 100.00 100.00

4 1HZ4_4_67-83 1.97 1.96 2.08 81.25 100.00 100.00

5 1NG6_9_136-146 2.06 1.97 1.98 90.00 100.00 100.00

6 2OVJ_3_390-401 2.00 1.98 2.10 72.73 100.00 100.00

7 3E46_9_190-199 2.02 1.97 2.00 66.67 100.00 100.00

8 1NG6_1_3-16 1.99 1.96 2.24 69.23 100.00 100.00

9 2OVJ_9_493-504 2.08 2.06 2.50 45.45 90.91 100.00

10 1HZ4_12_209-225 1.97 1.96 2.39 62.50 93.75 100.00

11 2OVJ_10_514-533 2.08 1.95 2.28 63.16 94.74 100.00

12 3IEE_1_33-56 2.03 1.96 2.27 56.52 95.65 100.00

13 1NG6_3_47-71 2.08 1.97 2.03 75.00 100.00 100.00

14 3E46_4_106-118 2.10 1.96 2.13 75.00 100.00 100.00

15 1NG6_6_97-110 1.99 1.95 2.35 69.23 84.62 100.00

16 1LWB_2_17-28 2.07 1.96 2.17 72.73 100.00 100.00

17 3IEE_5_139-178 2.23 1.97 2.05 71.05 97.37 100.00

18 1HZ4_20_334-346 2.02 1.99 2.29 58.33 91.67 100.00

19 1FLP_2_21-35 2.05 2.00 2.50 64.29 85.71 85.71

20 3E46_8_176-185 2.10 1.95 2.25 44.44 100.00 100.00

21 1HG5_10_229-257 2.15 1.95 2.22 82.14 96.43 100.00

22 1HZ4_1_5-24 1.99 1.96 2.00 84.21 100.00 100.00

23 1NG6_4-5_74-90 2.04 1.95 1.92 87.50 100.00 100.00

24 1FLP_9-10_124-141 2.13 2.00 2.56 47.06 76.47 100.00

25 1NG6_2_20-39 2.00 1.95 2.13 73.68 94.74 100.00

26 3IEE_2_59-72 2.21 2.02 2.18 58.33 91.67 91.67

27 1FLP_6_82-97 2.00 1.94 2.32 53.33 100.00 100.00

28 1FLP_5_59-76 2.00 1.97 2.07 64.71 94.12 94.12

29 1UNF_7_125-138 2.05 1.98 2.28 84.62 100.00 100.00

30 1LWB_5_77-96 2.18 1.96 2.25 68.42 89.47 100.00

31 1HG5_9_191-221 2.06 1.97 1.93 86.67 96.67 100.00

32 1UNF_13_223-237 2.14 1.97 2.28 64.29 100.00 100.00

33 1HZ4_17_287-304 2.14 1.95 2.26 76.47 94.12 100.00

34 1HZ4_3_47-64 2.04 1.94 2.30 70.59 88.24 94.12

35 1FLP_7-8_103-120 2.04 1.97 2.22 70.59 94.12 100.00

36 1HZ4_11_188-202 1.98 1.94 2.01 71.43 92.86 100.00

37 1LWB_4_58-74 2.09 1.98 2.22 68.75 87.50 93.75

38 1HG5_3_56-66 2.00 1.97 1.96 90.00 100.00 100.00

39 2OVJ_7_451-463 2.06 1.97 2.30 66.67 83.33 100.00

40 3E46_1_3-18 2.15 1.97 2.26 60.00 93.33 100.00

41 2OVJ_2_364-376 2.14 2.03 2.28 66.67 91.67 100.00

42 1UNF_3-4_69-80 2.03 1.93 2.71 63.64 63.64 90.91

43 2OVJ_8_467-485 1.99 1.97 2.27 61.11 94.44 100.00

44 2OVJ_11-12_536-543 2.04 1.97 2.99 28.57 85.71 100.00

45 1HG5_5_91-99 2.05 2.00 4.10 62.50 87.50 87.50

46 1HZ4_16_267-283 1.98 1.96 2.02 81.25 87.50 100.00

47 1HZ4_8_149-162 2.00 1.94 2.02 84.62 100.00 100.00

48 1LWB_6_101-119 2.11 1.96 2.81 50.00 77.78 83.33

49 1HZ4_18_307-324 2.06 1.95 2.35 82.35 88.24 100.00

50 1NG6_7-8_116-130 2.13 2.03 2.66 42.86 78.57 92.86

51 1HG5_6_115-141 2.08 1.99 2.07 76.92 96.15 96.15

52 3E46_6_138-153 2.68 1.99 3.39 53.33 73.33 80.00

(continued)
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2.3. Splines of the axes

Each line is represented by a set of points. The number of points and the spacing among points often

differ between the two sets. To measure the discrepancies between two sets of points, each set was first

interpolated using a cubic Hermite spline.

2.4. Arc-length association method for two splines

When comparing two splines, it is important to characterize both the lateral and the longitudinal dis-

crepancies. Let the two lines be represented as splines, where N1 and N2 are the number of points,

respectively (Fig. 2):

p sð Þ; 1 � s � N1

q tð Þ; 1 � t � N2

An important question in the comparison is how to correspond a pair of points from the two splines. Our

approach initially associated the closest pair of points. Let sc and tc be the closest points of the two lines.

