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Abstract

Objectives—The radiology report is the most important source of clinical imaging information. 

It documents critical information about the patient’s health and the radiologist’s interpretation of 

medical findings. It also communicates information to the referring physicians and records that 

information for future clinical and research use. Although efforts to structure some radiology 

report information through predefined templates are beginning to bear fruit, a large portion of 

radiology report information is entered in free text. The free text format is a major obstacle for 

rapid extraction and subsequent use of information by clinicians, researchers, and healthcare 

information systems. This difficulty is due to the ambiguity and subtlety of natural language, 

complexity of described images, and variations among different radiologists and healthcare 

organizations. As a result, radiology reports are used only once by the clinician who ordered the 

study and rarely are used again for research and data mining. In this work, machine learning 

techniques and a large multi-institutional radiology report repository are used to extract the 

semantics of the radiology report and overcome the barriers to the re-use of radiology report 

information in clinical research and other healthcare applications.

Material and methods—We describe a machine learning system to annotate radiology reports 

and extract report contents according to an information model. This information model covers the 

majority of clinically significant contents in radiology reports and is applicable to a wide variety of 

radiology study types. Our automated approach uses discriminative sequence classifiers for 

named-entity recognition to extract and organize clinically significant terms and phrases consistent 

with the information model. We evaluated our information extraction system on 150 radiology 

reports from three major healthcare organizations and compared its results to a commonly used 

non-machine learning information extraction method. We also evaluated the generalizability of our 

approach across different organizations by training and testing our system on data from different 

organizations.

Results—Our results show the efficacy of our machine learning approach in extracting the 

information model’s elements (10-fold cross-validation average performance: precision: 87%, 

recall: 84%, F1 score: 85%) and its superiority and generalizability compared to the common non-

machine learning approach (p-value < 0.05).
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Conclusions—Our machine learning information extraction approach provides an effective 

automatic method to annotate and extract clinically significant information from a large collection 

of free text radiology reports. This information extraction system can help clinicians better 

understand the radiology reports and prioritize their review process. In addition, the extracted 

information can be used by researchers to link radiology reports to information from other data 

sources such as electronic health records and the patient’s genome. Extracted information also can 

facilitate disease surveillance, real-time clinical decision support for the radiologist, and content-

based image retrieval.
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1. Introduction

Radiology report narrative encompasses critical information about many body parts and 

health conditions and is a major component of the evidence for clinical diagnosis and 

disease treatment. In addition, radiology reports provide a rich source of information for 

disease surveillance, information retrieval, and clinical decision support. However, the free 

text format of radiology reports and the complexity of natural language make it difficult to 

extract and re-use report information for clinical care and biomedical research.

Despite this complexity, radiology report narrative mostly follows a common information 

model consisting of specific semantic elements, such as uncertainty, anatomy, observations, 

and their modifiers [1]. These common elements capture the essence of report semantics and 

summarize report information content. Using this information model as a framework for 

information extraction provides structured details for clinical and research applications and 

could be generalizable to a wide variety of radiology studies and healthcare organizations. 

However, identifying and extracting these information model elements is a challenging task 

due to the ambiguity and subtlety of natural language, the complexity of the described 

images, and the stylistic variations among radiologists and healthcare organizations.

In this paper, we first present an imaging report information model from an earlier radiology 

reporting system [1] that defines and summarizes the information content of a radiology 

report. This information model covers the majority of clinically significant information in 

radiology reports and is applicable to a wide variety of diagnostic radiology study types. 

Then we propose an automatic natural language processing (NLP) system to extract 

clinically significant concepts from the radiology report according to this information model. 

This system uses a named-entity recognition sequence classifier to identify the information 

model elements and extract them from the reports. Our approach is applied and evaluated on 

de-identified radiology reports from three major healthcare organizations: Mayo Clinic 

(Mayo), MD Anderson Cancer Center (MDA), and Medical College of Wisconsin (MCW).

The main contribution of our work is using existing machine learning techniques to build an 

information extraction system that can accurately identify significant terms and phrases in 

radiology reports according to a radiology-specific information model. Our information 
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extraction system yields structured data from the radiology report to link with other clinical 

and genomic data sources for translational research, information retrieval, disease 

surveillance, and clinical decision support. The structured data extracted from the radiology 

report can also improve search of imaging reports for healthcare monitoring and help 

clinicians and researchers review and understand the reports.

2. Related work

Radiology reports previously have been analyzed using NLP techniques to extract clinically 

important findings and recommendations [2–4]. The Lexicon Mediated Entropy Reduction 

(LEXIMER) system extracts and classifies phrases with important findings and 

recommendations from radiology reports through lexicon-based hierarchical decision trees 

[3]. In another approach [4], sentences in radiology reports that include clinically important 

recommendation information were identified though a maximum entropy classifier. Both of 

these systems provide binary classification (containing or not containing important findings 

or recommendations) rather than extracting most key clinical concepts using a detailed 

information model. Our approach enables the re-use of the extracted information for 

numerous clinical and research purposes, rather than just for the two purposes for which 

LEXIMER was tailored.

