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Clus-DoC: a combined cluster detection and 
colocalization analysis for single-molecule 
localization microscopy data

ABSTRACT  Advances in fluorescence microscopy are providing increasing evidence that the 
spatial organization of proteins in cell membranes may facilitate signal initiation and integra-
tion for appropriate cellular responses. Our understanding of how changes in spatial organi-
zation are linked to function has been hampered by the inability to directly measure signaling 
activity or protein association at the level of individual proteins in intact cells. Here we solve 
this measurement challenge by developing Clus-DoC, an analysis strategy that quantifies 
both the spatial distribution of a protein and its colocalization status. We apply this approach 
to the triggering of the T-cell receptor during T-cell activation, as well as to the functionality 
of focal adhesions in fibroblasts, thereby demonstrating an experimental and analytical work-
flow that can be used to quantify signaling activity and protein colocalization at the level of 
individual proteins.

INTRODUCTION
Most biological processes are regulated by complex networks of 
protein–protein interactions that ultimately lead to specific cellular 
behaviors. The process of signal transduction is often mediated by 
heterogeneous and dynamic protein complexes rather than through 
linear cascades of biochemical interactions as frequently depicted in 
textbooks. An in-depth understanding of the molecular mechanisms 
underlying the regulation of cell behavior requires better knowl-
edge of the molecular composition and molecular interactions of 
multiscale molecular structures and signaling complexes. Conven-
tional biochemical, genetic, structural, and imaging approaches 
have provided important insights into biological processes but do 

not provide a molecular picture of the key nanometer-scale organi-
zation. During the past 30 yr, fluorescence microscopy has emerged 
as a valuable tool to unravel biomolecular interactions in cellular 
processes by facilitating the systematic study of protein colocaliza-
tion in cells. However, the spatial resolution of conventional fluores-
cence microscopy is limited by diffraction to ∼250 nm, whereas 
molecular interactions occur at a scale of ∼10 nm. Superresolution 
and single-molecule imaging techniques have revolutionized the 
way in which we can address these complex biological questions. 
Constant improvements in methodology are increasingly pushing 
the limits of resolution, turning the focus back on how biologists can 
use these tools.

Several techniques can locate single fluorescent molecules in in-
tact cells down to a few nanometers (Moerner, 2012). Collectively 
known as single-molecule localization microscopy (SMLM), these 
techniques include photoactivated localization microscopy (PALM; 
Betzig et  al., 2006) and direct stochastic optical reconstruction 
microscopy (dSTORM; Heilemann et al., 2008; van de Linde et al., 
2011). SMLM techniques reconstruct a molecular image of the sam-
ple by exploiting fluorophores that exist in both a dark and a bright 
state, such as photoactivatable or photoswitchable fluorescent pro-
teins or dyes. A sparse subset of fluorophores can be photoconver-
ted to the bright state, imaged, and then bleached, and the location 
of these molecules can be determined with high precision using 
center-of-mass algorithms (Henriques et al., 2010). Repeating this 
cycle over several thousand frames yields the localizations of all of 
the imaged molecules in the sample, making SMLM an effective 
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applicable to various biological systems; here we demonstrate its 
capabilities in relation to T-cell signaling and focal adhesions.

RESULTS AND DISCUSSION
Acquisition of SMLM data
To achieve nanometer-scale resolution, SMLM exploits the properties 
of photoactivatable or photoswitchable fluorophores to reconstruct a 
single-molecule image (Betzig et al., 2006; Rust et al., 2006). The ba-
sic principle behind SMLM is the stochastic photoactivation of small 
numbers of fluorescent molecules and the localization of each acti-
vated molecule using center-of-mass algorithms. Thus, in a typical 
SMLM acquisition, several thousand frames need to be captured in 
order to image sufficient molecules to produce a high-resolution im-
age. We typically acquire 20,000 frames (Figure 1A) and achieve a 
localization precision of 20-30 nm. Reconstructed SMLM images con-
tain single-molecule localizations, with each point representing one 
detected molecule (Figure 1, B and C). SMLM methods generate 
data sets of molecular coordinates at nanometer resolution rather 
than traditional fluorescence intensity images. One of the advan-
tages of conventional fluorescence microscopy that is retained in 
SMLM is the capability for multicolor imaging. Because most cellular 
functions involve multiple components, multicolor SMLM is an es-
sential strategy to address how interactions between different pro-
teins determine biological function. Although several methods have 
been proposed to quantify dual-color SMLM data, none of them sat-
isfyingly incorporates an evaluation of the spatial distribution with the 
quantification of colocalization between the two colors, making it dif-
ficult to evaluate the link between protein clustering and function.

approach for quantifying the distribution of proteins in cells (Owen 
et al., 2010).

Unlike conventional diffraction-limited microscopy or ensemble 
superresolution microscopy, SMLM techniques produce not just a 
“pretty image” but also a map of the coordinates of all detected 
individual points (Endesfelder and Heilemann, 2014). This allows a 
level of quantification that goes beyond the conventional way of ana-
lyzing images by measuring averages, such as intensity correlation–
based colocalization of two proteins in an image using Pearson’s r 
(Pearson, 1896; Manders et al., 1992) or Manders’ overlap coefficient 
(Manders et al., 1993). By retaining the spatial information of each 
molecule, local parameters can be extracted to establish hierarchical 
information—at the level of the whole cell, at the level of protein 
clusters or complexes, and at the level of molecules.

