
Fully automated quantitative
cephalometry using convolutional
neural networks

Sercan Ö. Arık
Bulat Ibragimov
Lei Xing

Sercan Ö. Arık, Bulat Ibragimov, Lei Xing, “Fully automated quantitative cephalometry using convolutional
neural networks,” J. Med. Imag. 4(1), 014501 (2017), doi: 10.1117/1.JMI.4.1.014501.



Fully automated quantitative cephalometry using
convolutional neural networks

Sercan Ö. Arık,a,† Bulat Ibragimov,b,*,† and Lei Xingb

aBaidu USA, 1195 Bordeaux Drive, Sunnyvale, California 94089, United States
bStanford University, Department of Radiation Oncology, School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305, United States

Abstract. Quantitative cephalometry plays an essential role in clinical diagnosis, treatment, and surgery.
Development of fully automated techniques for these procedures is important to enable consistently accurate
computerized analyses. We study the application of deep convolutional neural networks (CNNs) for fully auto-
mated quantitative cephalometry for the first time. The proposed framework utilizes CNNs for detection of land-
marks that describe the anatomy of the depicted patient and yield quantitative estimation of pathologies in the
jaws and skull base regions. We use a publicly available cephalometric x-ray image dataset to train CNNs for
recognition of landmark appearance patterns. CNNs are trained to output probabilistic estimations of different
landmark locations, which are combined using a shape-based model. We evaluate the overall framework on the
test set and compare with other proposed techniques. We use the estimated landmark locations to assess ana-
tomically relevant measurements and classify them into different anatomical types. Overall, our results demon-
strate high anatomical landmark detection accuracy (∼1% to 2% higher success detection rate for a 2-mm range
compared with the top benchmarks in the literature) and high anatomical type classification accuracy (∼76%
average classification accuracy for test set). We demonstrate that CNNs, which merely input raw image patches,
are promising for accurate quantitative cephalometry. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JMI.4.1.014501]
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1 Introduction
Quantitative morphometry of the human skull and analyses of
the spatial relationships among teeth, mandible, maxilla, and
cranial base are crucial in orthodontics, orthognathic treatment,
and maxillofacial surgeries.1–7 Such analyses are usually per-
formed using two-dimensional (2-D) x-ray images of the
human head, i.e., cephalograms, because of the high resolution
enabled by modern x-ray imaging devices and the superior dis-
tinguishability of the bony structure boundaries in x-ray images.
A standard cephalometric analysis procedure involves identifi-
cation of anatomically relevant anchor points, i.e., landmarks,
measurement of various angles and distances between these
landmarks, and qualitative assessment of pathologies from
these angles and distances. Manual cephalometric analyses by
medical experts are typically very time-consuming.3,6,7 More-
over, significant interobserver variability can be observed.6

Since pathology identification and further treatment procedures
are highly sensitive to correct estimation of the landmark loca-
tions, inaccurate manual cephalometric analysis can potentially
have severe consequences. It is highly desired to construct a
fully automated framework that can accurately detect land-
marks, perform required measurements, and assess pathologies.

During the last decades, various automated techniques for
detection of anatomical landmarks and tissue boundaries have
been studied. Cardillo and Sid-Ahmed8 used template matching
and gray-scale morphological operators for automated identifica-
tion of landmarks from cephalograms. Grau et al.9 demonstrated

that the detection performance can be improved when template
matching is additionally augmented with image edge detection
and contour segmentation operators. Davis et al.10,11 used rough
and fine image features for detecting a limited set of candidate
points that are likely to represent the landmarks and exploited
the spatial relationships among landmarks for selecting the opti-
mal candidate points. Yue et al.2 combined statistical gray-level
image patches with a principal component analysis-based shape
model for cephalometric landmark detection. Feghi et al.12 used
machine learning techniques based on neuro-fuzzy systems
and k-means clustering for automated cephalometric analysis.
Mohseni and Kasaei13 initially estimated landmark positions
using affine registration and further refined these positions
using a histogram-based boundary search. Kaur and Singh5