More general NLP techniques previously have been used to classify and extract information 

from radiology report narrative [5–17]. In earlier work, Medical Language Extraction and 

Encoding System (MEDLEE) extracted information from Columbia-Presbyterian Medical 

Center’s chest radiology report repository [5]. MEDLEE uses a controlled vocabulary and 

grammatical rules to translate text to a structured database format. MEDLEE’s results were 

evaluated for 24 clinical conditions based on 150 manually labeled radiology reports [6]. 

However, in separate studies the authors reported decreases in MEDLEE performance when 

it was applied to multiple organizations’ chest radiology reports [7] and when it was applied 

to more complex narrative reports from CT and MR head images [8].

In other related work, the Radiology Analysis tool (RADA) was developed to extract key 

medical concepts and their attributes from radiology reports and to convert them to a 

structured database format through a specialized glossary of domain concepts, attributes, and 

predefined grammar rules [9]. Mayo Clinic’s Clinical Text Analysis and Knowledge 

Extraction System (cTAKES) provides a dictionary-based named-entity recognizer to 

highlight the Unified Medical Language System (UMLS) Metathesaurus terms in text, in 

addition to other NLP functionalities, such as tokenizing, part of speech tagging, and parsing 

[10]. As two other widely used UMLS dictionary-based approaches, Health Information 

Text Extraction (HITEx) from Brigham and Women’s Hospital and Harvard Medical School 

finds UMLS matches to tag principal diagnoses [11] and MetaMap from National Library of 

Medicine finds UMLS concepts in biomedical literature [12]. A drawback of MEDLEE and 

other dictionary-based and rule-based annotation and information extraction systems is their 

limited coverage and generalizability [13]. Building an exhaustive list of terms and rules to 

model language and extract domain concepts is extremely time consuming. As a result, these 

dictionary-based and rule-based methods usually suffer from lower recall compared to their 

precision. In addition, even in the presence of extensive dictionaries and rule bases, the 
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results may be still suboptimal due to the interactions between rules and natural language 

variations and ambiguity [13].

In related statistical NLP work [14], a statistical dependency parser is combined with 

controlled vocabulary to capture the relationships between concepts and formalize findings 

and their properties in a structured format. In another statistical approach, SymText and 

MPLUS NLP systems combine a controlled terminology, a syntactic context-free grammar 

parser and Bayesian network-based semantic grammar to code findings in radiology reports 

[15–17]. Recent related work explored the use of different machine learning methods such 

as support vector machines and Bayesian networks to classify chest CT scans for invasive 

fungal and mold diseases at report and patient levels [18,19]. These methods were 

specialized and evaluated in a limited domains and were not built to extract and summarize 

the free text information content in multi-institutional radiology reports according to an 

explicit information model. Our approach improves on the above approaches because a new 

corpus of annotated reports is not needed to create systems for each new purpose. Also, 

because our information model is not specific to one type of radiology exam or organization, 

and it is more generalizable in the domain of radiology.

3. Material and methods

First, we describe the information model that we use to summarize radiology reports, which 

provides a framework to build and evaluate our information extraction system. Then, we 

present our radiology report repository and the set of features extracted from the reports in 

our NLP approach. Our information extraction system is built around a core named-entity 

recognition method. We propose three different named-entity recognition methods for our 

information extraction task: (1) dictionary-based method, (2) conditional Markov model 

(CMM) and (3) conditional random field model (CRF). The first method is commonly used 

in lexicon-based annotation and information extraction systems and serves as a baseline for 

two other machine learning methods. Finally, we explain the evaluation mechanism for our 

system.

3.1. Information model

Our information model provides a framework to summarize radiology reports and to build 

and evaluate our information extraction system. Our information model’s level of detail is 

optimized to extract and organize the NLP system’s results, so they are beneficial to clinical 

research and decision support and surveillance systems. However, the model is also simple 

enough to enable rapid manual annotation of a training set for our NLP system. This 

information model has 5 classes of concepts: anatomy, anatomy modifier, observation, 

observation modifier, and uncertainty. These 5 classes represent the vast majority of 

clinically significant information contained in radiology reports. For example, the existing 

information model elements in the report statement “a 1 cm calcified mass probably is 

present in the anterior right upper lobe” are shown in Table 1.

Our information model was originally developed to support an earlier radiology reporting 

system [1], and served as the underpinnings for a widely used terminology to represent 

information in radiology reports [20]. The model was refined for our information extraction 
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task by one of the authors (CL). Our information model is compatible with the body of 

literature on representative radiology report information models [21–26]. For comparison, in 

the information model that was used as a basis for MEDLEE information extraction system 

[22], radiology findings are defined by observation concept class and various qualifier 

concept classes for observations, including body location, location qualifier, certainty, 

degree, temporal, quantity, and property. This information model has a hierarchical structure, 

which can be used for logical inferences. MEDLEE information model can be considered as 

a detailed version of our information model in this work. The observation, body location, 

location qualifier, and certainty classes in MEDLEE information model are identical to 

observation, anatomy, anatomy modifier, and uncertainty classes in our information model. 

However, in our information model, as a simplification, we combined degree, temporal, 

quantity, and property observation qualifier classes as the observation modifier class. This 

simplification facilitates the manual annotation effort for building training data set and still 

captures the observation qualifiers’ information that is needed for our information extraction 

system’s applications.

