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Summary

Compartmentalization in cells is central to the spatial and temporal control of biochemistry. In 

addition to membrane-bound organelles, membrane-less compartments form partitions in cells. 

Increasing evidence suggests that these compartments assemble through liquid-liquid phase 

separation. However the spatiotemporal control of their assembly, and how they maintain distinct 

functional and physical identities is poorly understood. We have previously shown an RNA-

binding protein with a polyQ-expansion called Whi3 is essential for the spatial patterning of cyclin 

and formin transcripts in cytosol. Here, we show that specific mRNAs that are known 

physiological targets of Whi3 drive phase separation. mRNA can alter the viscosity of droplets, 

their propensity to fuse, and the exchange rates of components with bulk solution. Different 

mRNAs impart distinct biophysical properties of droplets indicating mRNA can bring 

individuality to assemblies. Our findings suggest that mRNAs can encode not only genetic 

information, but also the biophysical properties of phase-separated compartments.
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Introduction

Compartmentalization of the cytoplasm into various organelles is a key aspect of 

intracellular organization, and is essential for accomplishing diverse and simultaneous 

biomolecular interactions. Membrane-less RNA/Protein (RNP) bodies are an important class 

of organelles that bind and regulate RNA, and thus play a central role in regulating the flow 

of genetic information (Anderson and Kedersha, 2006). These structures include processing 

bodies and stress granules in the cytoplasm, and nucleoli, Cajal bodies and PML bodies in 

the nucleus. It is becoming clear that RNP bodies are not only involved in numerous 

physiological processes, but also that dysregulated bodies are associated with a variety of 

diseases (Ramaswami et al., 2013).

Increasing evidence suggests that the assembly of RNP bodies is driven by a concentration-

dependent phase transition, including: localization of P granules (Brangwynne et al., 2009; 

Elbaum-Garfinkle et al., 2015; Hubstenberger et al., 2013; Lee et al., 2013a), cell-size 

dependent assembly of the nucleolus (Berry, 2015; Weber and Brangwynne, 2015) 

phosphorylation-regulated assembly of RNA granules and stress granules (Wang et al., 

2014; Wippich et al., 2013). Consistent with intracellular liquid-liquid phase separation, 

these bodies exhibit liquid-like behaviors such as wetting, dripping and relaxation to 

spherical structures upon fusion (Brangwynne et al., 2009; Brangwynne et al., 2011; Feric 

and Brangwynne, 2013; Wippich et al., 2013). The liquid-like properties of these droplets 

could facilitate their function, by allowing for high concentration of molecular components 

that nevertheless remain dynamic within the droplet.

The need for mechanisms to spatially and temporally organize the cytoplasm is particularly 

acute in large cells of multinucleated organisms such as the fungus Ashbya gossypii, where 

many nuclei share a common cytoplasm (Dietrich et al., 2004). Our work with this model 

organism has shown that asynchronous nuclear division is achieved by spatial organization 

Zhang et al. Page 2

Mol Cell. Author manuscript; available in PMC 2017 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of cyclin transcripts (CLN3) through the assembly of an RNA binding protein called Whi3. 

The Whi3 homolog in Saccharomyces cerevisiae also forms super-assemblies in this case 

that segregate to mother cells to memorize past events (Caudron and Barral, 2013; Gladfelter 

et al., 2006; Lee et al., 2013a; Lee et al., 2015). Interestingly, Whi3 assembly is also 

essential for organizing formin transcripts (BNI1) at polarity sites where Ashbya growth tips 

are located or new branches are generated (Lee et al., 2015) This suggests that the assembly 

of one protein can spatially organize transcripts for both nuclear autonomy and symmetry 

breaking in the same cell. However, the mechanism of Whi3 assembly and how this 

assembly might allow it to achieve these dual functions remains unclear.

Whi3 is predicted to be largely disordered, containing a long polyQ tract adjacent to an RNA 

recognition motif (RRM). Intrinsically disordered protein (IDP) motifs are commonly found 

in RNP bodies (Uversky et al., 2015; Wang et al., 2014) and Q/N rich sequences are 

particularly implicated in RNP assembly (Reijns et al., 2008). Whi3 also interacts via 

multivalent binding sites on its mRNA binding partners, CLN3 and BNI1, in the regulation 

of nuclear division and polarity, respectively (Lee et al., 2015; Lee et al., 2013b). These 

structural features of Whi3 and its partners are particularly interesting, since both IDPs 

(Elbaum-Garfinkle et al., 2015; Nott et al., 2015) and multivalent binding interactions (Li et 

al., 2012) can promote liquid-liquid phase separation; closely related ‘low complexity 

sequences’ (LCS) (Han et al., 2012; Kato et al., 2012) also can form hydrogels in vitro. 

Moreover, RNA has been shown to nucleate RNP assembly in vivo (Shevtsov and Dundr, 

2011), and can induce preferential condensation by locally shifting the droplet phase 

boundary at transcription sites (Berry, 2015). Moreover, RNA can alter droplet properties in 

vitro (Elbaum-Garfinkle et al., 2015). Thus we hypothesized that Whi3 may form assemblies 

at different locations and for distinct functions in a single cytoplasm based on the specific 

mRNAs with which it is in complex.

In this work, we show that specific mRNAs drive Whi3 assembly into dynamic liquid-like 

droplets with distinct biophysical properties. These droplets are spherical, exhibit rapid 

fluorescence recovery after photobleaching (FRAP), and readily coalesce with one another 

upon contact. The phase diagram and biophysical properties of the droplets vary depending 

upon different mRNA that is present. Additionally, we see that binding RNA in vivo is 

critical for the normal morphology of Whi3 droplets in cells and we speculate mRNA plays 

a role in preventing the maturation of droplets into more static gels or fibers. We hypothesize 

that the differential effect of RNAs on Whi3 droplet properties underlies the capacity of 

Whi3 to form assemblies with distinct functions in a common cytoplasm.