Point pattern analysis methods evaluate the spatial distribution 
of points in an image through different approaches. A global over-
view of the distribution of points can be obtained using Ripley’s K 
(Ripley, 1979; Perry, 2004; Owen et  al., 2010) or pair correlation 
analysis (Sengupta et  al., 2011; Veatch et  al., 2012), allowing 
researchers to determine whether the proteins are dispersed, clus-
tered, or randomly distributed within the region of interest. Clusters 
are defined as regions of high density separated by regions of lower 
density. For the identification of clusters, hierarchical clustering 
methods such as density-based spatial clustering of applications 
with noise (DBSCAN; Ester et al., 1996) or OPTICS (Ankerst et al., 
1999) provide additional segmentation of clusters, providing quan-
titative information at the level of individual clusters. Ripley’s K can 
also be extended to allow cluster detection (Owen et  al., 2010). 
Similarly, several methods have been developed to investigate the 
colocalization of two proteins imaged by SMLM, including coordi-
nate-based colocalization (CBC) analysis (Malkusch et al., 2012) and 
coclustering methods (Rossy et  al., 2014). CBC analysis has also 
been applied to single-color data to correlate localization distribu-
tions from the same protein with each other and determine the 
degree of clustering for each individual point (Tarancón Díez et al., 
2014). Voronoi tessellation is another strategy that has recently been 
implemented for cluster detection and colocalization analysis in 
SMLM data (Levet et al., 2015; Andronov et al., 2016).

Whereas cell biologists are exploiting SMLM techniques and 
producing large amounts of finely detailed images, the develop-
ment of analysis tools that are able to extract relevant quantitative 
information is lagging behind. Although many algorithms underly-
ing point pattern analysis methods have been published, they have 
not often been implemented in biological applications. There is 
thus an urgent need to make these analytical methods more acces-
sible in order to address specific biological questions. Malkusch and 
Heilemann (2016) released an analysis toolbox called Lama: The 
LocAlization Microscopy Analyzer, which comprises a collection of 
algorithms for postprocessing and data analysis for SMLM data sets. 
This is a useful tool because it provides a variety of previously pub-
lished routines for extracting quantitative information on localization 
precision, spatial distributions, cluster size, cluster composition, and 
colocalization within the same package.

Here we propose a new approach that combines two analysis 
techniques of cluster detection (Ester et al., 1996) and colocalization 
(Malkusch et al., 2012) to develop a multilevel analysis that goes be-
yond what these methods can achieve separately. We call this com-
bined analysis strategy cluster detection with degree of colocalization 
(Clus-DoC). Clus-DoC can subclassify the data for a deeper analysis 
at the level of different cluster populations. By unifying different tools 
into one analysis, we can achieve a more in-depth analysis of colocal-
ization in the context of protein clustering. This type of approach is 

FIGURE 1:  SMLM acquisition and image reconstruction. (A) For 
SMLM, a large number of frames are acquired for each cell. In each 
frame, only sparse subsets of molecules are fluorescent and can be 
accurately localized. If sufficient frames are collected (e.g., 20,000 
frames in our example), a superresolved image of the sample can be 
reconstructed from the localizations of all molecules detected during 
the acquisition. (B) Reconstructed images of a two-color SMLM 
acquisition. Scale bar, 10 μm. (C) Enlargement of the 4 μm × 4 μm 
region highlighted in white in B. Each individual dot represents one 
detected molecule.
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cluster. If the neighbors themselves have MinPts neighbors or more, 
the cluster is propagated; if not, these points are cluster boundary 
points. A new starting point that has not been visited is then arbi-
trarily selected to continue the analysis. If a point does not have 
more than MinPts neighbors and is not a neighbor for another point, 
it is classified as an outlier, that is, a nonclustered point, correspond-
ing to isolated molecules or noise. Some of the advantages of using 
DBSCAN over other point pattern analysis methods are that 
DBSCAN can detect arbitrarily shaped clusters (rather than being 
biased toward circular clusters, as in Ripley’s K cluster analysis), it is 
rapid, and it is robust to outliers. In our implementation of the 
DBSCAN analysis, the outputs include a cluster map in which clus-
tered molecules are in green, nonclustered molecules are in gray, 
and cluster contours are in black, as well as quantification of certain 
cluster properties, such as cluster size (Table 1). The user can select 
the values for the parameters MinPts and search radius, r. A good 
starting point for choosing r can be the median localization preci-
sion (σ, in nanometers). In our experimental conditions, σ = 21.3 nm 
for PSCFP2 and 20.6 nm for Alexa Fluor 647. We therefore typically 
use MinPts = 3 and r = 20 nm and define a cluster as having 10 local-
izations or more.