3.2. Radiology report data set

The source of the radiology report narrative in this work is the RadCore database. RadCore 

is a multi-institutional database of radiology reports aggregated in 2007 from three major 

healthcare organizations: Mayo Clinic, MD Anderson Cancer Center, and Medical College 

of Wisconsin. RadCore radiology reports were collected under institutional review board 

approval from those three organizations. There were no major differences in the formatting 

of chest CT radiology reports in these different organizations. The reports were de-identified 

by their source organization before submission to RadCore database. This project is 

approved by the Stanford institutional review board. Table 2 shows the number of radiology 

reports from each organization in RadCore data set.

3.3. Training set construction

Given the large amount of data in RadCore radiology report repository and our limited 

resources, we restricted our focus to chest CT radiology reports to keep the manual 

annotation requirements tractable. We extracted a representative subset of radiology reports 

with the same exam type, chest CT, to create our manually annotated multi-institutional 

corpus. These annotated data provide a key information source for training and evaluation of 

our information extraction system. Chest CT reports often contain complex observations and 

findings about a number of vital organs and pathologic conditions. This level of complexity 

provides a challenging test for our information extraction system and can show the 

generalizability of our approach for other radiology studies.

The training set was built through random selection of chest CT reports in the RadCore 

database. In total, 150 reports, 50 reports from each organization, were automatically 

selected from the repository. In the manual labeling process one of the authors (CL), 

highlighted terms and phrases that belong to our information model concept classes. We 

used the Extensible Human Oracle Suite of Tools (eHOST) [27], an open source annotation 

tool, for manual annotation. Fig. 1 shows a screenshot of a manually labeled radiology 
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report in eHOST. Manual annotations were exported in XML format by eHost and parsed so 

they could be used to train and evaluate our information extraction system.

To evaluate the quality of the manual annotations and to estimate the complexity of the 

annotation task, we calculated inter-annotator agreement for a subset of our data set. We 

randomly selected 5 radiology reports from each organization in our data set. These 15 

reports constituted 10% of our annotated data set. We asked an independent radiologist (GB, 

see acknowledgments) to annotate these reports according to our information model. We 

calculated the total percentage of agreements between two annotators. To remove the effect 

of agreements by chance, we also calculated Cohen’s Kappa coefficient [28], a widely 

accepted agreement metric in NLP, for these two sets of annotations.

3.4. Feature extraction

We used a combination of semantic and syntactic features in training our machine learning 

models. The list of these features is as follows:

Part of speech tags—Part of speech tags are each word’s grammatical category, such as 

verb, adjective, and adverb. The widely-used Stanford Part of Speech Tagger [29] was 

employed to extract these tags.

Word stems—Word stems are canonical representations of words after removing their 

morphological variations. We used the Porter stemmer [30], the de facto standard English 

stemming algorithm, to extract word stems. For example, verbs “performed” and “performs” 

are both mapped to the canonical shape “perform”.

Word n-grams—A word’s n-grams are all the word’s substrings of length n or less. To 

keep the computation tractable, we only extracted prefix and suffix substrings with less than 

6 characters as word n-gram features.

Word shape—Word shapes are orthographic signatures that encode words’ capitalization, 

inclusion of numbers and other non-alphabetic character information. We used Stanford 

CoreNLP toolkit [31] to extract word shapes.

Negation—We used NegEx [32], a widely used clinical text mining tool, to determine 

negations. NegEx first identifies negation triggers in text based on its dictionary, then uses a 

set of rules to determine which terms fall within the scope of those triggering terms [32].

RadLex lexicon—RadLex® [20] is a controlled lexicon for radiology terminology. 

RadLex lexicon is organized in a hierarchal structure and available in Web Ontology 

Language (OWL) format. We used RadLex to identify each term’s memberships in semantic 

classes. The current version of RadLex (3.11) contains 58,065 terms in 34,446 classes. 

RadLex is freely available from the Radiological Society of North America (RSNA). 

Considering our information model and the hierarchical structure of RadLex lexicon, we 

chose relevant roots for each information model class and flattened the sub-trees under those 

roots for use as dictionaries. Because there is no clear distinction between anatomy and 

observation modifiers in RadLex and the common use of location, density, and orientation 
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modifiers to describe both anatomical structures and observations, we extracted a single 

dictionary for both anatomy modifier and observation modifier concept classes. Table 3 

shows the dictionaries used, their corresponding RadLex roots, and the number of entries in 

each.

3.5. Named-entity recognition

To identify and extract the terms and phrases in radiology reports that belong to our 

information model’s concept classes, we built a named-entity recognition module. Given the 

module’s key role in our annotation and information extraction system, we developed and 

evaluated three different named-entity recognition methods: dictionary-based, CMM, and 

CRF methods to find the most effective approach. The dictionary-based method, which is 

not a machine learning approach, is commonly used in biomedical applications and serves as 

a baseline for the two latter machine learning approaches. In this project, we used CMM and 

CRF training infrastructure in Stanford Named-Entity Recognizer toolkit [33] to build our 

named-entity recognition annotation models. These machine learning approaches rely on our 

labeled training data and their extracted features to recognize the common patterns for 

identifying information model elements.

3.5.1. Dictionary-based method—As a baseline, we leveraged the widely used 

cTAKES dictionary-based named-entity recognition methodology in this work. Because no 

radiology terminology is included in the current version of cTAKES’s dictionary, we used 

cTAKES system description [10] and RadLex to implement the dictionary-based baseline 

method for radiology reports. As a result, our dictionary-based method is a representative of 

the cTAKES annotation method and provides a comparison between our system and a 

commonly used annotation system for biomedical applications.