Results

Whi3 phase separates to form liquid-like droplets in vivo and in vitro

In our previous work using conventional wide-field imaging, we saw that Whi3 protein 

forms highly heterogeneous structures in the cytoplasm of Ashbya (Lee et al., 2013b). To 

examine their properties in more detail and to capture dynamics of the assemblies, we used 

oblique angle total internal reflection fluorescence microscope (TIRF) to visualize these 

assemblies in live Ashbya cells. Incline TIRF is ideal to minimize photobleaching while 

filming the assemblies at fast frame rates (Tokunaga et al., 2008). Although this method only 
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captures a subset of the assemblies, and their small size is comparable to the diffraction 

limit, Whi3 appears to form dynamic droplet-like assemblies in the cytoplasm, which can be 

readily seen to fuse, as would be predicted if they are liquid droplets (Movie 1, Fig. 1A,C). 

We see Whi3 droplets in cytosol where nuclei reside and also enriched in foci at nascent 

branches where polarity is being established, as would be predicted from previous functional 

analysis linking Whi3 to nuclear division and cell polarity (Lee et al., 2013a; Lee et al., 

2015), (Movie 2, Fig. 1 B,C). This raises the question as to how functionally distinct Whi3 

assemblies arise and remain discrete in a common cytoplasm if they are behaving as liquid-

like compartments which have a propensity to fuse.

To determine mechanisms for how discrete assemblies may emerge in the same cytoplasm, 

we established a simplified reconstitution of the assemblies in vitro with purified Whi3 

protein and known target mRNAs. We first asked if purified Whi3 can phase separate on its 

own, in the absence of mRNA. Indeed, at relatively low salt (75 mM) and relatively high 

protein concentrations (28 μM), recombinantly-expressed, full length Whi3 phase separates 

to condensed liquid-like droplets, as indicated by the spherical shape and the ability to 

coalesce (Movie 3, Fig. 1D, visualized with 10% of protein labeled with GFP). We could see 

similar phase separation behavior with 100% untagged protein indicating that demixing is 

not a consequence of the GFP tag (Fig. S1). At lower protein concentrations (1–16 μM) and 

75 mM salt, distinct small, round assemblies that are attached to each other form after 

overnight incubations (Fig. 1E). The size of each spherical unit decreases as Whi3 

concentration decreases. Thus, at lower protein concentration, the condensed phase appears 

to nucleate and grow to a certain size, beyond which droplets cannot coalesce when they 

collide. Notably, however, at physiological salt concentration (150 mM) we see no evidence 

of phase separation of Whi3 even at very high concentrations of pure protein (Fig. 1F). 

Thus, Whi3 protein is capable of phase separating on its own, however under physiological 

salt and protein conditions there must be other factors promoting condensation.

Cyclin mRNA promotes Whi3 phase separation in physiological conditions

Given that the cellular function of Whi3 involves regulating mRNA, we hypothesized that 

mRNA may promote phase separation under physiological salt conditions. The first 

indication that mRNA can promote droplets is clear when an endogenous Whi3-interacting 

mRNA, CLN3, is added to Whi3-protein droplets (Fig. 2A). Before adding RNA, the bulk 

concentration outside the protein droplet is the saturation concentration in these conditions, 

corresponding point “a” in Fig. 2C (Elbaum-Garfinkle et al., 2015; Jones, 2002). Shortly 

after adding CLN3 mRNA, new droplets consisting of Whi3 and RNA start to form and 

enlarge (Movie 4, Fig. 2A). Meanwhile, old protein-only droplets begin shrinking and 

eventually dissolve completely as Whi3 leaves the protein-only droplets and goes into the 

new protein-RNA droplets. Notably, the new droplets do not fuse with the pre-formed Whi3-

only droplets. This shows that at the saturation concentration, where Whi3 alone can no 

longer phase separate, CLN3 RNA can drive phase separation to form new droplets. To 

confirm this finding, we started with a low protein and high salt concentration (point ‘b’ in 

Fig. 2C), in which Whi3 alone does not condense into droplets, and then added CLN3 RNA. 

We found that droplets consisting of Whi3 and RNA were indeed readily formed (Fig. 2B). 

In contrast, adding the same amount of DNA, yeast total RNA or heparin did not promote 
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Whi3 droplets (Fig. 2B). This indicates that CLN3 mRNA can shift the phase boundary to 

lower protein concentration and high salt concentration, enabling Whi3 phase separation in 

physiological conditions (Fig. 2C).

To assess how RNA may promote phase separation, we next asked how CLN3 mRNA 

impacts the Whi3 phase behavior at physiological salt conditions. Remarkably, CLN3 RNA 

can promote detectable formation of droplets at Whi3 concentrations as low as 200nM (Fig. 

2 D, E). This is in the same order of magnitude of soluble Whi3 in Ashbya cytosol that we 

have measured by fluorescence correlation spectroscopy (57±14 nM, Fig. S2, method in SI). 

For a given Whi3 concentration, as RNA concentration increases, the apparent volume of 

condensed phase (roughly indicated by the total droplet area in each image) increases up to a 

point, but surprisingly then decreases, and eventually no droplets can be observed with light 

microscopy. The RNA concentration at which the largest apparent droplet volume is 

observed is higher for a higher protein concentration indicating that the RNA to protein 

molar ratio is likely a critical parameter. At ratios that are either too low or too high, phase 

separation is not favored. The molar ratio of CLN3 RNA to Whi3 for obtaining the largest 

apparent droplet volume is estimated to be ~0.02 (Fig. S3). These data show that a native 

mRNA binding partner of Whi3 is sufficient to drive phase separation in physiological salt 

and protein concentration.