demonstrated high landmark detection accuracy by combining
rotation-invariant template matching and Zernike moments.
Recently, Wang et al.6,7 organized two public challenges on
automated cephalometry and summarized the performance of
the state-of-the-art landmark detection algorithms. Top algo-
rithms from these challenges are based on random forests for
classification of the intensity appearance patterns of individual
landmarks and statistical shape analysis for exploiting the spatial
relationships among landmarks. Pei et al.14 recently explored
bimodal deep Boltzmann machines for anatomical structure
detection and annotation and demonstrated the potential of
deep architectures. Despite the variety of techniques studied,
it is still an open question as to how fully automated landmark
detection can achieve the performance target that all landmarks
can be detected within the clinically accepted 2-mm range.
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In this paper, we propose the first fully automated framework
for cephalogram analysis using one of the rapidly developing
deep learning techniques—convolutional neural networks
(CNNs). CNNs are biologically inspired variants of multilayer
perceptron type of deep machine learning techniques.15–17 They
are in particular well-suited for image processing and recogni-
tion applications because they exploit spatially local correlation
by imposing local connectivity patterns. CNNs have been suc-
cessfully demonstrated for a wide range of applications, includ-
ing image classification,18–20 image segmentation,21,22 image
alignment,23 facial landmark detection,24,25 human pose estima-
tion,26 and lane detection.27 In some of these applications, the
performance of CNNs has even surpassed human performance.
However, successful demonstrations have been mostly restricted
to the areas where there is abundance of data available for train-
ing. Adaptation of the successful CNN techniques to medical
imaging is very challenging, in particular, because of the small
size of the medical image datasets available for training. In this
paper, we utilize CNNs for accurate detection of anatomical
landmarks merely from raw image patches. We use CNNs to
model the consistent intensity appearance patterns of individual
landmarks and use the trained networks for recognition of the
same patterns in previously unseen target images. To ensure the
objective assessment of CNN performance on computerized
cephalometry, we use a publicly available database with 400
manually annotated x-ray images and compare the obtained
results against the state-of-the-art approaches.7 We also combine
CNNs with the shape model from one of the best-performing
cephalometric landmark detection algorithms.28 Finally, we
use the estimated landmark locations to quantitatively assess
craniofacial pathologies and compare the overall results with
benchmarks from the literature.

2 Methodology
In this section, we describe the methodological foundations of
using deep learning in automated cephalometry. Section 2.1
focuses on the main concepts of CNNs, the overall architecture,
and explaining the significance of various operations at different
layers. Section 2.2 introduces the cephalometric landmark
detection problem and describes how CNNs can be used to
detect such landmarks. Section 2.3 gives details about using dif-
ferent data augmentation approaches for enriching the training
phase of the framework.

2.1 Convolutional Neural Networks

Performance of the automated cephalometric analysis very
much depends on its capability to recognize particular appear-
ance patterns that correspond to the location of anatomical
landmarks. In a typical medical image analysis application, a
training set is used to extract the models that capture such
appearance patterns of the reference landmark locations, which
are commonly generated by clinical experts. The representative-
ness of these models and the ability to detect the landmarks in a
previously unseen target image is determined by (a) the amount
and diversity of information that can be learned from the training
set and (b) the success of the particular model and the learning
procedure in generalizing these patterns, i.e., not “overfitting”
the training set.

In our proposed approach, the landmark appearance is
modeled based on deep learning, which processes candidate
neighborhoods in a multilayer architecture. Compared with
other machine learning approaches, the fundamental strength of

deep learning is its capability to extract how to represent the raw
image in an optimal way such that the end-to-end estimation
procedure is flexible, accurate, and robust. Previous approaches
in medical image analysis applications were based on generating
hand-crafted features from raw data (such as Haar-like,29 scale-
invariant feature transform,30 speeded up robust features,31

Sobel-filtered,32 and so on) and building machine learning mod-
els (such as random forests,28 k-means clustering,4 latent seman-
tic analysis,30 and so on) based on these features. However, these
approaches are restricted to a specified raw image representation
and cannot be well-generalized for challenging image recogni-
tion tasks with complex patterns.