In our dictionary-based method we used RadLex to build a dictionary for each concept class 

in the information model with the exception of the modifier dictionary, which had two 

corresponding concept classes: anatomy modifier and observation modifier (Table 3). As 

mentioned before, this is due to the shared set of modifiers used for both anatomical 

structures and observations. Therefore, in this method we merged and treated anatomy 

modifier and observation modifier concept classes as a single concept class.

In the dictionary-based method, the RadLex terms in each dictionary were converted to their 

canonical forms through the Porter stemming algorithm and stored in a table. The report 

terms were also converted to their canonical forms through the Porter stemming algorithm 

and looked up in the dictionary tables. The terms and phrases that existed in a dictionary 

table were annotated by the dictionary’s information model class. In our method, if a term or 

phrase was matched with more than one dictionary entry through multiple text spans, we 

considered the longest text span as the matched entry for annotation. For example, in phrase 

“deep vein thrombosis” although individual terms “vein” and “thrombosis” exist in our 

dictionaries, only the longest match, “deep vein thrombosis” is annotated and used for 

information extraction.

3.5.2. Conditional Markov model—Conditional Markov models or CMMs, also known 

as maximum-entropy Markov models (MEMMs), are sequence classifiers [34]. CMM 
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classifiers are commonly used for sequence labeling tasks such as part of speech tagging and 

named-entity recognition. In NLP applications, for each word in the sequence of input 

words, CMMs make a single annotation decision at a time, conditioned on the features from 

the word and its surroundings words, as well as previous decisions. As a result, sequence 

classifiers such as CMMs include surrounding context in decision making to annotate each 

word in text [34].

CMMs combine maximum-entropy classifiers with Markov chains from hidden Markov 

models (HMMs). Similar to HMMs, CMMs use the Markov assumption and the Viterbi 

algorithm to search over label space. However, they use a maximum entropy framework for 

features and normalization [34]. CMMs are discriminative models. Discriminative models 

are based on conditional probability distributions and are considered to be more effective for 

NLP tasks than generative models such as HMMs, which are based on joint probability 

distributions [35]. CMMs do not consider features as independent. Rather than learning a 

joint probability distribution for input features and output labels as generative models do, 

they find parameters that maximize the conditional probability of output labels given the 

input features [35]. We refer the reader to [34] for more details about CMM classifiers.

In this work, we used the CMM training infrastructure in Stan-ford Named-Entity 

Recognizer toolkit [33] to build a named-entity recognition model to annotate and extract 

information from radiology reports.

3.5.3. Conditional random field model—Conditional random fields (CRFs) are another 

form of sequence classifier, which are used in the state-of-the-art part of speech tagging and 

named-entity recognition systems [36]. CRFs, similar to CMMs, are discriminative models. 

A CRF model includes an estimation of the conditional distribution of output labels given 

the input features with an associated graphical structure. We used a linear chain graphical 

structure in this work, which predicts sequences of annotation labels for the sequences of 

input words from radiology reports. The CRF model considers previously assigned labels, 

surrounding terms, and their features as context for annotation of a single word. The major 

difference between CRFs and CMMs is their method for probability normalization. 

Probabilities in CRFs are normalized globally for a sequence. In contrast, probabilities in 

CMMs are normalized locally for each state in the sequence. The global normalization in 

CRFs improves model’s general accuracy, but increases its computational complexity. We 

refer the readers to [37,38] for a detailed discussion of CRFs.

Because discriminative models such as CMMs and CRFs are conditional, dependencies 

among the input features do not need to be explicitly represented in their graphical structure. 

These discriminative models do not impose any assumptions on the dependencies and 

probability distributions of input features. As a result, in the model training process, 

discriminative models divide the feature weights for correlated and overlapping features 

instead of considering the features as additional pieces of evidence [37]. Therefore, in 

contrast to generative models, possible repeated and correlated features do not affect the 

performance or cause over fitting in discriminative models such as CMMs and CRFs. Often, 

rich arrays of features with potential overlaps are used to train CRF and CMM models for 

NLP applications without side effects from feature correlations [37].
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We used the CRF training functionality provided in Stanford Named-Entity Recognizer 

toolkit [33] for training a named-entity recognition model for information extraction from 

radiology reports in this work.

3.6. Evaluation

To evaluate our information extraction system with CMM and CRF named-entity 

recognition methods and to compare them to the dictionary-based baseline method, we 

performed a 10-fold cross-validation for each method on our data set of 150 manually 

annotated radiology reports. We computed standard metrics of precision, recall, and F1 score 

for each model and aggregated the results through micro-averaging. The cross-validation 

removes selection bias and evaluates the methods on the entire labeled data set. In this 

evaluation, we measured precision, recall, and F1 score for the non-machine learning 

dictionary-based method on all ten cross-validation test partitions as well. We compared the 

performance of these three methods for each information model concept class in 10-fold 

cross-validation using Student’s t-test [39]. Throughout our evaluation we used 0.05 as the 

significance level for our statistical comparisons.