RNA binding via the RRM is required for Whi3 phase separation

The data thus far show that Whi3 phase separation can be controlled by both salt and mRNA 

concentration. In addition to its RNA recognition motif (RRM), there are other features of 

Whi3, including a long polyQ tract, that are functionally relevant in vivo for promoting 

regionalized cytoplasm and making heterogeneous cytoplasmic assemblies (Lee et al., 2015; 

Lee et al., 2013b). The polyQ domain in Whi3 is predicted to be disordered, and its 

disruption imparts loss of function phenotypes in vivo (Fig 3A) (Lee et al., 2013a). To 

dissect the contributions of the polyQ domain and RNA-binding in Whi3 phase-separation 

behavior, we made a series of constructs including truncation of the polyQ and RRM 

domain, and point mutations in the RRM domain which are predicted to be important for 

transcript binding (Fig. 3B). For analysis of all mutants, we start with high salt concentration 

where there is no phase separation of the proteins. We then asked if the mutants can phase 

separate upon either lowering salt concentration without adding mRNA, or upon adding 

CLN3 mRNA without lowering salt concentration.

Indeed, when the polyQ domain is deleted, Whi3 cannot phase separate by simply lowering 

the salt concentration (Fig. 3B) indicating a role for polyQ-driven assembly. However, upon 

addition of CLN3 mRNA, ΔpolyQ can form droplets suggesting that the polyQ domain is 

not strictly essential in mRNA-mediated assembly. Interestingly, deletion of the RRM 

domain and remaining C-terminus abrogates droplet formation with or without mRNA. To 

further probe the role of the RRM domain in droplet assembly, we introduced point 

mutations (Y610A or F653A) predicted to be directly involved in RNA binding (Maris et al., 

2005; Nash et al., 2001). Individual single point mutations showed minimal effect on droplet 

formation with or without mRNA. However, the RRM double mutant demonstrates a marked 

reduction in mRNA-mediated assembly. Thus, direct binding of the RRM domain with 
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CLN3 mRNA is necessary for mRNA-mediated assembly of droplets. Purified individual 

RRM domain, polyQ domain and RRM-polyQ domains are also not able to form droplets, 

neither by lowering salt nor adding CLN3 mRNA. Taken together we find that 1) both polyQ 

and RRM domains are necessary for droplet formation, however neither domain is sufficient 

at low salt and 2) RRM binding to CLN3 mRNA is required for mRNA-mediated assembly 

of Whi3 droplets.

RNA influences droplet physical properties

Given the potent role of mRNA in promoting Whi3-phase separation, we next asked if 

mRNA also impacts the biophysical properties of droplets. We first noticed that at high RNA 

concentration droplets coalesce more slowly, suggesting that mRNA indeed strongly impacts 

droplet properties (Fig. 4 A, Fig. S4). Coalescence is driven by surface tension γ and 

resisted by droplet viscosity η; the rate of coalescence can therefore be used to estimate the 

ratio of the two (η/γ) (Brangwynne et al., 2011; Elbaum-Garfinkle et al., 2015; Jones, 

2002). Plotting the fusion relaxation time against the characteristic fusion length yields a 

linear relation, with the slope providing an estimate of η/γ (Fig. 4B). For a given RNA 

concentration, we find that η/γ decreases with increasing protein concentration (Fig. 4C), 

while for a given protein concentration, η/γ increases with increasing RNA concentration. 

Interestingly, the monotonic increase of η/γ with RNA concentration contrasts with the 

phase behavior observed in Fig. 2, where the droplet volume fraction first increases with 

RNA concentration and then decreases. However, after plotting η/γ against the ratio of RNA 

to protein concentration, all data points roughly collapse (Fig. 4 D). This indicates that, as 

with the phase separation behavior (Fig. 2), the molar ratio of RNA to protein is a key 

parameter, which in this case affects the biophysical properties of the droplets.

These fusion data suggest that RNA has the potential to alter the viscoelastic properties of 

droplets. Since fusion kinetics only give the ratio of η/γ and surface tension is difficult to 

measure, we set out to probe the properties within droplets directly. We first used FRAP 

(fluorescence recovery after photobleaching) to monitor molecular dynamics of Whi3 and 

CLN3 RNA within the droplets (Fig. 4 E). Both Whi3 and CLN3 RNA are exchanging, as 

indicated by recovery after photobleaching. Consistent with the increased η/γ obtained from 

fusion dynamics, increased RNA concentration causes both RNA and protein to exhibit 

slower FRAP recovery (longer characteristic recovery time, τ) (Fig. 4 F,G). In all cases, 

protein recovers faster than RNA. We estimate the apparent diffusion coefficients from 

FRAP, using Dapp = a2/τ where a is the radius of the photobleached region. Plotting Dapp 

against RNA concentration shows that RNA indeed leads to slowed dynamics within the 

droplet (Fig. 4H).

