
Molecular mechanisms of heart failure: insights from Drosophila

Shasha Zhu1
& Zhe Han2

& Yan Luo1 & Yulin Chen1
& Qun Zeng1 & Xiushan Wu1

&

Wuzhou Yuan1

Published online: 1 December 2016
# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Heart failure places an enormous burden on health
and economic systems worldwide. It is a complex disease that
is profoundly influenced by both genetic and environmental
factors. Neither the molecular mechanisms underlying heart
failure nor effective prevention strategies are fully understood.
Fortunately, relevant aspects of human heart failure can be
experimentally studied in tractable model animals, including
the fruit fly, Drosophila, allowing the in vivo application of
powerful and sophisticated molecular genetic and physiolog-
ical approaches. Heart failure in Drosophila, as in humans,
can be classified into dilated cardiomyopathies and hypertro-
phic cardiomyopathies. Critically, many genes and cellular
pathways directing heart development and function are evolu-
tionarily conserved from Drosophila to humans. Studies of
molecular mechanisms linking aging with heart failure have
revealed that genes involved in aging-associated energy ho-
meostasis and oxidative stress resistance influence cardiac
dysfunction through perturbation of IGF and TOR pathways.
Importantly, ion channel proteins, cytoskeletal proteins, and
integrins implicated in aging of the mammalian heart have

been shown to play significant roles in heart failure. A number
of genes previously described having roles in development of
theDrosophila heart, such as genes involved in Wnt signaling
pathways, have recently been shown to play important roles in
the adult fly heart. Moreover, the fly model presents opportu-
nities for innovative studies that cannot currently be pursued
in the mammalian heart because of technical limitations. In
this review, we discuss progress in our understanding of
genes, proteins, and molecular mechanisms that affect the
Drosophila adult heart and heart failure.
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Introduction

Heart failure (HF) is the culmination of diverse cardiac muscle
pathophysiological insults resulting in a progressive and del-
eterious decline in heart function, such that the metabolic de-
mands of the organism are not met. Clinically, this presents as
dyspnea, fluid retention, and reduced tissue perfusion with
death resulting from lethal arrhythmias or insufficient pump
function [1]. The World Health Organization (WHO) has
identified cardiovascular disease as the worldwide leading
cause of death, and a profound economic healthcare burden.
HF is the culmination of cardiovascular disease that can arise
from diverse conditions including abnormal heart develop-
ment or valve formation, coronary atherosclerosis, hyperten-
sion, acute pulmonary embolism, or emphysema. External
influences, including pregnancy and fatigue, can also cause
HF. Because cardiovascular diseases are complex, multifacto-
rial pathologies associated with both genetic and environmen-
tal factors [2], the development of new pharmacological and
device-based therapies for HF has proven disappointing.
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HF is not unique to humans but is observed in many other
species, and HF disease models have been developed in rats
and mice and in larger mammals including dogs and pigs [3].
The Drosophila adult heart which is a linear tube comprising
two rows of myocardial cells has recently been used to investi-
gate aspects of cardiac biology relevant to understanding hu-
man HF. TheDrosophila heart can be divided into thoracic and
abdominal heart sections [4, 5]. The abdominal heart is divided
by internal valves into four chambers which allow hemolymph
to enter the heart after a contraction. Hemolymph provides nu-
trients and hormones to the fly’s internal organs, allowing flies
to live for days with a severely damaged heart, because unlike
mammals, there is a distinct non-cardiac system (tracheoles)
that delivers oxygen to tissues. The myocardium surrounded
by non-contractile pericardial cells contains spirally orientated
myofibrils. It provides an excellent model with which to dissect
out the cell-autonomous and non-autonomous mechanisms of
heart failure.

In addition to its comparative simplicity, the Drosophila
heart displays strikingly conserved structural and functional
features which, combined with a much shorter lifespan and an
unprecedented wealth of available experimental genetics
tools, make it a powerful model system for the insights to
explore molecular mechanisms underlying HF. Many genes,
proteins, and molecular and cellular pathways involved in
cardiac biology are well conserved from flies to humans [6].
These include, for example, highly conserved contractile pro-
teins and ion channel proteins; contractile process-associated
proteins. In addition,ion channels including CaMKII, dSUR,
Ctrl, Ih/HCN [7] and KCNQ [8] are functionally conserved in
fly and mammalian hearts. Furthermore, numerous genes reg-
ulating cardiac development are functionally conserved from
flies to mammals [9] , including Tinman/Nkx2.5 ,
Neuromancer/TBX20, and Pannier/GATA4.

Together with the striking molecular and cellular conserva-
tion underlying heart development and function, advances in
powerful methods allowing high resolution, accurate analysis
of Drosophila heart biology such as Pacing, OCT (optical
coherence tomography) [10], and atomic force microscopy
(AFM) [11] also provide a compelling rationale for use of
the fly model to elucidate fundamental mechanisms of HF.
Insights thus obtained can be used to efficiently direct trans-
lational research into increasing costly, time-consuming, and
technically challenging vertebrate models en route to clinical
interventions.