Two points correspond if they have the same arc length from sc and tc, respectively.

Let k1 be the arc - length function of line p sð Þ; k1 : 1‚ N1½ � ! R

Let k2 be the arc - length function of line q tð Þ; k2 : 1‚ N2½ � ! R

Table 1. (Continued)

Indexa Helix IDb

PDB

Image r80e

Sensitivity (%)f

r100c r80d S2.0 S2.5 S3.0

53 1UNF_12_209-219 2.14 1.99 2.62 50.00 80.00 90.00

54 3IEE_8_240-263 2.25 1.97 2.03 77.27 95.45 100.00

55 3E46_5_128-136 2.04 1.96 5.23 25.00 62.50 62.50

56 3IEE_9_271-284 2.24 1.96 4.66 41.67 58.33 58.33

57 3IEE_4_103-135 2.02 1.99 2.14 75.00 90.63 100.00

58 1HG5_2_39-49 2.00 1.94 1.93 90.00 100.00 100.00

59 1HZ4_9-10_168-185 2.10 1.97 2.52 64.71 76.47 100.00

60 1HG5_4_72-88 2.09 1.98 2.69 62.50 75.00 87.50

61 3IEE_6_185-205 2.27 2.20 2.31 58.82 88.24 100.00

62 3IEE_7_213-231 2.02 1.97 2.11 72.22 83.33 94.44

63 2OVJ_5_415-427 1.98 1.95 2.09 75.00 100.00 100.00

64 1LWB_1_5-11 2.02 1.95 1.96 100.00 100.00 100.00

65 1HG5_1_20-29 2.07 2.00 2.50 66.67 88.89 100.00

66 1HZ4_5_87-103 2.05 1.95 2.17 68.75 93.75 100.00

67 1FLP_3_37-41 2.11 2.06 2.13 75.00 100.00 100.00

68 1UNF_5_85-100 2.05 2.01 2.96 33.33 53.33 80.00

69 1UNF_2_47-58 2.00 1.97 2.31 63.64 100.00 100.00

70 1HG5_7_161-179 2.08 1.91 2.18 66.67 94.44 100.00

71 2OVJ_6_439-447 2.10 1.95 2.45 87.50 100.00 100.00

Average values: 2.07 1.97 2.37 67.40 90.97 96.66

Results computed with SSETracer.
aIndex of the data as it appears in Figures 4 and 5. Sorted approximately by longitudinal discrepancy.
bPDB ID, the chain ID in the PDB file, the helix ID, and the first and last amino acid index. Sequentially adjacent helices that share

same direction are combined.
cAveraged amino acid backbone centroid distance from the axis.
dRadius for 80% of helix centroids to be within the radial distance from the axis calculated from PDB file.
eRadius for 80% of helix centroids to be within the radial distance from the axis detected from the density image using SSETracer.
fSensitivity calculated as A/B using a specified radius threshold, where A is the number of detected AAs and B is the total number of

AAs of the helix.

PDB, Protein Data Bank.
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s = k1 sð Þ - k1 scð Þ = k2 tð Þ - k2 tcð Þ

C =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR b

a
k p k- 1

1 (s + k1 scð Þ
� �

- q k - 1
2 (s + k2 tcð Þ

� �
k2 ds

b - a

s
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i = 0 k pi - qi k2 Ds

b - a

s
(1)

where a = maxf - k1 scð Þ; - k2 tcð Þg and b = min k1 N1ð Þ - k1 scð Þ; k2 N2ð Þ - k2 tcð Þf g. sa is the point on

p where k1(sa) = k1(sc) + a, and sb is the point on p where k1(sb) = k1(sc) + b. Similarly, ta is the point on q

where k2(ta) = k2(tc) + a, and tb is the point on q where k2(tb) = k2(tc) + b. C measures the lateral (cross-)

discrepancy between two splines. In this case, pi and qi are the corresponding points of the two lines. They

are determined based on the arc length from pi to p scð Þ and qi to q tcð Þ, respectively. M is the number of line

segments between sa and sb. In addition to C, we introduce a measure of longitudinal discrepancy L (i.e.,

the non-overlapping arc length between the two splines).

L = p̂ + q̂ - dp(sa)p(sb) - dq(ta)q tbð Þ = p̂ + q̂ - 2 b - að Þ (2)

Here the arc length of a line l is represented as l̂. L can result from a relative shift and/or a length difference.

We also have a normalized measure P to characterize the proportion of L relative to the length of the

union of both lines:

P =
L

L + b - a
(3)

2.5. Two-way distance between two splines

Given two axes of the helix, one detected in the image and one calculated from the atomic model, the

distance between them can be calculated. Each axis is represented as a set of points along the line; the line

is often not straight, particularly for long helices. In addition, the number of points on the two lines is often

not the same. Let S be a set of points detected in a density map, and let S0 be the set of points calculated

from the model. Every two consecutive points in each set define a line segment, and therefore, an axis can

be thought of as having a set of line segments. The distance between two sets of points was estimated as in

Equation 4. For each point i‚ i = 1‚ . . . ‚ N on S, we calculated DSS0
i as the projection distance from i to the

closest line segment of S0. If the projection of i was outside the line segment, the distance between i and the

closest endpoint of the line segment was used as the projection distance. Similarly, DS0S
j was calculated as

the distance from each point j‚ j = 1‚ . . . ‚ M of S0 to the closest line segment of S.