To evaluate the generalizability of our machine learning approach, we built 3 additional 

models for CMM and CRF methods. Each model was trained on data from two 

organizations and evaluated by measuring precision, recall, and F1 score on data from the 

third organization. The precision, recall, and F1 score of the dictionary-based method was 

also measured on each test set. The performance of all three methods was compared using 

Student’s t-test.

4. Results

In our inter-annotator agreement evaluation, two annotators agreed in 85.5% of their 

annotations. Kappa coefficient for these two sets of annotations is 0.75. For comparison, 

Table 4 shows the distribution of concept classes in the manual annotations and the 

distribution of concept classes in the annotation results of our three information extraction 

methods in cross-validation. The results show the number of annotations in the dictionary-

based method is considerably lower than the number of manual and machine learning 

annotations. Table 5 shows the results of our 10-fold cross-validation on 150 manually 

annotated radiology reports for all 5 information model classes. Precision, recall, F1 scores, 

the number of true positives (TP), false positives (FP), and false negatives (FN) are listed for 

three variations of our information extraction system with dictionary-based, CMM, and CRF 

named-entity recognition methods.

Our Student’s t-test comparison on the performance of these three methods shows that both 

CMM and CRF methods outperform the dictionary-based method with statistical 

significance (p-value < 0.05) for all information model classes in 10-fold cross-validation. 

Table 6 presents the p-values for Student’s t-test comparison between F1 scores of these 

three methods. This Student’s t-test comparison also shows that there is no statistically 

significant difference between CMM and CRF methods’ performances for all information 

model classes in cross-validation (Table 6).
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Table 7 shows precision, recall, and F1 scores of different named-entity recognition methods 

in our information extraction system when they are trained and tested on different 

organization’s data to evaluate the generalizability of our approach. The Student’s t-test 

comparison for F1 scores of these three methods, summarized in Table 8, shows both CMM 

and CRF methods outperform the dictionary-based method with a statistical significance (p-

value < 0.05). There is no statistically significant difference between the performances of the 

CMM and CRF methods.

5. Discussion

5.1. Methods and results review

The main contribution of this work is the use of existing machine learning frameworks and 

NLP syntactic and semantic features to build an information extraction system that can 

accurately identify terms and phrases in radiology reports according to a radiology-specific 

information model. Our syntactic features are derived from grammatical structures, word 

forms, and morphology, such as part of speech tags, word stems, word n-grams, and word 

shapes. Our semantic features relate to the meaning and interpretation of words and phrases, 

such as negation and memberships in RadLex ontological classes.

To build an effective information extraction system, we investigated three different methods, 

dictionary-based, CMM, and CRF, for named-entity recognition as the core component of 

this system. CMM and CRF, which are both machine learning methods, had strong 

performances, with precision of 87%, recall of 84%, and F1 scores of 85% on average in our 

10-fold cross-validation. We observed 15% gain in precision, 35% gain in recall, and 28% 

gain in F1 score for CMM and CRF methods on average compared to the commonly used 

dictionary-based method in our cross-validation evaluation. Our evaluation showed that the 

performance of CMM and CRF methods was equally strong with no statistically significant 

difference.

The major drawback of the dictionary-based method is its lack of coverage and 

generalizability. In general, having access to dictionaries with exhaustive lists of concepts in 

the domain of interest is challenging. Even in the presence of these dictionaries, the 

variability and ambiguity of natural language do not match the simplicity of the dictionary 

lookup methods [13]. Many anatomy and observation modifiers describing location, density, 

and orientation cannot be distinguished without analyzing their context. For example, “3rd” 

could apply to an anatomic structure such as a rib, or to a nodule, which is an observation. 

As a result, the dictionary-based method cannot differentiate between anatomy and 

observation modifiers in our information model. In our dictionary-based method we 

modified the information model to consolidate anatomy modifier and observation modifier 

concept classes as a single modifier class. This modification made the task of information 

extraction easier for the dictionary-based method compared to two other machine learning 

methods which need to differentiate between anatomy and observation modifiers. This 

simplification in dictionary-based method provided a strong baseline against which to 

measure our machine learning methods’ performances. Our comparison to this dictionary-

based baseline suggests that dictionaries such as RadLex are more instrumental for 

radiology report information extraction in combination with semantic and syntactic features.
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5.2. Inter-annotator agreement

The reference standard annotations in this study were generated by one radiologist (CL) who 

also contributed to creating the information model. This might have introduced some biases 

in the annotations. To explore these potential biases, we asked a second independent 

radiologist (GB) to annotate 10% of our data set without specific training. The inter-

annotator agreement measure for this subset showed reasonably high agreement between the 

two annotators (Kappa coefficient = 0.75). This level of inter-annotator agreement shows the 

integrity of our reference standard annotations. The existing disagreements between the 

annotators demonstrate the challenges of the manual annotation process, caused by the 

complexity of radiology report language. We expect providing a comprehensive set of 

annotation guidelines with expressive examples will improve the quality of the reference 

standard annotations and the inter-annotator agreement.

5.3. Error analysis

We investigated the most common incorrect annotation classes for each method in our error 

analysis. Table 9 shows the top pairs of correct and incorrect annotation classes in cross-

validation on our entire data set. As shown in this table, the number of errors in the 

dictionary-based method is almost as three times larger than the number of errors in the 

machine learning methods. For further insight into the causes of errors, we randomly 

selected 5 radiology reports from each organization to manually review the annotation errors 

by each method. These 15 radiology reports cover 10% of our data set and 1287 errors (803 

dictionary-based errors, 231 CMM errors and 253 CRF errors).