As one of the strongest deep learning techniques, CNNs
employ a hierarchical structure to propagate information of
the salient features to subsequent layers while exploiting the spa-
tially local correlation between them.15–17 As inputs to CNNs,
image patches are used at the first layer. A typical CNN
architecture consists of repetitive application of three layers:
(a) convolution, (b) nonlinear activation, and (c) pooling. At
convolution layers, a 2-D convolution operation is employed
using learnable filters. Intuitively, the convolution operation out-
puts a measure of the spatial similarity of the input with the fil-
ter. CNNs learn the filters that activate when they see a particular
image pattern at some spatial position of the output of the pre-
ceding layer. To improve the learning rate and to avoid internal
covariate shift, batch normalization is applied before 2-D con-
volution layers. Nonlinear activation layer applies a nonlinear
function elementwise to increase the predictive strength of
CNN layers. Choice of the nonlinear function depends on the
desired output range, gradient computation considerations,
and computational complexity. Commonly used nonlinear acti-
vations are rectified linear unit [ReLU, fðxÞ ¼ maxðx; 0Þ], sig-
moid [fðxÞ ¼ 1∕ð1þ e−xÞ], and hyperbolic tangent [fðxÞ ¼
ðe2x − 1Þ∕ðe2x þ 1Þ] functions. The pooling layer is applied
to downsample the resulting outputs and to avoid progressive
growth of the number of parameters. A common choice for pool-
ing operation is maximum pooling, which is based on taking the
maximum value pixels in a small window. (For example, 2 × 2
maximum pooling outputs the maximum of four values in each
2 × 2 block.) Outputs of the last layer are fully connected to a set
of neurons that can classify the input to the network. Despite the
large parameter space and nonconvexity of the objective func-
tions, efficient training of CNNs is enabled by first-order gra-
dient methods. Because of the layerwise structure, gradients
can be computed recursively using chain rule—the technique
commonly known as backpropagation.

2.2 Cephalometric Landmark Detection

To detect the landmark l (where 1 ≤ l ≤ L and L is the total
number of landmarks) in a previously unseen target image,
the intensity appearance patterns around landmark l should
be learned from the images in the training set. Let Iðxi;yiÞ denote
the N × N image patch centered at landmark l in a training
image, where N is sufficiently large to visually recognize that
pixel ðxi; yiÞ represents the landmark. Although a large N value
yields more information from farther locations, the higher
dimensionality comes at the expense of a higher required num-
ber of parameters to map it to an output, i.e., potential overfitting
problems and higher computational complexity. Our goal is to
find L functions gl∶½0;255�N × ½0;255�N ↦ ½0;1� [for 1 ≤ l ≤ L,
assuming pixel values in the range (0, 255)] such that glðIðxi;yiÞÞ
is an estimate of the probability that the pixel ðxi; yiÞ is the
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landmark. Ideally, this should yield 1 only when the pixel i is the
landmark l, and it should yield 0 for all other pixels. Thus, to
determine glðÞ functions, CNNs are trained with binary-labeled
data points, as described in Sec. 2.3.

After estimating the probability of a pixel being one of the ana-
tomical landmarks in the target image, i.e., computing glðIðxi;yiÞÞ
values, a straightforward approach for landmark location estima-
tion would be assigning the locations based on weighted spatial
averaging ðx̂ðlÞ; ŷðlÞÞ ¼ P

iðxi; yiÞ · hlfgl½Iðxi; yiÞ�g, where hlðÞ
is a heuristic weight function. However, these approaches do not
consider the relative spatial relationships between all L land-
marks. The overall estimation can be further improved by refin-
ing the likelihood estimations by a probabilistic shape-based
model to consider the relative spatial arrangements of the can-
didate estimations. For shape-based refinement, we consider the
approach of modeling the spatial relationships by Gaussian ker-
nel density estimation problems and applying random forests in
a multilandmark environment that demonstrated good perfor-
mance on cephalometric analysis33–35 (we refer the readers to
the original publications33–35 for more detailed descriptions of
these techniques). The overall landmark detection framework
is summarized in Fig. 1. Eventually, as the outputs of shape-
based refinement, the landmark location estimates ðx̂ðlÞ; ŷðlÞÞ
are used to quantitatively assess craniofacial pathologies.

2.3 Constructing the Training Set

In the proposed cephalometric landmark detection framework,
CNNs are used to estimate the probability of each pixel being a
particular anatomical landmark, for which they are trained with
binary-labeled data points—whether a pixel is a true landmark
or false landmark.