D =
XN

i = 1

Dss0

i =N +
XM

j = 1

Ds0s
j =M

 !
=2 (4)

The distance as calculated in Equation 4 is a two-way distance. One way represents the distance from one

line to the other, and the other represents the reverse. The larger the distance, the larger the misalignment is

between the two lines. D is a mixture of lateral and longitudinal discrepancies.

2.6. Sensitivity and specificity for detecting amino acids

Instead of characterizing the geometry of helical axes, the detected amino acids can also be counted as a way to

assess the accuracy of a helix. The backbone (N, Ca, C, and O) centroid was used as a representative position of the

amino acid. If it lies within a certain threshold radius of the helix axis detected from the image, the amino acid was

marked as detected. We reported the results using different thresholds: 2.0, 2.5, and 3 Å. (See Eq. 5 for the definition

of the S2.5 value at radius 2.5 Å.) The sensitivity of each helix at the given radius was calculated as the ratio between

the number of detected amino acids and the total number of amino acids. Since the sensitivity values differ between

helices, and in some cases saturate at 100% for the fixed radius thresholds, we also included in Table 1 the helix-

specific radii where the sensitivity reached 80% and 100% (denoted r80 and r100). We argue below that the r80

values provide a good indication of the positional accuracy afforded by the helical axis placement. The sensitivity

values of all the helices can be averaged over the entire protein if a total value is required.

S2:5 = 100
Detected helixAAs

helixAAs

� �
(5)
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The specificity needs to take into account the number of nonhelix amino acids. A simple way to compute

specificity is to consider the ratio between the number of incorrectly detected amino acids (Fp) and the total

number of nonhelix amino acids for each protein (Eq. 6). We note that specificity values are not available for

individual helices, and different proteins also have a different number of amino acids attributed to helices.

Sp2:5 = 100 1 -
Fp

totalAAs - helixAAs

� �� �
(6)

3. RESULTS AND DISCUSSION

3.1. The data sets

We used nine proteins, for which the atomic structures were downloaded from the PDB, and their

corresponding 3D density maps were simulated at 10 Å resolution using Chimera. Secondary structures

were assigned to the atomic structures using DSSP at the PDB web site. The nine proteins include 87

helices comprising four or more amino acids. Eight of the 87 helices are short 310 helices, each of which is

adjacent to another helix with a similar orientation. At medium resolution, two consecutive helices with

similar orientations appear to be one long helix in the density map, so they were merged into one helix in

the test. In addition to the simulated maps, six helix case studies were conducted using the cryo-EM density

maps downloaded from the EMDB (Lawson et al., 2011). The cryo-EM density maps and their corre-

sponding atomic structures are EMD-1733-3C91_H (6.8 Å), EMD-5352-3J0R_A (7.7 Å), and EMD-5030-

4 V68_BR (6.4 Å). The cryo-EM density maps were aligned with their corresponding structures at

download. The density maps of individual chains were extracted from the original density map of multiple

chains using a mask of the chain derived from the PDB structure. SSETracer was applied to obtain the

position of the helices from all the density maps (Si and He, 2013).

3.2. Lateral and longitudinal discrepancies

A helix can be approximated by a cylinder that is represented by its central axis. The geometric centers

of backbone atoms N, C, Ca, and O of the amino acids on a helix lie consistently about 2.07 Å from the

central axis (last row of column 3 in Table 1). An effective method to compare a helix in the density map

with its atomic model is to compare the relative position of their central axes. We measured the lateral and

longitudinal discrepancies of the axial lines to characterize the effect of length difference and positional

shift. We noticed that the lateral discrepancies are generally small (column 6 of Table 2), within 1 Å for 62

of the 71 test cases and between 1 and 2 Å for the remaining nine helices. However, the longitudinal

discrepancies (column 7 of Table 2) were more than 3 Å in most cases. These results suggest that helical

axes are generally positioned in-line (providing confidence in the detection), but there are longitudinal

discrepancies that may originate in systematic differences such as conformational variability, map artifacts,

or modeling error (Wriggers and He, 2015). The specific longitudinal differences would need to be

evaluated further on a case-by-case basis.

3.3. Results of arc-length association using simulated density maps

We evaluated map-structure pairs from simulated maps where the known atomic structures provide a

known gold standard for comparison. One spline (red lines in Fig. 3) is derived from the set of points

detected from the simulated map. The other spline (green lines in Fig. 3) is directly derived from the atomic

structure. The arc-length method measures both lateral and longitudinal discrepancies. As an example,

helix 1HZ4_4_67_83 is 17 amino acids in length (Fig. 3 and section of 1HZ4 of Table 2). The lateral

discrepancy between the two splines is 0.43 Å, and the longitudinal discrepancy is 0.51 Å. The small lateral

discrepancy is readily apparent by visual inspection (Fig. 3). The proportion of longitudinal discrepancy is

2% (column 8 of Table 2), which is also small. In general, very small discrepancies would be expected for

simulated data, and the residual error is a lower bound for the experimental maps investigated below.