According to our manual review, 22% of the dictionary-based method’s errors are caused by 

the low coverage of radiology report terms in RadLex. As a result, various terms from the 

information model classes are not annotated by the dictionary-based method. For example, 

the term “diverticulosis” does not exist in RadLex, and therefore is missed in the dictionary-

based method’s annotations. We expect extending the concept dictionaries will improve the 

dictionary-based method’s performance. In addition, because the dictionary terms are used 

as features in our machine learning methods as well, we expect this extension will address 

some common missed annotations in all three methods such as “side” and “surface”.

The remaining 78% of the annotation errors in the dictionary-based method are because of 

the context-free nature of this method. For example, the term “normal” is classified as a 

modifier in RadLex class hierarchy and is part of the modifier dictionary. However, in 

sentence “the heart appears normal”, normal is an observation rather than a modifier. Of 

note, both CMM and CRF methods identify “normal” correctly as an observation in this 

sample sentence.

For CMM and CRF methods, 28% of the errors are caused by annotating anatomy and 

observation terms as anatomy and observation modifiers and vice versa. In these cases the 

machine learning models and their NLP features fail to disambiguate between the concepts 

terms and their modifiers. For example, in phrase “right upper lobe”, “right” and “upper” are 

parts of an anatomical structure’s name and our machine learning methods correctly identify 

“right” and “upper” belong to the anatomy class. However, in phrase “right upper lung”, 
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despite of the similar language pattern, “right” and “upper” are modifiers for an anatomy 

(lung) rather than part of the anatomy’s name. Our machine learning methods incorrectly 

annotate “right” and “upper” as anatomy instead of anatomy modifier in the latter example. 

We plan to expand our annotated training data and enrich our NLP features to address these 

errors in our machine learning methods. Expanding the training data will inform and refine 

the machine learning models for such error cases and adding new features that capture 

terms’ distributional semantics and co-occurrences patterns [40] address the annotation 

errors even without observing similar cases in the training set.

In addition, 24% of errors in CMM and CRF methods are due to manual annotation errors 

and inconsistent annotations in the training set. For example terms “except” and “otherwise” 

were not consistently annotated by uncertainty class in the training set. We expect increasing 

the number of annotators and performing quality control on reference standard annotations 

will address these errors. The remaining 48% of errors in CMM and CRF methods includes 

a wide range of radiology report terms such as “blood”, “cell”, “sensitive”, and 

“posteriorly”. We associate these errors with the lack of indicative features in our machine 

learning methods. We expect adding syntactic and semantic features to our machine learning 

methods, such as grammatical dependencies and distributional semantics, improves their 

performances for these cases.

We also compared the results of these three methods to each other. Table 10 shows the 

agreements between different methods on their cross-validation results. Our comparison 

shows the results of CMM and CRF methods are different from the dictionary-based method 

in nearly 27% of all cases in cross-validation. However, CMM and CRF methods disagree in 

less than 2% of the cases.

We examined the validity of the annotations when the dictionary-based method agreed and 

disagreed with the machine learning methods. When CMM and CRF methods agreed with 

the dictionary-based method, the annotations were correct in 95% of cases. In disagreements 

between the machine learning methods and the dictionary-based method, the CRF and CMM 

annotations were correct in 43% of cases, while the dictionary-based method’s annotations 

were correct in 29% of cases. Therefore, we expect a high level of validity for annotations 

on which the dictionary-based method and the machine learning methods agree.

For further investigation, we divided the cross-validation results of the machine learning 

methods into two groups. The first group contains the terms and phrases that can be found in 

RadLex and the second group contains the terms and phrases that cannot be found in 

RadLex. We calculated the precisions, recalls and F1 scores in these two groups for both 

CMM and CRF methods, which are show in Table 11.

We observed that both machine learning methods achieved reasonable performance in cases 

without RadLex terms (average F1 score of 76%). However, their performance metrics in 

these cases are lower than the performance metrics in cases containing RadLex terms 

(average F1 score decrease by 15%). Table 11 shows that the performance of the machine 

learning methods is not determined entirely by RadLex. However, using RadLex dictionaries 

as input features does influence the quality of the results.
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Unlike the dictionary-based method, our machine learning methods may consider terms 

outside the dictionaries. In the machine learning named-entity recognition methods, the 

dictionaries provide additional features to many other semantic and syntactic features for 

training. And their influence on named-entity recognition results is determined by their 

weights in trained CMM and CRF models.

We investigated cases in which CMM and CRF methods disagreed in our manual annotation 

review. Among 3641 terms in these reviewed radiology reports, CMM and CRF methods 

disagreed on annotations for only 71 terms. These disagreements include mostly uncommon 

patterns and language in the data set. These rare cases are barely covered in the training data 

set and slight feature weight differences between CMM and CRF models resulted in 

disagreements in these uncommon cases. For example in the sentence “no destructive bony 

lesions are present”, “bony” is referring to anatomy, while “no” is uncertainty, “destructive” 

is observation modifier and “lesions” is observation. In this sentence, while CRF method 

annotates the sentence correctly, the CMM method does not assign any annotation to the 

term “bony”, because it is very uncommon in our training data set for observations and 

observation modifiers (“lesions” and “destructive” in this sentence) to be separated by a term 

from another class. As another example, CMM correctly annotates “appearance” as an 

observation modifier in the sentence of “the liver is normal in appearance without focal 

hepatic lesions”. However, because of this uncommon language in the training data set and 

its proximity to “without” from the uncertainty class, CRF incorrectly annotates 

“appearance” as an uncertainty. We expect adding more annotated data for these uncommon 

patterns and language and using them for further model training will decrease the small 

number of disagreements between the machine learning methods.