One common challenge in medical image analysis is the small
size of the training dataset because obtaining ground-truth labeling
by clinical experts is time-consuming. Typically, training

datasets indicate only one pixel as the true location for each ana-
tomical landmark. However, it should be noted that a typical
value for the pixel width in an x-ray image is ∼0.1 mm,6,7

whereas the desired estimation accuracy can be around 1 to
2 mm. Thus, to increase the amount of diversity in training,
an efficient strategy is to use the neighboring pixels as additional
true landmarks. This approach can also be considered in the con-
text of bias-variance trade-off in machine learning. Although the
fitting error for the actual single pixel can be increased (higher

Fig. 1 Schematics of the proposed cephalometric landmark detection framework.

Fig. 2 Domains of true and false landmark samples for training.
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bias), the sensitivity of estimation can be decreased (lower vari-
ance). To represent a false landmark location, any pixel that is
sufficiently far from the true landmark location can be used.
However, trivial false landmark points chosen from unrelated
regions would not contribute to learning, so false landmark
points should be within a reasonable neighborhood. Figure 2
shows the domains (parameterized by the radii r1, r2, and
r3), from which true and false landmarks are sampled.

3 Implementation and Results

3.1 Description of the Dataset

In this study, we focus on the cephalometric x-ray image data-
set,6,7 which includes 19 anatomical landmarks as listed in
Table 1. The ground truth locations of the anatomical landmarks
are generated by two experts.7 The mean intraobserver variabil-
ity is 1.73 and 0.90 mm for two different experts, whereas the
mean interobserver variability is 1.38 mm7 (which suggest a rea-
sonable accuracy target for an automated landmark detection
technique). To be consistent with the previous studies, we use
150 images for training and 250 images for testing (which is
partitioned into different datasets similar to previous bench-
marks, such as IEEE ISBI 2014 Challenge Test Set, IEEE ISBI

2015 Challenge Test Set 1, and IEEE ISBI 2015 Challenge Test
Set 26,7). Original image sizes are 2400 × 1935 pixels, and the
resolution is 0.1 mm∕pixel along both directions. The images
are downsampled by 3 (by taking the average of each 3 × 3
patch) for dimensionality reduction purposes, which signifi-
cantly reduces the computational complexity while not losing
significant information.

Pathological assessment of the craniofacial structure is based
on the classification of particular clinical measurement methods
(see Table 2). These methods can be formulated as geometrical
functions of the landmark locations, such as the angle or the
distance between them. The ground truth anatomical types are
determined using the ground truth landmark locations for the
test sets.

3.2 Convolutional Neural Networks Architecture and
Training

Figure 3 shows the overall CNN architecture used for each of the
19 landmarks. The image patch sizeN is chosen as 81. There are
four stages of 2-D convolutions, each followed by rectified lin-
ear units. After the first three stages of 2-D convolutions, a 2 × 2
maximum pooling is applied to reduce the number of parame-
ters. The first two stages of 2-D convolution operations have a
stride of 1 (i.e., different outputs are calculated for regions only
1 pixel apart), and the last two stages of 2-D convolution oper-
ations have a stride of 2 (i.e., different outputs are calculated for
regions 2 pixels apart). The last stage of 2-D convolution is fol-
lowed by a fully connected layer. Convolution of the fully con-
nected layer is followed by an ReLU layer, and the two neurons
at the last layer are obtained. Their outputs are combined using
the sigmoid function, and a scalar output in the interval (0, 1)
is obtained. Overall, from 81 × 81 pixels, the data size is pro-
gressively reduced to 72 × 72, 36 × 36, 30 × 30, 15 × 15,
11 × 11, 5 × 5, and 1 × 1 pixels, as it propagates toward the out-
put of the network.

For each landmark, the cephalometric dataset indicates only
one pixel as the true landmark location. A binary-labeled train-
ing set is constructed as described in Sec. 2.3. To determine the
domains of true and false landmarks, the three parameters r1, r2,
and r3 in Fig. 2 are chosen as 0.67, 2, and 40 mm, respectively.
The exact radii values are relatively flexible, for example,
increasing r3 from 40 to 41 mm will increase the number of
pixels that can be potentially selected for training by ∼4%.
From each training image, 25 positive and 500 negative samples
are randomly chosen to construct the training set of size 78,750
images for each landmark. The batch size is chosen as 500 for
training. Initial network weights are independently sampled
from a Gaussian distribution with mean 0 and standard deviation
0.1. Weight regularization is applied with a weight decay coef-
ficient of 0.001. The learning rate is initially chosen as 0.001.
Backpropagation is applied with a momentum coefficient of
0.9. Thirty five epochs are used while training as no significant
error reduction is observed beyond. For implementation, we use
the CNN toolbox.36

3.3 Landmark Location Results

The overall cephalometric analysis framework (see Fig. 1) is
tested for the 250 test images that are not used while training
and developing models.