Interestingly, eight helices were not detected (N/A in Table 2). These undetected helices are generally

shorter compared to the others. The proposed arc-length association only measures the discrepancy values

for detected helices (true positives). We recommend that users report the number of any known undetected

helices (false negatives) or wrongly detected helices (false positives) as part of their analysis.
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Table 2. Helix Accuracy Measurement for Simulated Map-Structure Pairs Using Axis Length,

the Two-Way Distance, the Arc Length, and the Sensitivity and Specificity of Detected Amino Acids

Helix IDa TLb DLc LDDd 2-Waye Cf Lg (Å) Ph Fpi or Sp2.5
j S2.5

k

1FLP_1_4-19 23.54 23.04 Y 0.76 0.88 0.04 0.00 1 86.67

1FLP_2_21-35 20.71 19.98 Y 0.75 0.91 1.84 0.09 0 85.71

1FLP_3_37-41 5.99 15.06 N 2.24 0.62 10.54 0.67 4 100.00

1FLP_5_59-76 26.84 29.43 Y 0.57 0.74 2.59 0.09 2 94.12

1FLP_6_82-97 23.18 23.34 Y 0.74 0.77 2.54 0.10 0 100.00

1FLP_7-8_103-120 28.54 24.47 Y 0.60 0.79 3.56 0.13 0 94.12

1FLP_9-10_124-141 27.19 24.13 Y 0.78 0.99 2.32 0.09 0 76.47

1FLP Summary: 142 total AAs, 109 helix AAs 0.92 0.81 3.35 0.17 78.79 87.84

1HG5_1_20-29 14.02 17.18 Y 1.04 0.60 8.05 0.41 2 88.89

1HG5_2_39-49 15.89 20.82 Y 0.79 0.39 6.41 0.30 2 100.00

1HG5_3_56-66 15.93 18.40 Y 0.44 0.34 3.97 0.21 2 100.00

1HG5_4_72-88 24.83 20.67 Y 0.51 0.62 7.14 0.27 1 75.00

1HG5_5_91-99 12.82 11.30 Y 0.81 0.91 4.93 0.34 1 87.50

1HG5_6_115-141 41.70 35.76 N 0.37 0.54 5.38 0.13 0 96.15

1HG5_7_161-179 28.78 42.56 N 1.78 0.56 16.58 0.38 4 94.44

1HG5_9_191-221 46.59 48.69 Y 0.40 0.50 3.15 0.06 1 96.67

1HG5_10_229-257 44.29 41.59 Y 0.45 0.68 2.06 0.05 0 96.43

1HG5 Summary: 289 total AAs, 170 helix AAs 0.73 0.57 6.41 0.24 86.02 90.85

1UNF_1_37-43 9.10 N/A N N/A N/A N/A N/A 0 0.00

1UNF_2_47-58 17.39 26.80 N 1.86 0.64 13.76 0.48 1 100.00

1UNF_3-4_69-80 18.78 13.66 Y 0.77 0.90 4.45 0.25 0 63.64

1UNF_5_85-100 23.10 24.11 Y 1.63 1.30 12.35 0.42 3 53.33

1UNF_6_112-122 15.66 N/A N N/A N/A N/A N/A 0 0.00

1UNF_7_125-138 20.12 16.73 Y 0.33 0.40 2.86 0.15 0 100.00

1UNF_12_209-219 15.46 21.33 N 1.38 1.22 5.88 0.28 3 80.00

1UNF_13_223-237 21.81 17.75 Y 0.48 0.57 3.34 0.16 0 100.00

1UNF Summary: 238 total AAs, 111 helix AAs 1.08 0.84 7.11 0.29 92.23 68.37

2OVJ_2_364-376 18.85 16.45 Y 0.50 0.52 4.08 0.21 0 91.67

2OVJ_3_390-401 17.23 16.16 Y 0.50 0.69 0.65 0.04 0 100.00

2OVJ_5_415-427 18.84 23.23 Y 0.86 0.47 7.98 0.32 3 100.00

2OVJ_6_439-447 12.73 30.72 N 3.32 0.61 20.08 0.64 5 100.00

2OVJ_7_451-463 18.60 22.61 Y 0.76 0.79 4.01 0.18 1 83.33

2OVJ_8_467-485 27.74 32.53 Y 0.80 0.90 4.79 0.15 3 94.44

2OVJ_9_493-504 17.62 16.10 Y 0.65 0.77 1.11 0.06 1 90.91

2OVJ_10_514-533 30.84 29.02 Y 0.59 0.72 1.23 0.04 1 94.74

2OVJ_11-12_536-543 12.11 6.66 N 0.45 0.56 4.82 0.42 0 85.71

2OVJ Summary: 201 total AAs, 126 helix AAs 0.94 0.67 5.41 0.23 84.00 88.24

3E46_1_3-18 22.98 23.71 Y 0.72 0.76 4.05 0.16 0 93.33

3E46_4_106-118 19.14 17.87 Y 0.32 0.37 1.35 0.07 1 100.00

3E46_5_128-136 12.26 5.80 N 1.15 1.53 5.92 0.51 0 62.50

3E46_6_138-153 22.25 22.92 Y 1.44 1.85 5.57 0.22 0 73.33

3E46_7_160-171 16.91 15.78 Y 0.52 0.58 0.47 0.03 0 100.00

3E46_8_176-185 13.77 14.15 Y 0.75 0.81 2.05 0.14 0 100.00

3E46_9_190-199 13.99 13.32 Y 0.30 0.35 0.67 0.05 0 100.00

3E46 Summary: 253 total AAs, 93 helix AAs 0.74 0.89 2.87 0.17 99.08 84.88

1LWB_1_5-11 9.35 17.37 N 1.15 0.41 8.02 0.46 3 100.00

1LWB_2_17-28 17.16 15.05 Y 0.53 0.64 1.50 0.09 0 100.00

1LWB_3_30-36 10.94 N/A N N/A N/A N/A N/A 0 0.00

1LWB_4_58-74 24.83 20.39 Y 0.50 0.60 3.85 0.16 0 87.50

1LWB_5_77-96 30.07 27.63 Y 0.46 0.54 3.04 0.10 0 89.47

1LWB_6_101-119 28.31 25.06 Y 0.99 1.24 5.09 0.17 0 77.78

1LWB Summary: 122 total AAs, 82 helix AAs 0.73 0.69 4.30 0.20 92.50 80.49

1NG6_1_3-16 20.04 19.08 Y 0.52 0.60 0.92 0.05 1 100.00

(continued)
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The results show that the arc-length association method not only identifies misaligned helical axes but

also distinguishes axes that have a slight discrepancy but are not visually obvious. In the case of a pair of

obvious misalignment (1UNF_2_47-58, Fig. 3), the longitudinal discrepancy was measured as 13.76 Å

(Table 2), which was the third largest among tested cases (Fig. 4). In this case, the detected axis is much

longer than expected. Here, two helices that are almost consecutive in sequence appear as one longer helix.

Table 2. (Continued)