To further examine the physical properties of droplets, we used microrheology. Particle 

tracking microrheology is a technique that utilizes the motion of tracer beads to determine 

the viscoelasticity of soft materials. We recently applied this technique to protein droplets to 

directly measure droplet viscosity (Elbaum-Garfinkle et al., 2015). Fluorescent tracer beads 

were embedded in the droplets (Fig. 4I) and their motion was traced over time to obtain the 

mean-squared displacement, < (r⃗(t) − r⃗0)2 > MSD, Fig. 4J). As RNA concentration increases, 

the MSD of tracer beads shifts down, indicating slower bead motion (Fig. 4K). Fitting the 
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MSD over time to a power law < (r⃗(t) − r⃗0)2 > ~ tα gives the diffusion exponent α ≈ 1, as 

expected for Brownian motion of beads in a purely viscous droplet. The bead diffusion 

coefficient Dbead can then be obtained by fitting < (r⃗(t) − r⃗0)2 >= 4Dbeadt. Knowing tracer 

bead size R, droplet viscosity can then be determined through the Stokes-Einstein relation η 
= kBT/6πDbeadR. For Whi3-only droplets, a viscosity of 6 Pa.s is obtained, which is similar 

to that of honey. Moreover, as RNA concentration increases, droplet viscosity indeed 

increases (Fig.4 L), which is consistent with both the FRAP and droplet fusion data showing 

decreased dynamics with increasing CLN3 RNA. Thus, the presence of mRNA not only 

shifts the phase boundary, but also significantly changes the droplets’ biophysical properties.

Different mRNAs create droplets with different properties

In cells, many distinct liquid compartments can coexist without all coalescing into one giant 

compartment. In Ashbya, Whi3 forms functionally distinct assemblies such that Whi3 binds 

to CLN3 mRNA to regulate cell cycle and binds to the formin-encoding BNI1mRNA to 

establish polarity sites (Lee et al., 2015; Lee et al., 2013b). We hypothesized that different 

target mRNAs could produce Whi3 assemblies that have distinct biophysical properties. This 

idea is attractive because the mRNAs could be the basis for functional specificity, with 

subcellular localization patterns arising from distinct biophysical properties dictated by the 

mRNAs themselves. Having observed that CLN3 mRNA can drive Whi3 phase separation at 

physiological conditions, and can tune droplet physical properties, we next asked how an 

alternative Whi3 target, BNI1, impacts droplet behavior. Like CLN3, the BNI1 mRNA has 

five predicted Whi3-binding sites, but it is four times longer than CLN3 (Fig. 5A). We see 

that BNI1 mRNA can drive Whi3 phase separation at 150 mM salt in a similar fashion as 

CLN3 RNA, in that for a given protein concentration Whi3, the apparent droplet volume 

fraction increases then decreases with increasing RNA concentration (Fig. 5B). Similarly, 

the RNA concentration at which the largest droplet volume is observed for each protein 

concentration depends on the molar ratio of RNA to Whi3 (Fig. 5C). However, the optimal 

RNA to Whi3 molar ratio for BNI1 (~0.04) is larger than that estimated for CLN3 (~0.02). 

This difference is also clear at high concentrations of mRNA, where the inhibitory 

concentration of BNI1 for droplet formation is twice that of CLN3 mRNA for a given Whi3 

concentration. This reflects a shift of the phase boundary to higher RNA concentration by 

BNI1 compared to CLN3 mRNA.

We also found that BNI1 droplets fuse faster than CLN3 droplets (Fig 5 D). Quantifying the 

fusion process reveals a smaller η/γ for BNI1 droplets (Fig. 5 E, p< 0.006). Microrheology 

data show that similar to CLN3, BNI1 droplet viscosity increases as BNI1 RNA 

concentration increases (Fig. 5 F). However, at 50 nM RNA, BNI1 droplet viscosity is 17 

Pa·s, which is much smaller that of CLN3 droplets (28 Pa·s) at the same RNA concentration 

(Fig. 5 G). Thus, different known physiological mRNA targets of Whi3 can produce droplets 

of substantially different biophysical properties, even with the same predicted valency in the 

target mRNA. These results implicate mRNA features other than predicted valency are 

important for specifying the biophysical properties of intracellular droplets.
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Whi3 droplets mature and can appear fibrillar

Many polyQ containing proteins are associated with the propensity to form fibrous amyloids 

(Williams and Paulson, 2008). Recently, the Q-rich ALS protein FUS was shown to 

transition from a liquid-like compartment to a fibrous aggregate with time, and that disease-

associated mutations accelerate this liquid to solid transition (Patel et al., 2015). Despite the 

extensive polyQ tract in Whi3, for the full-length construct we never observed fibrous 

structures in vivo or in vitro. Remarkably, however, when Whi3 is no longer able to bind to 

RNA (Whi3ΔRRM), we observe that in vivo Whi3 assemblies have a markedly different 

morphology, now forming larger, more filamentous structures (Movie 5, Fig. 6A,B). These 

elongated assemblies do not generally colocalize with ER or elongated mitochondria (Fig. 

S5), so we suspect that they reflect a different structural organization than the more round 

droplet-like structures observed with full length Whi3. These in vivo findings prompted us to 

look further into whether in vitro droplets of Whi3 may contain the seeds of more stable 

fibers, as has been seen for other RNA binding proteins with IDP/LCS domains (Han et al., 

2012; Kato et al., 2012; Patel et al., 2015). Upon addition of high salt (2M) to freshly 

prepared Whi3 full-length droplets, all droplets dissolve, consistent with expectations from 

the equilibrium phase diagram. However, for “old” droplets that have been incubated for >7 

hours, we detect elongated, salt-resistant fibers (Fig. 6 C,D,E). Consistent with a change in 

the molecular organization through time, FRAP indicates a slower recovery for proteins in 

aged droplets (Fig. 6 F). This suggests that the liquid state represents a metastable precursor 

to more stable, and potentially toxic fibrous states seen in aged droplets. However, RNA 

binding to polyQ proteins may prevent or slow the transition to more solid-like assemblies, 

helping cells avoid these pathological states (Patel et al., 2015; Weber and Brangwynne, 

2012).