As the outputs of the CNNs, probability values for each pixel
that is one of the landmarks are computed. Figure 4 exemplifies

Table 1 List of anatomical landmarks.

Landmark number Anatomical name

L1 Sella

L2 Nasion

L3 Orbitale

L4 Porion

L5 Subspinale

L6 Supramentale

L7 Pogonion

L8 Menton

L9 Gnathion

L10 Gonion

L11 Lower incisal incision

L12 Upper incisal incision

L13 Upper lip

L14 Lower lip

L15 Subnasale

L16 Soft tissue pogonion

L17 Posterior nasal spine

L18 Anterior nasal spine

L19 Articulate
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the corresponding estimations for landmarks L1, L10, and L19.
It is observed that CNNs are highly successful in detecting the
appearance patterns to assign accurate probability measures, as
the highest probabilities are concentrated around the ground
truth landmark locations. The location estimation accuracy and
confidence varies among different landmarks. For example, it is
observed that high probability values for L10 occur in regions
farther from the center compared with L1, and high probability
values L19 location occur in a wider region compared with L1.

The outputs of the CNNs are combined with the shape model
described in Sec. 2.2, and location estimations for the landmarks
are obtained for each test image. Figure 5 shows the success
detection rate of our technique versus other techniques in the
literature for predefined test subsets.6,7 The success detection
rate is defined as the ratio of the corresponding landmarks
within the proximity of the precision range from the ground
truth location. For the clinically accepted success detection
range of 2 mm, our overall framework achieves 75.58%, 75.37%,

Table 2 Classification of anatomical types based on eight standard clinical measurement sets.6,7

Methods Type 1 Type 2 Type 3

(1) The angle between L5, L2, and L6 A point–nasion–B point angle
(ANB)

3.2 deg to 5.7 deg >5.7 <3.2

Class I (normal) Class II Class III

(2) The angle between L1, L2, and L6 sella–nasion–B point angle (SNB) 74.6 deg to
78.7 deg

<74.6 deg >78.7 deg

Normal mandible Retrognathic mandible Prognathic mandible

(3) The angle between L1, L2, and L5 sella–nasion–A point angle (SNA) 79.4 deg to
83.2 deg

>83.2 deg <79.4 deg

Normal maxilla Prognathic maxilla Retrognathic maxilla

(4) ODI 68.4 deg to
80.5 deg

>80.5 deg <68.4 deg

Normal Deep bite tendency Open bite tendency

(5) APDI 77.6 deg to
85.2 deg

<77.6 deg >85.2 deg

Normal Class II tendency Class III tendency

(6) The ratio of posterior face height to anterior
face height facial height index (FHI)

0.65 deg to
0.75 deg

>0.75 <0.65

Normal Short face tendency Long face tendency

(7) The angle between L1, L2, and L9 frankfurt-mandibular plane angle
(FMA)

26.8 deg to
31.4 deg

>31.4 deg <26.8 deg

Normal Mandible high angle
tendency

Mandible low angle
tendency

(8) The distance between L12 and L11 modify-wits (MW) 2 mm to 4.5 mm 0 mm >4.5 mm

Normal Edge to edge Large over jet

<0 mm

Anterior cross bite

Fig. 3 CNN architecture for local information based probability mapping.
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and 67.68% accuracy for the three test subsets and outperforms
all other published techniques.

3.4 Pathology Classification Results

Based on the classification schemes described in Table 2, patho-
logical assessment is performed using the estimated landmark
locations. Tables 3 and 4 show the accuracy results for the
two predefined test subsets. Overall, an average classification
accuracy of 75.92% and 76.75% are obtained. The results are
slightly worse than the technique by Lindner and Coates mostly
because of a few outliers despite the better accuracy obtained for
a majority of the landmarks.