Helix IDa TLb DLc LDDd 2-Waye Cf Lg (Å) Ph Fpi or Sp2.5
j S2.5

k

1NG6_2_20-39 29.44 28.12 Y 0.36 0.41 2.42 0.08 0 94.74

1NG6_3_47-71 37.38 35.36 Y 0.32 0.51 1.28 0.03 1 100.00

1NG6_4-5_74-90 26.00 23.28 Y 0.25 0.43 2.18 0.09 0 100.00

1NG6_6_97-110 20.06 18.00 Y 0.46 0.54 1.45 0.07 1 84.62

1NG6_7-8_116-130 23.58 17.79 N 0.73 0.86 5.26 0.23 0 78.57

1NG6_9_136-146 15.70 14.52 Y 0.28 0.35 0.52 0.03 1 100.00

1NG6 Summary: 148 total AAs, 116 helix AAs 0.42 0.53 2.00 0.08 87.50 92.24

3IEE_1_33-56 35.41 33.71 Y 0.53 0.67 1.25 0.04 1 95.65

3IEE_2_59-72 20.76 20.06 Y 0.76 0.91 2.45 0.11 0 91.67

3IEE_4_103-135 49.52 52.60 Y 0.68 0.79 6.13 0.11 2 90.63

3IEE_5_139-178 62.15 61.24 Y 0.47 1.25 1.61 0.03 1 97.37

3IEE_6_185-205 32.79 39.95 N 1.16 1.64 7.16 0.18 2 88.24

3IEE_7_213-231 28.08 29.62 Y 0.66 0.68 7.26 0.22 1 83.33

3IEE_8_240-263 36.41 42.32 N 0.84 1.07 5.91 0.14 3 95.45

3IEE_9_271-284 20.36 13.63 N 1.16 1.77 6.07 0.31 0 58.33

3IEE Summary: 270 total AAs, 193 helix AAs 0.78 1.10 4.73 0.14 75.81 88.71

1HZ4_1_5-24 29.43 26.67 Y 0.42 0.62 2.14 0.07 0 100.00

1HZ4_2_28-40 18.58 N/A N N/A N/A N/A N/A 0 0.00

1HZ4_3_47-64 26.49 22.25 Y 0.50 0.60 3.54 0.14 0 88.24

1HZ4_4_67-83 24.48 24.29 Y 0.33 0.43 0.51 0.02 0 100.00

1HZ4_5_87-103 24.74 33.38 N 0.94 0.75 8.64 0.26 2 93.75

1HZ4_6_107-123 24.85 24.62 Y 0.35 0.48 0.45 0.02 0 100.00

1HZ4_7_131-145 22.07 N/A N N/A N/A N/A N/A 0 0.00

1HZ4_8_149-162 20.15 20.98 Y 0.44 0.38 5.07 0.22 1 100.00

1HZ4_9-10_168-185 28.19 28.99 N 1.01 0.79 7.05 0.24 1 76.47

1HZ4_11_188-202 21.45 20.44 Y 0.44 0.52 3.68 0.16 0 92.86

1HZ4_12_209-225 24.89 22.98 Y 0.59 0.72 1.19 0.05 0 93.75

1HZ4_13_229-238 14.16 N/A N N/A N/A N/A N/A 0 0.00

1HZ4_14-15_248-263 24.62 N/A N N/A N/A N/A N/A 0 0.00

1HZ4_16_267-283 24.66 19.16 N 0.24 0.29 4.94 0.21 0 87.50

1HZ4_17_287-304 25.97 24.27 Y 0.40 0.46 3.51 0.13 1 94.12

1HZ4_18_307-324 26.86 21.02 N 0.27 0.38 5.23 0.20 0 88.24

1HZ4_20_334-346 18.59 18.67 Y 0.79 0.88 1.70 0.09 1 91.67

1HZ4_21_352-365 20.32 N/A N N/A N/A N/A N/A 0 0.00

1HZ4 Summary: 366 total AAs, 291 helix AAs 0.52 0.56 3.67 0.14 92.00 68.99

Results computed with SSETracer.
aPDB ID, the helix ID, and the first and last amino acid index for the helix. Sequentially adjacent helices that share the same

direction are combined.
bTrue length of the helix axis in the atomic model.
cDetected length of the axis. N/A: Helix was not detected.
dLength-difference detection. A helix is assumed to be detected when c-d £ 5.4 Å.
eAveraged two-way distance (Eq. 4).
fLateral discrepancy C (Eq. 1).
gLongitudinal discrepancy L (Eq. 2).
hProportion P of longitudinal discrepancy (Eq. 3).
iNumber of false-positive nonhelix AAs (Eq. 6) within a specified radius (sheet AA: radius = 3.0 Å, loop AA: radius = 2.0 Å) of the

detected helix axis.
jAmino acid detection specificity (Eq. 6).
kAmino acid detection sensitivity (Eq. 5).

60 ZEIL ET AL.



FIG. 3. Comparison between two splines of a helix. The spline (red) generated from the 3D image (gray) is

superimposed with the spline (green) that is calculated from the atomic structure of the helix (blue ribbon). The PDB