To quantify the extent of colocalization between two proteins at 
the single-molecule level, we implemented a coordinate-based 
colocalization method (Malkusch et al., 2012). Intensity-based ap-
proaches can be used on SMLM data but require histogramming or 
blurring of localizations, thereby losing the resolution of single-
molecule localizations. By applying colocalization algorithms directly 
to the coordinates of single molecules, information is retained at the 
single-molecule level. This approach relies on the comparison of the 
spatial distribution of surrounding localizations from both species 
around each individual point (Figure 2B). For each molecule of pro-
tein A, the number of molecules of protein A and protein B within 
circles of increasing radius is calculated, respectively, giving the den-

sity gradients of protein A and protein B 
around this molecule. These density gradi-
ents are then corrected by the density at the 
maximum radius respectively for A and B. 
The two distributions are compared by cal-
culating a rank correlation coefficient (using 
Spearman correlation), in which the colocal-
ization coefficient is weighted by a value 
proportional to the distance to the nearest 
neighbor to avoid long-distance effects 
(Malkusch et  al., 2012). Each molecule is 
thus assigned a DoC score ranging from −1 
(anticolocalized or segregated), through 0 
for noncorrelated distributions (no colocal-
ization), to +1 (perfectly colocalized). Our 
implementation of this analysis yields colo-
calization maps for protein A or protein B 
that retain the spatial location of molecules 
and color codes them according to their 
DoC score, that is, their level of colocaliza-
tion with the other species. Thus this method 
enables the visualization of the distribution 
of colocalization within an image and quan-
tifies the DoC score on a per-molecule basis 
within the image. We take this analysis one 
step further by using a DoC threshold for 
colocalization, allowing us to calculate the 
percentage of colocalized molecules for 
protein A and for protein B (Table 1). We 

It is important to note several challenges when using SMLM for 
quantitative measurements. For example, sources of error include 
overcounting of fluorophores due to photoblinking (Annibale et al., 
2010; Lee et al., 2012; Veatch et al., 2012) or limited detection effi-
ciency related to incomplete photoconversion of fluorochromes 
(Annibale et al., 2011; Durisic et al., 2012). Therefore individual de-
tected localizations do not always represent biological molecules at 
a 1:1 ratio. Photoblinking occurs when a fluorophore goes into a 
long-lived dark state instead of getting photobleached and then 
returns to the bright state in a later frame. To account for the photo-
blinking phenomenon, several “grouping” methods have been 
proposed that use a threshold in time and space to assign several 
localizations to one molecule (Annibale et al., 2011). However, the 
optimal grouping parameters to correct for photoblinking vary be-
tween fluorophores and experimental settings, and quantification 
remains difficult. Here we used ungrouped data to avoid grouping 
artifacts and to retain high numbers of data points. For obtaining 
absolute numbers of molecules, grouped data should be used.

Single-molecule cluster detection and colocalization analysis
For cluster detection, we implemented DBSCAN (Ester et al., 1996) 
and applied it to the table of coordinates generated from SMLM. 
DBSCAN has been used in biology to investigate the role of RAF 
multimers in cell growth (Nan et al., 2013) and the spatial organiza-
tion of RNA polymerase during bacterial transcription (Endesfelder 
et al., 2013). DBSCAN is a propagative cluster detection method 
that links points that are closely packed together and detects outli-
ers. Points are considered part of a cluster if they fulfill two criteria of 
connectivity: they need to have a number of neighbors equal to or 
greater than MinPts (minimum number of neighbors) within a radius 
r (Figure 2A). The analysis starts with an arbitrarily selected starting 
point in the image. If this point has MinPts neighbors or more within 
r, a cluster is started, and this point and its neighbors are part of the 

FIGURE 2:  Principles underlying DBSCAN and DoC analysis methods. (A) DBSCAN is a 
propagative cluster detection method in which connectivity between molecules is established if 
the number of neighbors is above a certain threshold (e.g., 3 in the diagram) within a radius r 
(e.g., 20 nm). The connection is propagated if the parameters are fulfilled (green dots) and stops 
when the parameters are no longer fulfilled (yellow dots). This method can also identify isolated 
points and noise (blue dots). This analysis yields cluster maps (4 μm × 4 μm) in which molecules 
in clusters are colored green or red and molecules outside clusters are in gray. Cluster contours 
are highlighted with black lines. (B) The DoC analysis is a coordinate-based colocalization 
analysis. From the molecular coordinates of both channels, the local density of each channel is 
calculated at increasing radius sizes around each molecule, providing density gradients for both 
channels. The two gradients of density are tested for correlation, resulting in a DoC score for 
each molecule. DoC scores range from −1 to +1, with −1 indicating segregation, 0 indicating 
random distribution, and +1 indicating colocalization. This analysis yields colocalization maps 
(4 μm × 4 μm) for both proteins in which each molecule is color coded according to its DoC score.
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method we call Clus-DoC (Figure 3). Here the first step in the anal-
ysis is to calculate the DoC score of each molecule for both chan-
nels using the coordinate-based colocalization method described 
earlier (green in Figure 3). In the next step, individual clusters are 
detected using DBSCAN for all localizations—this determines, for 
each given point, whether it is part of a cluster or not—and the 
cluster contours are defined using a two-dimensional (2D) histo-
gram smoothing method (blue in Figure 3). From these two steps, 
localizations are simultaneously classified into clusters and as-
signed a DoC score. This allows us to perform a second level of 
classification (red in Figure 3) in which clusters are separated into 
colocalized clusters (containing a user-defined number and DoC 
threshold, i.e., >10 localizations with a DoC score >0.4) and non-
colocalized clusters. These two populations of clusters are then 
further analyzed to extract cluster properties. Alternatively, clusters 
can be subclassified according to cluster characteristics, such as 
size, density, or number of molecules per cluster, and these cluster 
populations can be interrogated regarding average DoC scores or 
distribution of DoC scores. Thus this combined approach not only 
provides cluster parameters for individual clusters, but it also facili-
tates a cluster reclassification according to a specific parameter 
(such as the degree of colocalization). In all cases, it is also possible 
to compare the DoC distributions for clustered and nonclustered 
molecules.