Discussion

Our study was motivated by a desire to understand how the assembly of one protein, Whi3, 

can spatially pattern transcripts for distinct cell functions-nuclear division and polarity 

establishment. We found that Whi3 can form phase-separated assemblies in cells and in vitro 

and that the RNAs it binds to can promote the formation of droplets with different 

biophysical properties. Using purified Whi3 in vitro, we demonstrated that the known 

binding partners CLN3 mRNA and BNI1 mRNA can drive Whi3 phase separation at 

physiological salt and protein conditions. Our results show that instead of being a passive 

passenger, mRNA plays an active role in driving the phase separation of RNA-binding 

proteins. These data raise the interesting possibility that mRNA encodes not only 

“information” in the traditional sense of the genetic code but can also, along with the 

coassembled proteins, encode biophysical properties in the higher-order assemblies of 

phase-separated compartments.

How do specific target mRNAs promote the phase separation of Whi3? There is increasing 

evidence that relatively weak, disordered (IDP/LCS) (Elbaum-Garfinkle et al., 2015; Nott et 

al., 2015) and/or multivalent (Li et al., 2012) interactions promote intracellular phase 

transitions. We could see that Whi3 phase separated specifically with known targets that 

contain multiple predicted binding sites for Whi3 rather than based simply on exposure to 
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negative charge from a bulk pool of non-specific mRNA. Interestingly, however, different 

phase diagram and droplet physical properties were observed for CLN3 mRNA and BNI1 
mRNA. This difference is despite the fact that both RNAs have five Whi3 binding sites and 

thus theoretically the same valency. Thus, features other than the valency of the mRNAs 

might be at play for giving rise to the difference in droplet assembly and properties. For 

example, CLN3 mRNA is almost four times shorter than BNI1 RNA, yielding a much higher 

density of Whi3 binding sites (~1 per 320 bases) than that of BNI1 RNA (~1 per 1318 

bases). In addition, the distribution of Whi3 binding sites is different for the two transcripts 

with binding sites on CLN3 clustered on the 5′ and that for BNI1 more evenly distributed 

along the transcript (Fig. 5 A). Moreover, secondary structure of mRNAs can influence 

function as has been seen with translation efficiency in yeast and other organisms (Kertesz et 

al., 2010; Pop et al., 2014). We predict that differences in RNA secondary structure and 

other features such as size, charge distribution of CLN3 and BNI1 mRNAs, and the spacing 

patterns of protein binding sites are important in dictating protein-RNA interactions that 

drive phase transitions. It is not yet unclear which of these features are critical or if it is a 

combination of the above traits and other features of mRNAs that contribute to the process. 

An exciting future area of work will be dissecting how the different chemical and structural 

features of mRNAs impact phase transitions.

We also found that the molar ratio of RNA to Whi3 is critical for RNA-driven phase 

behavior, with high RNA concentration actually inhibiting Whi3 phase separation. This 

could be because at high RNA concentration, the negatively charged RNA acts like salt to 

screen charge-based interactions that drive phase separation. We also show that RNA can 

tune droplet physical properties. As RNA concentration increases, droplets fuse slower, 

droplet dynamics decreases and viscosity increases. Interestingly, these findings contrast 

with our recent work showing that a non-specific polyU RNA can decrease the viscosity, 

effectively “fluidizing” droplets of the disordered P granule protein LAF-1 (Elbaum-

Garfinkle et al., 2015). Moreover, for the case of LAF-1, polyU RNA did not significantly 

shift the phase boundary. Another interesting difference between these experiments is RNA 

length, the CLN3 and BNI1 RNA used here are 32 and 125 times larger than the polyU50 

used in our previous study. Furthermore, other features like secondary structure and charge 

distribution are expected to be different based on difference in the sequences of RNAs used 

in the two studies. These differences suggest that different RNAs may facilitate precise 

control over the location of the phase boundary (Berry, 2015), and can either increase or 

decrease droplet viscoelasticity depending on the features of the RNA and/or the specific 

protein components (Elbaum-Garfinkle et al., 2015).

A key unknown for all reconstituted RNA-protein droplets is how well in vitro produced 

mRNA recapitulates native transcripts, which are coated with a variety of additional 

proteins. The degree to which these associated proteins may limit the valency of binding 

sites, alter charge landscape for assembly, and impact the in vivo biophysical properties of 

liquid-like compartments remains a critical open challenge for the field. In simplified 

systems, however, it is clear different behavior is observed for different RNAs. It is widely 

accepted that mRNAs code for proteins and non-coding RNAs play regulatory roles (Rinn 

and Chang, 2012). Our work in compartment-level organization, along with work in other 

cellular processes like translation efficiency (Pop et al., 2014) and the formation of nuclear 
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bodies (Shevtsov and Dundr, 2011), support the idea that mRNAs encode not only genetic 

information but also structural information.

It is increasingly clear that there are different kinds of liquid-like compartments that can 

coexist either in the same cell or depending on the stress or disease state. For example, 

recent work has shown evidence that yeast P-bodies are liquid-like while stress granules are 

more solid-like (Kroschwald et al., 2015). Considering the capacity of the same protein to 

exist in different states may explain contrasts between the in vivo and in vitro behavior of 

Whi3. For example, in vitro, the Whi3ΔRRM mutant cannot form droplets either in the 

presence of RNA or by lowering salt (Fig. 3 B). In vivo, the Whi3ΔRRM does make some 

assemblies that appear highly elongated and fibrous, possibly with gel-like properties. The 

difference in phase behavior of Whi3ΔRRM in vivo and in vitro indicates that other factors 

are likely at play in promoting Whi3 assembly in vivo. One possibility is the interactions 

between the polyQ domain and other disordered proteins. Recent work shows that 

promiscuous interactions between IDP/LCS domains can drive the formation of solid-like 

yeast stress granules under certain stress conditions (Kroschwald et al., 2015). Our finding 

that in the absence of RNA, Whi3 forms chains at low protein concentration (Fig.1 D) 

indicates a more stable microstructure formed within the small droplet, preventing further 

droplet fusion upon collision (Pawar et al., 2012). Therefore, it is conceivable that polyQ-

driven droplets can form in vivo due to associating with other factors and these thus have 

different properties and assembly requirements than the homomeric polyQ-driven droplets 

formed in vitro. We suspect that the polyQ-driven droplets are likely more representative of 

gel-like assemblies and could be closer to solid, amyloid states. Indeed, we could detect the 

presence of fibers under certain conditions in droplets with time indicating the potential to 

mature to less fluid states (Fig. 6).