4 Discussions
In this work, we demonstrated a fully automated cephalometric
analysis framework that yields highly accurate automated land-
mark location and pathology detection. Since the same shape
model as that in the approach of Ibragimov et al.33–35 was used
in this work, we can conclude that CNNs outperform random

forests in cephalometric analysis and yield higher success detec-
tion rates for 2-, 3-, and 3.5-mm ranges. On the other hand,
CNNs yield a lower success detection rate for the 4-mm range,
which suggests that outliers cannot be avoided for certain cases.
Consequently, CNNs demonstrate a better accuracy in pathol-
ogy assessment of ANB, SNA, overbite depth indicator (ODI),
and anteroposterior dysplasia indicator (APDI) but a worse
accuracy for SNB, FHI, FMA, and MW measurements in com-
parison with the random forest-based approach. It is important
to note that different pathology grades have very narrow inter-
vals so even a slight shift in landmark location can change the
pathology assessment result. As another random-forest based
approach, the method approached by Lindner et al.,37 yields
a slightly higher success detection range for high ranges and
consequently a better performance in pathology assessment.
It should be noted that they combined a random forest-based
intensity model with a different shape model, hence it is hard
to assess whether the performance difference is due to the inten-
sity appearance model or the shape model. Overall, it is impor-
tant to emphasize that the proposed framework outperforms all

Fig. 4 Four test images and corresponding estimations of the probability of candidate location being the
landmark. The estimations are shown for three example landmarks: L1, L10, and L19. Red crosses in test
images denote the ground truth locations of L1 (top), L10 (bottom), and L19 (middle). Inside each red
dashed box, the probability of each point being the corresponding landmark is shown by the grayscale
color map such that the white corresponds to 0 and black corresponds to 1. The red dashed boxes are
centered at ground-truth landmark locations and have a size of 4 × 4 cm2.
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alternative methods in clinically acceptable detection, i.e., locat-
ing landmarks in a 2-mm range. This metric is generally con-
sidered to be the key indicator for estimating the quality of
automated cephalometry (some paper referenced by Wang).
Indeed, an automatically detected landmark will require manual
repositioning if the amount of dispositioning is above a cer-
tain threshold, for example, 3 mm. Thus, in combination
with manual repositioning, the proposed framework will esti-
mate the pathologies from cephalograms with a much higher
accuracy.

The proposed framework is a synergy of CNNs that detect
candidate points for each landmark and the statistical shape
model that can identify optimal candidate points. The overall
performance is mostly dominated by the CNN outputs. For
example, a naïve technique, such as spatially averaging the
highest CNN outputs without the statistical shape model, yields
67.22%, 79.14%, and 83.20% success detection rates for 2-, 3-,
and 3.5-mm ranges, respectively. On the other hand, inclusion
of the statistical shape model further improves the accuracy by
incorporating joint spatial information and by correcting CNNs
when they are stuck at local optimum locations. Consequently,

high accuracy of the overall framework should still rely on the
statistical shape model.

There are fundamental limitations on the achievable accuracy
of out-of-sample landmark detection because a landmark cannot
be uniquely positioned due to the x-ray imaging imperfections.
In addition to, interobserver accuracy between expert clinicians
determines a reasonable accuracy target since the training sets
are generated by expert clinicians. The accuracy of the proposed
framework is very close to the interobserver accuracy between
expert clinicians and has an important potential to assist in ceph-
alometric analysis based on anatomical landmarks. In addition,
the framework can be generalized to detect other anatomical land-
marks by simply modifying the training procedure to learn their
intensity appearance patterns. The major limitation of the pro-
posed technique is observed to be the occurrence of outliers,
which is possibly due to the considerable dissimilarity of the train-
ing and test images. We expect the accuracy of the proposed tech-
nique to improve with the increase in the size and diversity of the
training set. A promising future direction for deep-learning based
automated cephalometric analysis is landmark-free pathology
assessment that can potentially improve cephalometric analysis.

Fig. 5 Success detection rates of the technique proposed in this article versus other benchmarks for test
sets from IEEE ISBI 2014 Challenge and IEEE ISBI 2015 Challenge Datasets.7
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Table 3 Accuracy results for classification of anatomical types for IEEE ISBI 2015 Challenge Dataset 1.7

Reference IEEE ISBI 2015 Challenge Dataset 1

Confusion matrix (proposed)
Diagonal average
(proposed, %)

Diagonal
average28,33–35 (%)

Diagonal
average37 (%)