Algorithm Output parameter

DoC DoC score for each localization for protein A and protein B

Percentage of colocalized points for protein A and protein B (threshold based)

DBSCAN plus contour mapping Percentage of localizations in clusters

Number of clusters in ROI

Number of localizations per cluster

Circularity of clusters

Size of clusters

Absolute molecular density within clusters

Relative molecular density within clusters

Clus-DoC Distinguishes colocalized versus noncolocalized clusters for protein A or protein B:

- Number of molecules per cluster

- Circularity of clusters

- Size of clusters

- �Absolute or relative density within clusters

- �Distribution of total or colocalized molecules between colocalized and noncolocalized clusters

Distinguishes cluster populations based on density/size/number of localizations per cluster:

- Average DoC score

- Distribution of DoC scores

- �Percentage of colocalized molecules within each cluster population

- �Distribution of colocalized molecules between the subpopulations

- Cluster morphology parameters

Isolates nonclustered molecules:

- Average DoC score

- �Proportion of total molecules and colocalized molecules that are not in clusters

- �Percentage of nonclustered molecules that are colocalized

TABLE 1:  Output parameters from DoC, DBSCAN, and Clus-DoC.

chose the threshold based on the distribution of DoC scores when a 
single-molecule data set was doubled and shifted in one direction 
by 10 nm (Malkusch et al., 2012). This resulted in the majority of the 
localizations (>90%) having a DoC score >0.4, with a peak of the 
DoC distribution at 1, indicating high colocalization, despite the 
10-nm shift. Because in practice SMLM at best achieves 10-nm pre-
cision, it is therefore reasonable to assume that a 10-nm shift reca-
pitulates experimental conditions. Therefore a threshold of 0.4 was 
chosen to distinguish colocalized from noncolocalized molecules. 
The DoC threshold is a user-specified variable that can be changed 
to suit the experimental conditions. The choice of the DoC thresh-
old value can be confirmed through simulations that match the ex-
perimental conditions and specific biological scenario. We can 
therefore characterize the extent of protein A colocalization with 
protein B and the extent of protein B colocalization with protein A 
separately.

Clus-DoC: a combined cluster detection and colocalization 
analysis
Protein clustering is known to be a common strategy for cells to 
spatially concentrate signaling proteins for efficient signal trans-
duction. To assess the influence of cluster properties (such as clus-
ter geometry or cluster density) on signaling, we combined the 
DoC analysis with the DBSCAN cluster detection analysis in a 
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Traditionally, biological approaches have 
viewed on/off processes as occurring at the 
level of a whole cell. However, it is becom-
ing increasingly obvious that cellular pro-
cesses are localized to specific sites within a 
cell and that signaling can be turned on or 
off differentially at different locations. The 
potential of Clus-DoC lies in its ability to 
address the functional state of individual 
structures (e.g., clusters, fibers) to deter-
mine which spatial parameters drive a par-
ticular structure to be active.

Application to T-cell signaling
The complexity of signal transduction is well 
illustrated by the example of T-cell signaling, 
in which even the first step in signal initia-
tion remains controversial. Phosphorylation 
of the T-cell receptor (TCR) complex by the 
kinase Lck is one of the earliest detectable 
biochemical events in T-cell signaling, but 
the precise mechanism by which extracellu-
lar ligation of the TCR results in intracellular 
phosphorylation remains contested. Several 
SMLM studies reported that at least a pro-
portion of TCRs were organized into small 
clusters that were 30–300 nm in diameter, 
termed “nanoclusters,” that were remod-
eled upon T-cell activation (Lillemeier et al., 
2010; Sherman et al., 2011). However, little 
is known about the signaling activity of 
these clusters and whether they are equiva-
lent in terms of function.