ID, helix ID, and amino acid indexes are labeled for each helix. 3D, three-dimensional.

FIG. 4. Helix accuracy evaluation using two methods. Arc-length association measures lateral (red dots) and lon-

gitudinal (black dots) discrepancy. Two-way distance (blue dots) measures the distance between two sets of points. The

helix index corresponds to that in Table 1.
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In two other cases (1NG6_9_136-146, and 1NG6_6_4-5_74-90, Fig. 3), a discrepancy is not visually

obvious between two axes, but the arc-length method still measured longitudinal discrepancies of 2.18 and

0.52 Å, respectively (Table 2).

The sensitive measure of longitudinal discrepancy for the arc-length association can be potentially used

to identify those complicated density maps where our current secondary structure detection methods do not

detect well. In fact, our results show that 5 of the 71 test cases exhibit large longitudinal discrepancies (over

10 Å). These cases deserve more study and can be used for designing more accurate detection methods.

3.4. Comparison among four helix distance measures

We compared four helical distance measures: arc-length association, two-way distance, length differ-

ence, and amino acid sensitivity/specificity. Our data show that the two-way distance is similar to the lateral

discrepancy and is only slightly affected by the longitudinal discrepancy (Fig. 4). This is expected since the

calculation of the two-way distance primarily considers the projection distance, and longitudinal dis-

agreement is only considered to a minor extent (Eq. 4). We observed in most cases that a higher two-way

distance corresponded to higher lateral or longitudinal discrepancies (Table 2). However, arc-length as-

sociation is more sensitive than two-way distance; it separates out the longitudinal discrepancy (inaccurate

length determination) so that this is not eclipsed by the dominant lateral discrepancy. For example, the two-

way distance values were 0.33 and 1.86 Å for 1HZ4_4_67-83 and 1UNF_2_47-58, respectively (Table 2

and Fig. 3), whereas their longitudinal discrepancy exhibited a significantly larger difference with values of

0.51 and 13.76 Å. The results in Table 2 suggest that when the two-way distance is over 1.3 Å, the lateral or

longitudinal discrepancies need to be investigated in more detail.

One of the four measures investigates only the length difference between the two axes (Baker et al.,

2007). If the length difference is within a turn (about 5.4 Å for a helix), the two axes are considered

identical. The axial length difference is close to our definition of longitudinal discrepancy, but it misses the

possibility of longitudinal shift. Our comparison shows that eight helices, such as 1HG5_1_20-29 and

1UNF_5_85-100, are marked detected (‘‘Y’’ in Table 2) using the length difference criterion. According to

the arc-length association, these cases exhibit significant longitudinal discrepancies of above 5.4 Å, a

disagreement level that calls for further investigation being warranted. Arc-length association is more

sensitive to longitudinal shift than the length difference method.