These observations are consistent with very recent studies on the ALS-proteins FUS and 

hnRNPA1, as well as other RNP body proteins, which exist in a liquid-like state that evolves 

with time into more solid-like and fibrous states (Patel et al., 2015) (Lin, 2015; Molliex, 

2015). Taken together with our findings on Whi3, this emerging body of work suggests a 

shared capacity for liquid-like compartments to change with time, and the need to maintain 

weak-heterotypic protein-protein and/or protein-RNA interactions to maintain fluidity and 

functionality, and avoid toxicity. It is then not surprising that a large number of IDP/LCS-

containing (or prion-like, aggregation-prone domain-containing) RNA-binding proteins are 

associated with neurodegenerative diseases (King et al., 2012). We anticipate given the 

evolutionary distance and different functions of Whi3 compared with FUS, hnRNPA1, and 

other RNP body proteins, these similar effects likely reflect universal properties of 

membrane-free organelles.

A key result from this minimal, reconstituted system is that RNA can tune both assembly 

and physical properties of droplets. Which features of the RNA are critical is not yet clear 

but will be revealed upon further dissection of the phase-properties with different RNA 

constructs. However, our findings suggest a model for cytoplasmic organization in Ashbya, 

in which differences in local concentrations of Whi3, CLN3 mRNA and BNI1 mRNA can 

drive Whi3 into droplets with different physical properties. We speculate that these 

assemblies of distinct composition are in turn different in how they are subcellularly 
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distributed, particularly in their proximity to nuclei and polarity sites, and in what other 

components may be recruited (Fig. 7). For example, other RNA interacting partners, such as 

Puf2 which has disordered regions and associates with Whi3-BNI1 but not Whi3-CLN3 
complexes (Lee et al., 2015; Lee et al., 2013b), can be used to further tune droplet assembly, 

properties and thus functions. This study reveals a key role for mRNA in driving protein 

phase transitions, and demonstrates that mRNAs can control the biophysical properties of 

these assemblies.

Experimental Procedures

Recombinant protein expression and purification

Full length and fragments of Whi3 were tagged with 6-His and expressed in E. coli using 

standard procedures. Cells were lysed in lysis buffer (1.5 M NaCl, 20 mM Tris pH 8, 20 mM 

Imidazole pH8, 1 mM DTT, 1 tablet of Roche protease inhibitor cocktail, 5 μl of Benzonase 

nuclease). The supernatant of lysates was incubated with Ni-NTA (Qiagen) in gravity 

columns. The columns were then washed with 10CV lysis buffer without protease inhibitor 

and Benzonase nuclease. Protein was eluted with 6CV elution buffer(150 mM NaCl, 20 mM 

Tris pH8.0, 200 mM Imidazole pH8 1 mM DTT). See SI for more details.

In vitro transcription

To obtain DNA template for transcription for CLN3/BNI1 RNA, T7 promotor 

TAATACGACTCACTATAGGG was cloned to the 5′ of CLN3/BNI1. The plasmids were 

then digested with restriction enzymes in front of the T7 promotor and after CLN3/BNI1 to 

obtain DNA template that contained the T7 promotor-CLN3/BNI1. The DNA template was 

gel extracted (Qiagen) and eluted in RNAse-free water for in vitro transcription. In vitro 

transcription was done with HiScribe T7 high yield RNA synthesis kit (NEB) following 

protocols provided in kit. To transcribe labeled RNA for imaging, a trace amount of cy3-

UTP was added into the mixture for transcription. Transcribed RNAs were then ethanol-

precipitated and resuspended in RNase-free water and stored at −80 °C.

Droplet assembly and imaging

Unless otherwise stated, all proteins used in experiments contain 10:1 unlabeled to GFP-

labeled versions. To lower salt concentration, proteins were mixed with no salt buffer (50 

mM Tris pH8, 1mM DTT) to obtain desired protein and salt concentrations. For RNA 

experiments, proteins were diluted with droplet buffer (50 mM Tris pH8, 1mM DTT, 

150mM KCl) to desired concentration and then unlabeled RNA or cy3-labeld RNA were 

added. All mixing was performed at room temperature. The mixing and imaging was done in 

glass wells (Grace Bio-Labs) that were treated with 30mg/ml BSA (Sigma) for 30min. 

Screening for droplets was done on a spinning disc confocal microscope (Nikon), with VC 

Plan Apo 60X/1.4 NA oil objective.

Fusion kinetics

Droplet formation movies were recorded on a spinning disc confocal microscope (Nikon) 

with VC Plan Apo 60X/1.4 NA oil objective. Fusion events were manually spotted and 

cropped out in ImageJ. The cropped image series containing fusion events were analyzed in 
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MATLAB with Imaging Processing Toolbox. As we have previously described 

(Brangwynne et al., 2011), we plot the change in aspect ratio = l/w, where l is the long axis 

and w is the short axis of fusing droplets, over time. The decay of aspect ratio over time was 

fitted to an exponential curve to obtain decay time t (Fig. S4). Plotting the decay time 

against droplet characteristic length  gives a linear relationship (Fig. 4B), with 

the slope scales with the ratio of viscosity over surface tension.