Using two-color SMLM, we simultane-
ously imaged the distribution of total TCR 
and phosphorylated TCR (pTCR) in acti-
vated T-cells. We imaged CD3ζ (a marker of 
the TCR complex) fused to the photoswitch-
able fluorescent protein PSCFP2 and pTCR 
using an antibody conjugated to Alexa Fluor 
647 (Figure 6A). We also imaged TCR and 

the phosphatase CD45 (Figure 6, B and C). Using DBSCAN, we 
detected TCR clusters and, as expected, found that the TCR showed 
similar spatial patterns in both experiments, as quantified in Supple-
mental Figure S1. However, visual inspection of the maps suggested 
that TCR colocalized much more with pTCR than with CD45 
(Figure 6, B and C). Using the DoC analysis, we next quantified the 
degree of colocalization of pTCR and CD45 with TCR and found 
that CD45 molecules had a much lower average DoC score than 
with pTCR (Figure 6D). In fact, pTCR molecules colocalized quite 
highly with TCR (as expected), whereas the average DoC score for 
CD45 molecules was negative, indicating no colocalization and per-
haps a tendency toward segregation. Similarly, by using a threshold 
of 0.4 to distinguish colocalized from noncolocalized molecules, we 
found that the percentage of CD45 molecules that colocalized with 
TCR was significantly lower than the percentage of pTCR molecules 
that colocalized with TCR (Figure 6E). Using these two colocalization 
parameters, we are able to distinguish between proteins that do 
and do not colocalize with a given protein cluster or structure.

We then proceeded to analyze the TCR-pTCR data with Clus-
DoC to separate TCR clusters into two populations: clusters that 
were colocalized with pTCR (i.e., phosphorylated clusters) and 

In addition to the outputs of DBSCAN or DoC analysis per-
formed separately (such as the distribution of DoC scores per mol-
ecule; Figure 4A), the outputs from Clus-DoC can be represented as 
maps (visualization of the data, Figure 4, B–D) and colocalization 
parameters (Table 1). For the example shown in Figure 4A, we can 
see that only a certain fraction of protein A molecules are colocal-
ized with protein B, whereas the majority of protein B molecules are 
colocalized with protein A (visualized in the colocalization maps in 
Figure 4B). This type of data warrants a more in-depth analysis, since 
perhaps some specific spatial distribution of protein A is preferred 
for association of protein B. The analysis also yields cluster maps for 
both channels (Figure 4C), whereas the density maps in Figure 4D 
plot the relative density distributions of the proteins.

To make the Clus-DoC analysis more accessible, we generated 
a graphical user interface (GUI) with which the user can load the 
data, select regions of interest (ROIs), and run the Clus-DoC anal-
ysis (Figure 5). The dimensions of the ROI can be defined by the 
user. The GUI runs in MATLAB and can load several cells to allow 
batch processing. Input data consist of an ASCII text file contain-
ing x, y-coordinates and channel information for each localization 
event.

FIGURE 3:  Analysis workflow for Clus-DoC. The input for the analysis consists in table(s) of x, 
y-coordinates of all molecules. The DoC module (green) assigns DoC scores to each molecule. 
The DBSCAN module (blue) detects clusters and defines cluster contours. Finally, the Clus-DoC 
module (red) links the two previous modules by merging the information on cluster detection 
and DoC to subsequently distinguish subpopulations of clusters or nonclustered molecules. The 
outputs include several maps (colocalization, cluster, and density maps). Clustering and 
colocalization parameters are also extracted, providing parameterized information on the 
organization of proteins in the sample.
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adhesions, such as paxillin, regulates adhesion dynamics from for-
mation to maturation and turnover (Nobes and Hall, 1995; Wozniak 
et  al., 2004). The phosphorylation of paxillin appears as a major 
switch in the assembly and turnover of focal adhesions. SMLM stud-
ies revealed that phosphorylated paxillin (p-paxillin) is abundant in 
the adhesion structures located at the cell periphery but is mainly 
absent from adhesions in the cell center (Zaidel-Bar et al., 2007). 
However, the distribution of p-paxillin nanoclusters within the adhe-
sion structures remains unknown.

To examine the distribution of paxillin and p-paxillin within focal 
adhesion complexes, we imaged paxillin fused to the photoswitch-
able fluorescent protein mEos2 and p-paxillin using an antibody 
conjugated to Alexa Fluor 647 in fibroblasts on fibronectin (Figure 7, 
A–C). As expected, paxillin and p-paxillin were highly colocalized 
within focal adhesions, with 53 and 62% of paxillin and p-paxillin 
being colocalized with the other, respectively (Figure 7, D and E). 
We also quantified the distribution of DoC scores for nonclustered 
molecules (Supplemental Figure S3). The average DoC scores and 
the percentage of colocalized molecules were lower for nonclus-
tered molecules than for total molecules (Supplemental Figure S3, 
A and B, and Figure 7, D and E), suggesting a preference for paxil-
lin to be phosphorylated when in clusters. We then divided paxillin 
clusters into those that were or were not colocalized with p-paxillin 
(Figure 7F) and found that colocalized clusters were denser.

With the application of Clus-DoC to two biological systems, we 
showed that Clus-DoC provides a more in-depth characterization of 
signaling complexes and protein colocalization than DBSCAN or 
DoC alone would allow.