The direct comparison of axis lines as geometric fiducials is a common idea shared by the arc-length,

two-way distance, and length difference methods. An alternative is to count individual amino acids that are

in close proximity on the helix density region. There are two disadvantages to this approach. The first is that

the result is dependent on the choice of the proximity radius threshold. We measured the sensitivity and

specificity using radii of 2.0, 2.5, and 3.0 Å. As an example, the sensitivity of helix detection for

1NG6_2_20-39 is 73.68%, 94.74%, and 100% when the radius threshold is 2.0, 2.5, and 3.0 Å, respectively

(row 25 of Table 1). This suggests that the choice of radius threshold is important if individual amino acids

are used for measuring the accuracy of the helix assignment, which prompted us to propose a specific helix-

dependent r value below (see Section 3.5).

The second drawback to using individual amino acids is that the specificity is dependent on the number

of nonhelix amino acids in the protein. For example, the 1HG5 protein has 289 amino acids, of which 170

are on helices and 119 are not on helices (Table 2). However, for 1UNF, out of 238 amino acids, 111 are on

helices and 127 are not on helices. Ideally, a measurement of a helix should be directly related to that helix

and unbiased by other parts of the structure. In addition, the number of false-positive amino acids for each

helix is usually small (Fig. 5) and is therefore not very robust (Eq. 6). By contrast, the arc-length asso-

ciation directly addresses the accuracy of individual helices on the basis of both lateral and longitudinal

discrepancies. Consequently, the arc-length association is capable of identifying subtle discrepancies be-

tween the helix axis detected from a density map and that calculated from an atomic model.

3.5. Backbone radial distance of a helix

We measured the distance between the centroids of backbone atoms and the helix axis to understand the

geometric relationship between a helix axis and its surrounding amino acids. For a helix axis calculated

from the atomic structure of the protein, the average distance between the centroids and the axis is within

2.2 Å for 73 of the 79 helices of the data set. This suggests that the axis calculated from the atomic structure

is quite accurate and that the backbone radial distance of a helix is consistent. Six helices have an average
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distance between 2.2 and 2.68 Å (Fig. 5 and Table 1). The average distance for the 71 test cases that

include 79 helices is 2.07 Å. As mentioned in Section 2, we refer to this distance as r100, suggesting that

100% of centroids are within the radius of 2.07 Å from the axis if the axis is calculated accurately.

Similarly derived is the r80 distance of 1.97 Å, indicating that 80% of centroids of a helix can be detected

within a 1.97 Å radial distance from the axis. When a helix axis is detected from a density map at

medium resolution, the axis generally is not as accurate as the one calculated from the atomic structure

(Fig. 5). Using SSETracer-detected helix axes, the r80 value is 2.37 Å, suggesting that 80% of centroids

can be detected within 2.37 Å from an axis detected from the density map. The sensitivity threshold is a

heuristic parameter that allows the calculation of helix-specific radii. The 80% threshold was chosen

because it is the sensitivity that can be achieved with state-of-the-art sequence-based secondary structure

prediction methods.

This investigation addresses the question of how far a backbone centroid should be located from the helix

axis in order for the amino acid to be considered to be a member of the helix. This radius threshold is

needed when individual amino acids are used in the accuracy measurement of helix detection (Section 3.4).

Previous studies of this parameter were limited in scope. Our results show that in idealized situations where

the axis is determined accurately, a radius threshold of 2.07 Å can be used, since on average 100% of

centroids are within this distance. However, for a detected helix axis that is not as accurate as that of a

known structure, the r80 value of 2.37 Å can be considered. In general, we propose the use of the r80

value for a realistic estimation of the radius threshold when working with a detected helix axis from an

experimental density map at medium resolution.

3.6. Case studies using experimental cryo-EM data

As an example of applications to experimental data, we show a range of helix discrepancies as identified

by arc-length association (Fig. 6). In a visual inspection, three of the five cases show close agreement

between the helical axes: 1733_H_2_76-89, 5030_BR_1_14-30, and 5352_A_1_4-39. The (lateral and

longitudinal) discrepancies are (0.65, 2.78 Å), (1.01, 2.77 Å), and (0.84, 4.76 Å), respectively. Interestingly,

the lateral displacement for 1733_H_3_131-141 is, at 1.16 Å, slightly larger than observed in the three

similar map–model pairs. Visual inspection shows that the density in this case does not align with the

atomic model as well (Fig. 6). Two challenging cases are 5030_BR_4_73-83 and 5352_A_367-82, where

the density of a helix deviates from a cylinder and a coil that resembles a helix is adjacent to a helix,

respectively. The (lateral and longitudinal) discrepancies are (1.13, 15.68 Å) and (1.47, 17.87 Å), re-

spectively. In both cases, the arc-length method detected the disagreement between the two axes. Possible

reasons for the disagreement include an error in the density map, an error in the atomic model, and an error

in the detection of the helix axis from the density image.

FIG. 5. Backbone radial distance of helices. The distance between helix backbone centroids and the central axis,

which is either calculated from the atomic model (green) or detected from the image (red), is shown for each helix. See

Section 3 about r80 and r100. The helix index corresponds to that in Table 1.
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3.7. Helix axes detected using an alternative method, VolTrac

Although this article is predominantly focused on proposing a robust distance measure for helical axes,

we expect that the arc-length association method will be applied to the comparison of secondary structure

detection methods for cryo-EM maps in future work. With multiple methods available for helix detection, it

is possible, in principle, to perform a meta-analysis of methods. (For example, when independent methods

show large displacement between the density image and the atomic model, the cryo-EM density in that

region needs to be studied further.) It will also be possible to improve the multistage secondary structure

detection algorithms by assembling the best-performing stages from existing strategies.