ANB Type 1 (%) Type 2 (%) Type 3 (%) 61.47 59.42 64.99

Type 1 46.15 10.26 43.59

Type 2 40.00 51.43 8.57

Type 3 11.84 1.32 86.84

SNB Type 1 Type 2 Type 3 70.11 71.09 84.52

Type 1 71.43 14.29 14.29

Type 2 33.33 58.33 8.33

Type 3 17.47 1.94 80.58

SNA Type 1 Type 2 Type 3 63.57 59.00 68.45

Type 1 60.00 10.00 30.00

Type 2 34.94 56.63 8.43

Type 3 18.52 7.41 74.07

ODI Type 1 Type 2 Type 3 75.04 78.04 84.64

Type 1 70.97 17.74 11.29

Type 2 26.67 73.33 0.00

Type 3 19.18 0.00 80.82

APDI Type 1 Type 2 Type 3 82.38 80.16 82.14

Type 1 72.5 15.00 12.50

Type 2 15.79 81.58 2.63

Type 3 6.94 0.00 93.06

FHI Type 1 Type 2 Type 3 65.92 58.97 67.92

Type 1 87.88 6.06 6.06

Type 2 66.67 33.33 0.00

Type 3 23.46 0.00 76.54

FMA Type 1 Type 2 Type 3 73.90 77.03 75.54

Type 1 61.76 26.47 11.76

Type 2 10.75 86.02 3.23

Type 3 21.74 4.35 73.91

MW Type 1 Type 2 Type 3 81.31 83.94 82.19

Type 1 77.78 11.11 11.11

Type 2 11.29 87.10 1.61

Type 3 9.30 11.63 79.07
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Table 4 Accuracy results for classification of anatomical types for IEEE ISBI 2015 Challenge Dataset 2.7

Reference IEEE ISBI 2015 Challenge Dataset 2

Confusion matrix (proposed)
Diagonal average
(proposed, %)

Diagonal
average28,33–35 (%)

Diagonal
average37 (%)

ANB Type 1 (%) Type 2 (%) Type 3 (%) 77.31 76.64 75.83

Type 1 61.29 3.23 35.48

Type 2 18.52 77.78 3.70

Type 3 7.14 0.00 92.86

SNB Type 1 Type 2 Type 3 69.81 75.24 81.92

Type 1 58.06 12.90 29.03

Type 2 23.08 69.23 7.69

Type 3 16.07 1.79 82.14

SNA Type 1 Type 2 Type 3 66.72 70.24 77.97

Type 1 60.47 20.93 18.60

Type 2 22.50 75.00 2.50

Type 3 29.41 5.88 64.70

ODI Type 1 Type 2 Type 3 72.28 63.71 71.26

Type 1 72.22 7.41 20.37

Type 2 35.00 60.00 5.00

Type 3 11.54 3.85 84.62

APDI Type 1 Type 2 Type 3 87.18 79.93 87.25

Type 1 76.19 14.29 9.52

Type 2 4.55 90.91 4.55

Type 3 5.56 0.00 94.44

FHI Type 1 Type 2 Type 3 69.16 86.74 90.90

Type 1 82. 98 2.13 14.89

Type 2 0.00 50.00 50.00

Type 3 23.53 1.96 74.51

FMA Type 1 Type 2 Type 3 78.01 78.90 80.66

Type 1 60.71 35.71 3.57

Type 2 8.33 90.00 1.67

Type 3 8.33 8.33 83.33

MW Type 1 Type 2 Type 3 77.45 77.53 82.11

Type 1 78.05 9.76 12.20

Type 2 15.38 84.62 0.00

Type 3 21.21 9.09 69.70
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5 Conclusions
We study the application of deep CNNs for fully automated
quantitative cephalometry for the first time. Our proposed
framework is based on CNNs for detection of anatomical land-
marks, which takes the raw image patches as inputs without any
feature engineering. CNNs are trained to output probabilistic
estimations of different landmark locations, which are combined
using a shape-based model. The estimated landmark locations
are used to assess anatomically relevant measurements and
classify them into different anatomical types. Overall, our
framework demonstrates high anatomical landmark detection
accuracy (∼1% to 2% higher success detection rate for a 2-
mm range compared with the top benchmarks in the literature)
and high anatomical type classification accuracy (∼76% average
classification accuracy for test set). The results are expected to
further improve with the increase in the amount of training data-
set. Our end-to-end framework is highly flexible, and does not
require specially designed features. Thus, it may be generalized
to numerous anatomical landmark detection problems beyond
cephalometry.
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