Conclusion
We demonstrated that a combined cluster detection and colocaliza-
tion analysis method (Clus-DoC) is a powerful tool to extract quanti-
tative and biologically relevant information from SMLM data sets. 
Clus-DoC provides several advantages over existing analysis 
methods. It is fast (6-min processing time on a standard desktop PC 
for a data set of 10 regions corresponding to ∼500,000 localizations) 
and retains single-molecule information rather than providing en-
semble measurements. Clus-DoC provides outputs at the level of 
molecules (e.g., distribution of DoC scores), at the level of clusters 
(e.g., size, density, morphology), and at the level of cells (e.g., com-
parisons across different conditions). In addition to being quantita-
tive, Clus-DoC also generates maps for visualization of the data. Of 
importance, it has the potential to subclassify clusters according to 
different parameters (colocalization status, size, density, number of 
molecules, etc.), which provides deeper insight into the links be-
tween protein organization and function. By providing a user-friendly 
GUI to run Clus-DoC, we make this method easily accessible to any 
biologist with access to an SMLM-capable instrument. In addition, 
analysis parameters such as the region selection, region size, and 
cluster detection variables are controllable by the user. In the future, 
Clus-DoC will be extended to the analysis of multicolor SMLM data 
with three or more channels or with three-dimensional information. 
The software project, with new features and issue fixes as added, 
is open-source and continually maintained in the authors’ Git 
repository.

We believe that Clus-DoC can be applied to address a variety of 
biological questions in different fields. Because it quantifies the 
molecular structure and the degree of colocalization at the same 
time, this approach is well suited to characterizing the molecular 
composition and organization of higher-order molecular complexes 
or comparing the affinity of different proteins for a common structure 
(such as actin-binding proteins; Malkusch et al., 2012). Furthermore, 

clusters that were not colocalized with pTCR. We then compared 
the morphology of these two subpopulations of TCR clusters and 
found that phosphorylated TCR clusters were larger and less circular 
than nonphosphorylated clusters (Figure 6, F and G), suggesting 
that phosphorylation and thus signal initiation may be dependent 
on the geometry of the clusters.

With Clus-DoC, we can also isolate nonclustered molecules and 
assess their DoC scores (Supplemental Figure S2 for TCR and 
CD45). We found that for TCR and CD45, nonclustered molecules 
were randomly distributed relative to each other (DoC scores 
peaking around 0; Supplemental Figure S2A). We also assessed 
the distribution of total or colocalized molecules between colocal-
ized clusters, noncolocalized clusters, and outside clusters and 
found that the majority of TCR molecules were present in noncolo-
calized clusters (Supplemental Figure S2B), whereas colocalized 
molecules were as abundant in colocalized clusters as outside 
clusters (Supplemental Figure S2C). Clus-DoC also quantifies the 
average DoC score between these different populations (Supple-
mental Figure S2D).

Application to focal adhesion complexes
Focal adhesions are integrin-based structures that form at the cell–
substrate interface, where they serve to connect the cell membrane 
to the extracellular matrix (ECM). Focal adhesions function as signal-
ing hubs and traction points to help cells to sense or anchor to the 
ECM. Tyrosine phosphorylation of the proteins that make up these 

FIGURE 4:  Output data from Clus-DoC analysis. (A) Frequency 
distributions of DoC scores of all molecules for protein A (top) and 
protein B (bottom). (B) Colocalization maps for both channels in which 
molecules are color coded according to their DoC scores. (C) Cluster 
maps for both channels in which clustered molecules are green or red 
and nonclustered molecules are gray. Cluster contours are in black. 
(D) Density maps for both channels in which the color scale 
represents normalized relative density. All maps are 4 μm × 4 μm.
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FIGURE 5:  GUI for Clus-DoC analysis. Image of the GUI for the Clus-DoC analysis, which can be used to load data sets 
and then run a global clustering analysis (Ripley’s K), cluster detection (DBSCAN), or Clus-DoC analysis. Here the 
two-color data of one cell are displayed (in green and red), and one ROI is selected (blue square). The number of points 
from each channel within that ROI and the dimensions of the ROI (in nanometers) are displayed at the top.

Clus-DoC facilitates the identification of ac-
tive signaling complexes (as shown here for 
TCR clusters) to probe the functional as-
pects of a molecular system. Similar mecha-
nisms might be at play across different types 
of immune cells, such as natural killer cells, 
for which nanoclusters of inhibitory recep-
tors were found to become smaller and 
denser upon cell activation (Pageon et al., 
2013). This type of approach would also be 
beneficial for comparing the association of 
specific proteins with vesicles of different 
sizes (Caetano et al., 2015) or studying the 
mechanism of viral budding from infected 
cells (Malkusch et al., 2013).

In conclusion, we have developed a 
combined cluster detection and colocal-
ization analysis (Clus-DoC) to probe the 
links between protein clustering and 

FIGURE 6:  Clus-DoC analysis applied to T-cell receptor triggering. (A) Reconstructed SMLM 
images of TCR (green) and phosphorylated TCR (pTCR; red) in activated Jurkat cells. Scale bar, 
10 μm. (B) Left, TCR (green) and pTCR (red) localizations from 4 μm × 4 μm region highlighted in 
white in A. Right, TCR (green) and CD45 (red) localizations in a representative 4 μm × 4 μm 
region. (C) Colocalization maps for TCR relative to pTCR (left) and CD45 (right). TCR molecules 
are color coded according to their DoC scores. (D) Average DoC scores for pTCR and CD45 
relative to TCR. (E) Percentage of colocalized pTCR and CD45 molecules relative to TCR. 
(F) Average cluster diameter for noncolocalized and colocalized TCR clusters relative to pTCR. 