As a preliminary, limited example of such a meta-analysis, we performed two case studies with SSE-

Tracer and an alternative secondary structure detector, VolTrac (Fig. 7). VolTrac combines a template-

based search with a genetic algorithm to detect the initial positions of a helix or other filamentous density

(Rusu et al., 2012a; Rusu and Wriggers, 2012b). The axes detected by VolTrac are mostly similar to those

detected by SSETracer, particularly for long helices. As an example, for EMD-1733, the two sets of axes

(red and green lines in Fig. 7) align well for all five helices. Three of the four helices in EMD-5030-PDB-

4V68_BR (Fig. 7A, B) also align well.

Using the arc-length method, it is now possible to measure the displacements precisely. For instance, the

largest displacement in the two test cases happens at the same helix (1733_H_3) for both methods. The

(lateral and longitudinal) discrepancies of helix 1733_H_3 (Fig. 6) are (1.13, 2.69 Å) and (1.16, 9.39 Å) for

VolTrac and SSETracer, respectively. When helices are correctly detected, VolTrac was actually more

sensitive than SSETracer, as when the (lateral and longitudinal) discrepancies for the first and second

helices of 1733_H are (0.75, 1.61 Å) and (0.50, 2.27 Å), respectively, for VolTrac but (0.75, 5.12 Å) and

(0.65, 2.78 Å), respectively, for SSETracer. However, in EMD 5030, VolTrac incorrectly assigned one

helix to a b-sheet region (Fig. 7B). A more comprehensive comparison of the advantages and limitations of

each secondary structure prediction method will be the subject of future work, but our results suggest that

the use of the arc-length association will be advantageous in such a comparison and in a meta-analysis of

secondary structure detection methods.

FIG. 6. Comparison of two splines calculated from a cryo-EM density map and the atomic model. The EMDB ID,

chain ID, helix ID, and the first and last amino acid index are labeled. The annotation of the figure is the same as that

used in Figure 3. cryo-EM, cryo-electron microscopy.
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4. CONCLUSION

We propose a new method to quantify the agreement between a set of points at the central axis of a helix

and the atomic model of the helix. Due to the cylindrical nature of a helix, our proposed method directly

compares the agreement between the set of points and the central axis of the helix model. Our results show

that 80% accuracy can be achieved with a radius of 2.37 Å from backbone centroids. This work offers the

potential to use the spline of a helix axis to accurately represent the helix’s position.

One application of the arc-length association method is to measure the accuracy of a helix detected from

cryo-EM at medium resolution. As more secondary structure detection methods become available, there is a

need to accurately compare them. Current measures for helix detection have various strengths and weak-

nesses. Arc-length association was compared with three other methods that measure two-way distance,

length difference, and the individual amino acid detection accuracy, respectively. This method was tested

using 79 helices detected from simulated density maps at 10 Å resolution and six case studies involving

cryo-EM density maps at 6.4–7.7 Å resolution. The results show a clear benefit in terms of measuring both

the lateral and longitudinal discrepancies between the axis of the detected helix and that of the helix model.

The comparison shows that the arc-length method is a more sensitive measure than the other three methods.

With the availability of this method, we demonstrated various degrees of longitudinal discrepancy for the

test cases, and the highlighted challenging cases can be used in the future to improve current secondary

structure detection methods. To evaluate the accuracy of individual helix detection, we recommend reporting

the number of false-negative and false-positive detections in addition to the lateral and longitudinal dis-

crepancies. Another application of the proposed method is to quantify the agreement between the density at a

FIG. 7. Axes of helices detected from cryo-EM images using SSETracer and VolTrac. Helix axes detected from cryo-

EM density map EMD-5030 in (A) and (B) and EMD-1733 in (C) and (D) using SSETracer (Si and He, 2013) (red) and

VolTrac (green) are superimposed with the image (gray) and the corresponding atomic model PDB-4V68_BR in (A)

and PDB-3C91_H in (C) (blue ribbon).
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helix and the atomic helix model from the perspective of the central axis. The assumption is that if the

atomic model fits the density well, the central axes are expected to agree well. The arc-length method

provides a sensitive measurement for the identification of potential regions of disagreement.

We believe that the current arc-length association is sufficiently complete for the purpose of detection of

helices. However, other applications might require an additional and more detailed geometric character-

ization that is not offered by our approach. Quantities that might conceivably be of interest in 3D helix

comparison, but which were not studied here, include measures of axis orientation and angular dis-

crepancies, information as to whether the ends are systematically too short or too long, and a differentiation

between longitudinal shift and length difference.

In future work, the method will be applied to the validation of map–model pairs, as proposed in a study

by Wriggers and He (2015), and to the test and optimization of secondary structure detection methods. We

note that a b-strand can also be represented as a set of points located near the central line of the strand (Si

and He, 2014), so that an extension of the measuring separation of line-based fiducials to other secondary

structure elements appears particularly promising.
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