FRAP

FRAP were performed on a Nikon A1 laser scanning confocal microscope with a100x Plan 

Fluor oil objective. Spots of radius a = 1μm were bleached with a 405 laser in the center of 

droplets and intensity change over time was collected with 488nm laser for GFP labeled 

Whi3 and 561nm laser for cy3-labeled RNA in Elements. Data in ROIs were exported from 

Elements and then imported into MATLAB for further processing. After background 

deduction, the intensity change over time was normalized to pre-bleach level and fitted to an 

exponential curve F = A(1−e−t/τ) to obtain the apparent recovery time τ The apparent 

diffusion coefficient was then estimated as Dapp = a2/τ.

Microrheology

Microrheology was performed as previously described (Elbaum-Garfinkle et al., 2015). Red 

microspheres (Invitrogen) were mixed with protein solution (10% GFP labeled) before 

adding low salt buffer or unlabeled RNA. Bead diffusion was tracked on a spinning disc 

confocal microscope for 1000 s with 500 ms intervals. MSD data was fit to MSD(t) = 4Dtα 

+ NF where α is the exponent, D is the diffusion coefficient and NF is the noise floor. 

Microrheology for CLN3 droplets was done in glass wells (Grace Bio-Labs), and for CLN3 
RNA and BNI1 RNA comparison was done a device, the design of which will be published 

elsewhere. All data processing was done in MATLAB (MathWorks).

Cell culture and preparation for microscopy

Ashbya cells were grown in 10 ml Ashbya full media (AFM) under selection of either G418 

(200 μg/ml) or clonat (100 μg/ml) in a 125 ml baffled flask shaking at 30°C ~16 h. 

whi3ΔRRM cells were grown at 22°C due to temperature sensitivity and for ~30h to obtain 

similar biomass to wild-type. The Ashbya culture was then transferred to a 15-ml conical 

tube (VWR) for centrifugation at 350 rpm for 2 min. AFM was removed and cells were 

resuspended in 10ml 2x low fluorescence media to reduce the auto-fluorescence of the 

medium. Cells were then placed on a 2x low fluorescence media gel-pad containing 1% 

agarose on the top of a slide, covered with a coverslip, sealed with VALAP and imaged.

Oblique angle total internal reflection fluorescence microscopy

Ashbya cells were grown and mounted onto gel pads as described above. TIRF was 

performed as previously described (Tokunaga et al., 2008). Time-lapse microscopy was 

performed on a Nikon Ti motorized inverted microscope equipped with a 100X Plan Apo 

NA 1.5 oil immersion lens and the Perfect Focus System. Whi3-GFP was excited using a 

488 nm solid state laser line (Andor). Images were acquired with Hamamatsu ORCA-R2 
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cooled CCD camera controlled by Nikon elements software. All movies were background 

subtracted and linearly contrasted in imageJ.

Mitochondria and ER staining

Ashbya cells were grown in 10 ml AFM with proper selection in a 125-ml baffled flask, 

shaking overnight. Cells were stained with either Mitotracker Red CMXRos or ER-Tracker 

Red (Life technologies) to a final concentration of 1 mM. After a 30-minute shaking 

incubation in 30°, cells were centrifuged and washed several times with PBS. Cells were 

then re-suspended in low fluorescence media before being placed on the gel pad and imaged 

by epifluorescence microscopy. See SI for more details on microscopy and image 

processing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RNA drives phase transition of Whi3, an RNA-binding protein with a 

long polyQ tract

• RNA alters Whi3 droplet viscosity, dynamics and their propensity to 

fuse

• Different target mRNAs drive Whi3 to form droplets with distinct 

properties

• Whi3 droplets mature and appear fibrillar over time
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Figure 1. Whi3 phase separates in vivo and in vitro
(A) Whi3 forms liquid-like assemblies in Ashbya cells. Scale bar is 5 μm. (B) Whi3 

assemblies at a branch site. Scale bar is 5 μm. (C) Fusion events in cells. Top panel shows a 

fusion event in cytosol. Scale bar is 2 μm. Bottom panel shows a fusion event at a branch site 

indicated by dashed line. (D) Recombinant Whi3 (28 μM) forms liquid droplets at 75mM 

salt. Bottom panel highlights a fusion event. Scale bar is 5 μm. (E) Whi3 forms distinct 

small round assemblies that are attached to each other at low protein concentration, and 

forms round droplets at high protein concentration. Images were taken after overnight 

Zhang et al. Page 17

Mol Cell. Author manuscript; available in PMC 2017 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incubation at room temperature. Scale bar is 5 μm. (F) Whi3 phase diagram with varying salt 

concentrations. Also see Fig S1 and Movie 1, 2, and 3.
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Figure 2. CLN3 RNA promotes Whi3 phase separation in physiological conditions
(A) Addition of 53 nM CLN3 mRNA (cy3-labled, red) to phase-separated Whi3 (10%GFP 

labeled, green) at 60 mM salt. (B) 3.7 μM Whi3 at 150 mM salt is not phase separated, 

adding 53 nM CLN3 RNA promotes liquid-liquid demixing, resulting in condensed droplets 

consist with both RNA (red) and protein (green). Adding DNA, total yeast RNA or Heparin 

that are normalized to 53 nM CLN3 RNA by charge does not promote droplet formation. 