Finally, we examined annotation errors in our cross-organization study through manual 

review. We observed the error types in cross-organization analysis are similar to the error 

types in cross-validation. This is due to the similarities in the pattern of information model 

concepts in radiology reports across different organizations, which are also reflected in 

comparable cross-validation and cross-organization results. Of note, we did not observe any 

spelling errors in the review of the radiology reports. All reports in our data set are dictated 

by radiologists using speech recognition systems [41]. These speech recognition systems 

have built-in dictionaries, perform spell check, and therefore almost always include correctly 

spelled terms and phrases in radiology reports [41].

5.4. Features analysis

We extracted the feature weights in both CMM and CRF models to identify the features with 

the most influence on the results. Tables 12 and 13 show the list of top 5 influential features 

for each information model class in CMM and CRF models. As shown in these tables, 

dictionary terms, part of speech (POS) tags, word n-grams, and surrounding words have 

strong effect on the results of both machine learning methods.

As Tables 12 and 13 suggest, in addition to considering the words and their features, CMM 

and CRF methods make annotation decisions based on the surrounding context and previous 

annotations. In contrast, the dictionary-based method statically maps a word to an annotation 

in the dictionary lookup table without considering the word’s context. Also, because CMM 
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and CRF are discriminative models, correlated and overlapping features are not as 

susceptible to over fitting.

5.5. Generalizability

We evaluated the generalizability of our machine learning information extraction methods 

across different healthcare organizations by training and testing them on data from different 

sources. Our results showed the strong performance of CMM and CRF methods on novel 

data from different organizations (average precision: 82%, average recall: 75%, average F1 

score: 79%). We observed the average gain of 10% in precision, 27% in recall, and 21% in 

F1 score when our machine learning approach is applied to a different organization’s data 

compared to the dictionary-based method. The dictionary-based method, which uses RadLex 

lexicon, is not dependent on a particular organization, and as is shown in Table 7, its results 

are consistent across different organizations. We did not observe a statistically significant 

difference between the performances of CMM and CRF methods in terms of 

generalizability. The cross-organizational evaluation shown in Table 7 demonstrates that the 

syntactic and semantic features learned from radiology reports in CMM and CRF methods 

are effective in identifying the information model concepts in a new organization’s radiology 

reports.

5.6. Impact

Given our cross-validation and generalizability results, our information extraction system 

can provide an infrastructure to develop and improve various biomedical information 

systems. For example, our information extraction system can improve the performance of a 

radiology report information retrieval system’s matching algorithm through annotating 

queries and reports according to the information model. Our information extraction system 

can be combined with other text analysis systems such as constituency and dependency 

parsers and text classifiers to provide summaries of radiology reports. The resulting 

annotations can be joined with other information sources, such as electronic health records, 

for case prioritization or disease surveillance. Therefore, we expect the results of our 

information extraction system being used for improving other biomedical applications rather 

than being directly provided to radiologists and other healthcare providers.

5.7. Limitations and future work

Due to limited resources for manual annotation, we restricted the focus of our information 

extraction task to chest CT reports. Despite this restriction, chest CT report narrative covers 

observations and findings from many vital organs and conditions and is representative of the 

complexity of radiology report narrative for other imaging modalities and body regions. 

Even with a relatively small set of training data, our results show the robustness and 

generalizability of our approach across different organizations. In fact, none of the NLP 

techniques described in this work is specific to an information model, narrative, or 

organization. The developed techniques are applicable to other types of narrative with 

different information models and data sources as well.

As mentioned in the analysis of inter-annotator agreement, the reference standard 

annotations in this work are generated by one domain expert. To address any potential biases 
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in these annotations we plan to leverage multiple annotators instructed with annotation 

guidelines and examples for manual annotation in the future extension of our work. We will 

use the majority vote among these overlapping annotations to remove potential 

disagreements, biases, and noise in annotations. We expect this will increase the reliability 

of our annotated training set and improve our machine learning information extraction 

system. In addition, as suggested by our error analysis, we plan to expand the size and 

richness of our training data by including features such as grammatical dependencies and 

distributional semantics to improve the reliability of our machine learning information 

extraction system.

As future work, we also plan to extend the domain of our system beyond chest CT reports to 

other types of radiology reports and clinical notes. We also plan to expand the richness of 

our information model. This includes adding more concept classes to the information model 

and splitting the existing classes to more detailed subclasses. In addition, to demonstrate the 

application of this work in other healthcare information systems, we plan to use the 

presented information extraction system to summarize clinically significant information in 

radiology reports and prioritize the urgency of each report as a part of a real-time clinical 

decision support system for radiologists.

6. Conclusions

We described a machine learning information extraction system to extract clinically 

significant concepts from radiology reports according to a published information model. 