(G) Average cluster circularity for 
noncolocalized and colocalized TCR clusters 
relative to pTCR. Circularity is measured as 
the ratio of perimeter to area, such that a 
perfect circle has a circularity score of 1. 
****p < 0.0001 (unpaired t test for D and E 
and paired t test for F and G).
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room temperature, blocked in 5% bovine serum albumin (wt/vol) in 
PBS, and then labeled with primary antibody against human CD3ζ 
phosphorylated at Tyr-142 directly conjugated to Alexa Fluor 647 
(558489; BD Biosciences, San Jose, CA) overnight at 4°C or against 
CD45 (ab10559; Abcam, Cambridge, UK) for 1 h at room tempera-
ture, followed by staining with Alexa Fluor 647–conjugated goat 
antibody specific to the rabbit F(ab′)2 fragment (111-606-047; Jack-
son ImmunoResearch).

Sample preparation for imaging focal adhesions
Mouse embryonic fibroblasts (MEFs) were cultured in high-glucose 
DMEM (Life Technologies) supplemented with 10% FCS at 37°C and 
5% CO2. MEF cells were transfected by Lipofectamine 3000 (Invitro-
gen) according to the manufacturer’s instructions to express paxillin-
mEos2. Transfected cells were plated onto 25 μg/ml fibronectin–
coated clean cover glasses and incubated for 3 h at 37°C. The cells 
were then fixed for 15 min in freshly made warm 4% paraformalde-
hyde. For immunostaining against phosphorylated paxillin, cells 
were permeabilized for 10 min in 0.5% Triton X-100, followed by 
blocking with 5% FCS for an additional 40 min. Cells were then la-
beled with primary antibody from rabbit against mouse paxillin phos-
phorylated at Tyr-118 (Life Technologies), followed by staining with 
Alexa Fluor 647–coupled secondary antibody specific to the rabbit 
F(ab′)2 fragment (111-606-047; Jackson ImmunoResearch). Cells 
were washed in 10 mM cysteamine in PBS three times, for 5 min each 
time, to decrease the floating background for dSTORM imaging.

SMLM imaging and dual-color image acquisition
SMLM image sequences were acquired on a total internal reflec-
tion fluorescence (TIRF) microscope (ELYRA; Zeiss, Jena, Germany) 
with a 100× oil-immersion objective (numerical aperture 1.46) and 
1.6× Optivar. Photoconversion of PSCFP2 or mEos2 was achieved 
with 8 μW of 405-nm laser radiation, and the green-converted 
PSCFP2/red-converted mEos2 was imaged with 18 mW of 488/561-
nm light, respectively. For Alexa Fluor 647, 15 mW of 633-nm laser 
illumination was used for imaging. An oxygen-scavenging PBS-
based buffer (containing 25 mM 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid, 25 mM glucose, 5% glycerol, 0.05 mg/ml 
glucose oxidase, and 0.025 mg/ml horseradish peroxidase, supple-
mented with 50 mM cysteamine; all from Sigma-Aldrich, St. Louis, 
MO) was used for dSTORM imaging. For each cell, 20,000 images 
were acquired with a cooled, electron-multiplying charge-coupled 
device camera (iXon DU-897; Andor, Belfast, UK) using an exposure 
time of 30 ms and a pixel size of 100 nm in the image space. Raw 
fluorescence intensity images were analyzed with the software Zen 
2011 SP3 (Zeiss MicroImaging), generating reconstructed SMLM 
images, as well as tables containing the x, y-coordinates of each 
molecule detected during the acquisition.

Data processing
Data in the form of an ASCII text file containing spatial coordinate 
and channel identification information for each detected localiza-
tion are loaded into the GUI application. An additional file contain-
ing user-defined ROIs is also loaded. These ROIs define subregions 
within the cell area within which each analysis will be applied. ROI 
area was typically 4000 nm × 4000 nm, and care was taken that the 
ROI border fell entirely within the cell boundary.

An average clustering value across an entire ROI is measured 
using the linearized form of Ripley’s K function, L(r) −r, which relates 
to Ripley’s K function as L r r K r r( ) ( ) /− = π − , where K(r) is Ripley’s 
K function at radius r. This is performed on a single user-given 
square ROI, with the start, end, and step size of r also user defined. 

colocalization. We provide this analysis as a user-friendly GUI, 
making it accessible to biologists. With the increasing availability 
of commercial SMLM microscopes for imaging single molecules 
in intact cells, our analysis strategy may facilitate new insights 
into different cellular processes.