Some aggregates are formed with DNA. Scale bar is 10 μm. (C) Schematics showing RNA 

shifts Whi3 phase boundary. (D) Images of droplets formed at various CLN3 mRNA and 

Whi3 concentration at 150 mM salt. Images were taken overnight after mixing Whi3 and 

CLN3 mRNA. Scale bar is 20 μm. (E) Phase diagram of Whi3 and CLN3 mRNA at 150 mM 

salt. See also Fig S2, S3, movie 4.
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Figure 3. RNA binding through RRM domain is critical for Whi3 phase separation
(A) Schematics of Whi3 protein with a polyQ domain and an RNA recognition motif. Whi3 

is predicted to be disordered in the polyQ region. (B) Schematics illustrate the mutated Whi3 

constructs. In the no-RNA experiment (left column of images), salt concentration was 

lowered from 150mM to 75mM by adding buffer with no salt, final protein concentration 

was 5μM of Whi3 and for fragments and mutants the highest protein concentration each 

construct could be purified was used: 25 μM of whi3ΔpolyQ, 39μM of whi3-Y610A, 23 μM 

of whi3-F653A, 11 μM whi3-Y610-F653A, 23 μM Whi3ΔRRM. In the CLN3 mRNA 

experiment (right column of images), 7.4 μM protein at 150mM salt was used for all mutants 

and 53 nM CLN3 mRNA was added. All images were taken after 4 hours of either adding 

no-salt buffer or mRNA.
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Figure 4. CLN3 RNA influence Whi3 droplet physical properties
(A) Montages show a fast fusion event with low RNA concentration (27 nM) and a slow 

fusion event with high RNA concentration (53 nM) for 3.7 μM Whi3 at 150 mM salt. Time 

interval between images is 50 seconds and scale bar is 5 μm. (B) An example plotting 

characteristic fusion length when two droplets initially meet against the fusion relaxation 

time (circles) yields a linear relation, with the slope scales with the ratio of viscosity over 

surface tension η/γ. (C) Viscosity over surface tension ratio (η/γ) obtained from fusion 

events plotted against RNA concentration for various Whi3 concentrations. Mean±SEM (D) 

η/γ scales roughly with RNA to Whi3 molar ratio. Mean±SEM. Black line is a linear fit. 

Black asterisk on line corresponds to the ratio that gives the largest apparent droplet volume 

from Fig. S3 that’s based on Fig. 2D. (E) FRAP images show recovery of CLN3 RNA and 

Whi3. Scale bar is 5 μm. Time interval is 20 seconds. (F) Normalized FRAP curves in Whi3 

channel show slower recovery as RNA concentration increases in droplets with 25 μM Whi3 

at 60mM salt. Mean±STD. (G) Normalized FRAP curves in RNA channel also show slower 

recovery as RNA concentration increases. Mean±STD. (H) Decrease in apparent diffusion 

coefficients with increasing RNA concentration estimated from FRAP data. Mean±STD. (I) 

An example of fluorescent tracer beads (red) embedded in Whi3 droplets (green). RNA not 

labeled. (J) An example of MSD for tracer beads in droplets. Black line shows slope=1. (K) 
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Mean MSD with varying RNA concentration in droplets with 25 μM Whi3 at 60mM salt. 

(L) Viscosity calculated from MSD data. Mean±STD. See also Fig S4.
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Figure 5. BNI1 mRNA drives Whi3 phase separate into droplets with different properties
(A) Schematics show CLN3 mRNA and BNI1 mRNA, each with five Whi3 binding sites. 

(B) Whi3 (green) phase diagram with BNI1 mRNA (red) and CLN3 RNA (red), images 

were taken after 4 hours of mixing Whi3 with RNA at 150 mM salt. Scale bar is 20 μm. (C) 

RNA concentration at which the largest apparent droplet volume is observed in B for each 

Whi3 concentration. The optimal RNA/Whi3 molar ratio estimated from linear fit (black 

line) for CLN3 is ~0.02 (similar to that obtained from overnight droplets for CLN3 in Fig. 

S3) and BNI1 is ~0.04. (D) Example of fusion images for 50 nM CLN3 and BNI1 RNA with 

9 μM Whi3 at150 mM salt shows a faster fusion rate for BNI1. Time interval between 

images is 10 second. Scale bar is 5 μm. (E) Box plot of viscosity to surface tension ratio (η/

γ) for CLN3 and BNI1 droplets obtained from fusion events. (F) Mean MSD from 
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microrheology for CLN3 and BNI1 with 8 μM Whi3 at 150 mM salt, showing faster 

movement of tracer beads for less RNA both for BNI1 and CLN3 droplets. (G) Viscosity of 

53 nM BNI1 and CLN3 droplets obtained from MSD data, showing BNI1 droplets are less 

viscous. Mean±SEM.
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Figure 6. Maturation of droplets over time
(A) Whi3 structure after deleting RNA binding domain (Whi3ΔRRM) in Ashbya cells. (B) 

Aspect ratio of Whi3ΔRRM in comparison with wide type Whi3 in Ashbya cells. (C) 

Adding high salt (2M) to young droplets (1h) disrupted droplets. Salt concentration 

increased from 150 mM to 300 mM. Droplets were formed with 8 μM full length Whi3 and 

200 nM RNA. (D) Adding high salt (2M) to old droplets (≥7h) disrupted droplets but fibers 

were left. Magenta arrows point at fibers. Green square highlights the region that is zoomed 

in and shown in (E). Cyan dotted line indicates where droplets were before adding salt. 

Droplets were formed with 8 μM full length Whi3 and 200 nM RNA. (F) FRAP shows 

slower Whi3 recovery in old droplets than in young droplets. See also Fig S5.
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Figure 7. RNAs control protein phase separation to pattern cytosol in Ashbya
Model for linking biophysical properties of droplets to differences in cell function. We 

hypothesize that more viscous Whi3 droplets formed with CLN3 mRNA are adjacent to 

nuclei for controlling nuclear division timing and less viscous Whi3 droplets formed with 

BNI1 mRNA are at new branch sites or growth tips to establish polarity sites.
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