This information model covers the majority of clinically significant information contained in 

radiology reports and is applicable across organizations. We investigated two machine 

learning methods, CMM and CRF, and a commonly used dictionary-based method as 

baseline for named-entity recognition in our system. We evaluated our methods using a data 

set containing 150 manually annotated radiology reports from three major healthcare 

organizations. The machine learning information extraction system performed equally 

effectively with both CMM and CRF named-entity recognition methods (average F1 score: 

85%). Our results showed the strength and generalizability of our machine learning 

approach compared to the dictionary-based approach.

The extracted information from radiology reports can be used to link radiology report 

information to the patient’s electronic health record or to genomic data. The same results can 

enable clinicians to prioritize the report review process and to rapidly identify reports that 

need further follow up. The extracted report information can facilitate automated 

identification of patients for clinical trials based on imaging features, accelerate disease 

surveillance, and enable real-time clinical decision support systems for radiologists. In 

addition, by attaching the extracted concepts to the images themselves, content-based image 

retrieval becomes possible. Therefore, the described information extraction system provides 

substantial utility to support biomedical research and clinical practice.
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Fig. 1. 
A sample manually annotated radiology report in eHOST.
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Table 1

Information model classes and their examples.

Information model class Example

Anatomy “Right upper lobe”

Anatomy modifier “Anterior”

Observation “Mass”

Observation modifier “Calcified”, “1 cm”

Uncertainty “Probably is present”
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Table 2

Data source organizations and their radiology report counts in RadCore database.

Data source organization Number of radiology reports

Mayo Clinic 812

MD Anderson Cancer Center 5000

Medical College of Wisconsin 1893,819
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Table 3

Concept dictionaries with their RadLex roots and entity counts.

Dictionary RadLex roots Number of entries

Anatomy Anatomical structure
Immaterial anatomical entity
Anatomical set

37,907

Modifier RadLex descriptor 1217

Observation Pathophysiologic finding
Benign finding
Portion of body substance
Object
Imaging observation

3573

Uncertainty Certainty descriptor 23
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Table 6

p -Values for Student’s t-test comparison between F1 scores of dictionary-based, CMM and CRF methods.

Concept Dictionary-based/CMM (p-value) Dictionary-based/CRF (p-value) CMM/CRF (p-value)

Anatomy 2.34E – 18 2.52E – 18 0.96

Anatomy modifier – – 0.76

Observation 2.25E – 14 1.83E – 14 0.63

Observation modifier – – 0.90

Uncertainty 8.55E – 11 1.42E – 10 0.39

Total 4.44E – 18 3.64E – 18 0.77
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Table 8

p -Values for Student’s t-test comparison between different methods’ F1 scores when they are trained and 

tested on data from different organizations.

Training/test organizations Dictionary-based/CMM (p-value) Dictionary-based/CRF (p-value) CMM/CRF (p-value)

(Mayo, MCW)/MDA 7.07E – 05 8.86E – 05 0.83

(Mayo, MDA)/MCW 4.56E – 02 3.81E – 02 0.98

(MCW, MDA)/Mayo 3.16E – 04 2.51E – 04 1.00
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Table 10

Agreement between three methods on cross-validation results.

Method Dictionary-based (%) CMM (%) CRF (%)

Dictionary-based 100.0 72.9 73.0

CMM 72.9 100.0 98.2

CRF 73.0 98.2 100.0
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Table 13

Top five features in our CRF name entity recognition model for each information model class.

Anatomy Anatomy modifier Observation Observation modifier Uncertainty

1. Anatomy dictionary 1. Prefix “bi” 1. Observation dictionary 1. Modifier dictionary 1. Uncertainty dictionary

2. Suffix “ary” 2. Prefix “mid” 2. Prefix “nod” 2. Adjective-adjective 
POS tags

2. Combination of 
adjective-proposition POS 
tags

3. “Lobe” and following 
word shapes

3. Prefix “bas” 3. “Changes” as the 
following word

3. “Normal” and the 
following words

3. Prefix “poss”

4. “Lobe” and following 
words

4. “Hepatic” and the 
pervious words

4. Proper noun POS tag 4. Adjective-noun-noun 
POS tags

4. “Possibl” word stem

5. “Chest” stem word 5. Noun-preposition-
determiner POS tags

5. Suffix “tomy” 5. Cardinal number POS 
tag

5. “evidence” as the 
previous word

Artif Intell Med. Author manuscript; available in PMC 2017 January 09.


	Abstract
	1. Introduction
	2. Related work
	3. Material and methods
	3.1. Information model
	3.2. Radiology report data set
	3.3. Training set construction
	3.4. Feature extraction
	Part of speech tags
	Word stems
	Word n-grams
	Word shape
	Negation
	RadLex lexicon

	3.5. Named-entity recognition
	3.5.1. Dictionary-based method
	3.5.2. Conditional Markov model
	3.5.3. Conditional random field model

	3.6. Evaluation

	4. Results
	5. Discussion
	5.1. Methods and results review
	5.2. Inter-annotator agreement
	5.3. Error analysis
	5.4. Features analysis
	5.5. Generalizability
	5.6. Impact
	5.7. Limitations and future work

	6. Conclusions
	References
	Fig. 1
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12
	Table 13