MATERIALS AND METHODS
Sample preparation for activated T-cells
Jurkat E6.1 T-cells (American Type Culture Collection, Manassas, VA) 
were maintained in RPMI 1640 (Life Technologies, Carlsbad, CA) 
supplemented with 10% fetal calf serum (FCS), 2 mM l-glutamine, 
and 1 mM penicillin and streptomycin (all from Invitrogen, Carlsbad, 
CA) and transfected by electroporation (NEON; Invitrogen) to ex-
press CD3ζ fused to PSCFP2. Clean glass coverslips were coated 
with anti-CD3ε (16-0037; eBioscience, San Diego, CA) and anti-
CD28 (16-0289; eBioscience) antibodies for at least 1 h at 37°C. 
Cells were activated on antibody-coated coverslips for 10 min at 
37°C and then fixed with 4% paraformaldehyde (vol/vol) in phos-
phate-buffered saline (PBS) for 20 min at room temperature. Cells 
were permeabilized with 0.1% (vol/vol) Triton X-100 for 4 min at 

FIGURE 7:  Clus-DoC analysis applied to focal adhesions. (A) Two-color 
TIRF image of paxillin (green) and phosphorylated paxillin (p-paxillin; 
red) in MEF cells on fibronectin. Scale bar, 10 μm. (B) SMLM data of 
paxillin (green) and p-paxillin (red) from 6 μm × 6 μm region highlighted 
in white in A. (C) Zoom of 1 μm × 1 μm region highlighted in black in B. 
(D) Frequency distributions of DoC scores of all molecules for paxillin 
(top) and p-paxillin (bottom), with mean DoC scores indicated. 
(E) Percentage of paxillin molecules colocalized with p-paxillin and 
percentage of p-paxillin molecules colocalized with paxillin. (F) Relative 
density of paxillin molecules in paxillin nanoclusters that are or are not 
colocalized with p-paxillin. *p ≤ 0.05 (paired t test).
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An additional parameter is supported to randomly subsample the 
points within a ROI to a user-defined maximum value. This improves 
processing speed for dense point fields and allows clustering be-
haviors between ROIs to be compared at identical point densities.

Points are segmented into clusters using the DBSCAN algo-
rithm. Before this clustering, the user has the option of segmenting 
noise localizations from the ROI. Here a “noise” point is defined as 
a point whose L(r) − r value at a user-given radius (typically 50 nm) 
is below that of the value expected for a spatially random distribu-
tion of that density of points. Given user-specified values for the 
search radius and minimum number of points per cluster, a custom-
written DBSCAN implementation (written in C++ and compiled us-
ing MEX) segments the points within each ROI into clusters or as 
the outliers or noise component. Data are extracted on a per-clus-
ter basis, including number of points per cluster, cluster border, 
area, and circularity based on the cluster contour, cluster density, 
and, where included with DoC scores, the number of points within 
the cluster above and below the DoC threshold. Those clusters 
containing at least one point with a DoC score above the threshold 
are further subsegmented into points above and below the thresh-
old, with the number, area, and density measures for these sub-
populations extracted.

The cluster contour is defined by generating a 2D image of 
the histogram of localization points within the cluster. This 2D his-
togram has bin widths of 1 nm in each dimension. This histogram 
rendering is smoothed by a user-defined value (typically 15 nm). 
The value of this smoothed rendering at each localization point is 
evaluated and a threshold taken at the lowest value associated 
with a data point. The outline of this thresholded region is taken 
as the contour of the cluster for measuring cluster circularity, di-
ameter, and area and for counting the number of molecules per 
cluster.

A DoC score is calculated for each point within a ROI for a range 
of discrete search radii from 0 to a maximum value. Both the step size 
and maximum radius (RMax) are user specified, typically 10 and 
500 nm, respectively. The search for points within this radius is ac-
celerated by a MEX function performing a k-dimensional tree search 
algorithm. The density of points at each search radius for channel i is 
correlated against the values from channel j using a pairwise linear 
correlation of Spearman’s ρ coefficient. This correlation, Sij, is con-
verted into a DoC score by first calculating the cross-channel nearest-
neighbor distance at each point in i to j, Nij, by the expression

DoC S
N

Rexpi ij
ij

max
= −





This is repeated for both channels, performing the correlation 
and nearest-neighbor searches in the opposite direction.

Once calculated, this DoC score can be compared with a user-
defined threshold (typically 0.4) to segment points that are colocal-
ized, clusters that are or are not colocalized (given a minimum 
number of points per cluster with a DoC score above the threshold), 
or to segment points within a cluster based on DoC score.

Generation of GUI
A MATLAB GUI was written to provide a graphical front end to the 
underlying clustering and DoC functions. This interface allows users 
to load and visualize SMLM dual-color data sets, executes the 
described functions, and exports plots and tabulated results. Addi-
tional functionalities, such as further data analysis, the ability to 
specify ROIs and imported binary masks and to do batch process-
ing, are supported.

Codes are written for 64-bit MATLAB R2014b or above under 
a Windows operating system. All processing completes within 
minutes on a standard desktop PC for a single SMLM data set of 
∼106 points.

The latest version of the source codes for the underlying func-
tions and GUI application, complete with new functionalities and 
bug fixes, are available at the authors’ Git repository (https://github 
.com/PRNicovich/ClusDoC).

Statistical analysis
All statistical analysis was performed using GraphPad software 
(Prism, San Diego, CA). Statistical significance between data sets 
was determined by performing two-tailed Student’s t tests. Graphs 
show mean values, and error bars represent the SEM. In statistical 
analysis, p > 0.05 is indicated as not significant (n.s.), whereas sta-
tistically significant values are indicated as follows: *p ≤ 0.05, 
**p < 0.01, ***p < 0.001, and ****p < 0.0001.
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