Ion channel proteins contribute to heart failure

Ca2+ signaling is a classical pathway in maintenance of adult
heart function. Wolf established a genetic method to monitor
myocardial Ca2+ cycling in Drosophila, in which cardiac-
specific expression of GCaMP2 acts as a genetically encoded

calcium indicator. Ca2+ signaling in Drosophila myocardium
is similar to that of the mammalian heart in several aspects
[12]and may reveal promising pathways to address heart dis-
ease. Recent investigations show that Ca2+/calmodulin-de-
pendent protein kinase and phosphatase play essential roles
in the adult heart. For example, increased free cellular Ca2+

activates CaMKII, leading to phosphorylation of proteins in-
volved in Ca2+ handling [13]. In Drosophila, cardiac-specific
inhibition of CaMKII reduces heart rate and increases the
incidence of asystole while overexpression of CaMKII in-
creases spontaneous heart rate and reduces arrhythmias [14].
Because CaMKII function is conserved from flies to mam-
mals, the modulation of Ca2+ handling via CaMKII targeting
may address problems associated with cardiac aging in
humans. Additional insights into potential approaches based
on conserved pathways come from studies of calcineurin, a
calcium/calmodulin-dependent protein phosphatase.
Activated calcineurin is necessary and sufficient to drive car-
diac hypertrophy [15]. Inhibition of galactokinase causes car-
diomyopathy by suppressing activation of calcineurin, and
galactokinase has been identified as a novel candidate modi-
fier of calcineurin-induced cardiomyopathy in the fly [16].

Potassium K+ channels regulate heart rate and cardiac
rhythm in both Drosophila and mammals [17]. In
Drosophila, mutations in the KCNQ gene cause cardiac ar-
rhythmias in the adult fly and thus KCNQ is protective and
important for aging [8]. In addition, the ATP-sensitive K+

channel gene dSUR protects against heart failure due to stress
responses. The expression of dSUR is diminished in the aged
Drosophila heart, and inhibition of dSUR in young flies con-
fers an aged heart phenotype. dSUR expression is regulated by
Tinman and the GATA transcription factor Pannier, both of
which are highly conserved cardiac regulatory factors [18].

This reference indicated that dietary copper restriction in
rats results in cardiomyopathy and decreases in cytochrome c
oxidase as well as decreases in levels of the delta-subunit of
ATP synthase [19]. Cu deficiency leads to severe cardiovas-
cular dysfunction including cardiac hypertrophy [20].
Cardiac-specific knockout of Ctr1(copper transporter recep-
tor) leads to cardiac hypertrophy in both Drosophila and
mouse [21].

Energy homeostasis and heart function

Metabolism of sugars and fats are conserved between mam-
mals and flies, and Drosophila heart function is affected by
high-sugar diet (HSD) and high-fat diet (HFD), as well as
time-restricted feeding (TRF) [22]. These results suggest that
heart function is closely related to energy homeostasis in
Drosophila.

Insulin/insulin-like growth factor (IGF) signaling is a well-
established genetic pathway regulating longevity [23, 24].
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Drosophila mutants of insulin-like receptor (InR) and chico
(encoding the insulin receptor substrate) extend the lifespan of
the organism as well as protect the heart from decreased rest-
ing heart rate and increased heart failure. Additionally, inter-
fering with InR signaling exclusively in the heart, by overex-
pression of the phosphatase dPTEN or the forkhead transcrip-
tion factor dFOXO (negative regulators of insulin/IGF signal-
ing), prevents age-related decline in cardiac fitness. Moreover,
the ablation of insulin-producing cells (IPCs) in flies also
slows demographic aging and reduces age-dependent heart
failure, indicating that both a reduction of insulin receptor
signaling and circulating insulin levels influence organis-
mal aging and age-related cardiac susceptibility to pacing
stress [24, 25].

Another example showing how alterations in energy ho-
meostasis can be coupled to aging and organ senescence is
illustrated by manipulations of the Drosophila target of
rapamycin (dTOR) pathway. A recent study showed that low-
ering TOR activity in Drosophila prevented age-dependent
functional decline of heart performance. The evidence indi-
cates that the Eif4e-binding protein (d4eBP) acts tissue auton-
omously and downstream of dTOR and dFOXO in the myo-
cardium, where it enhances cardiac stress resistance and main-
tains normal heart rate and myogenic rhythm. Moreover,
d4eBP is sufficient to protect long-term cardiac function
against age-related decline and that up-regulation of dEif4e
is sufficient to recapitulate the effects of high dTOR or insulin
signaling [26].

EGFR pathway mediated heart failure

RTK (receptor tyrosine kinase) signaling, including EGFR,
is essential for maintaining heart function in humans. RTK
inhibition provokes dilated cardiomyopathies in mammali-
an heart models [27]. Recent studies in flies and mammals
show that both activation and inhibition of EGFR signaling
pathways result in heart failure but involve different
mechanisms.

In mammals, ERK regulation of balanced concentric and
eccentric cardiac growth is an established model [28].
Concentric hypertrophy, also called diastolic heart failure, is
associated with thickening of the heart wall without dilation of
the left ventricle. Eccentric hypertrophy, also called systolic
heart failure or dilated cardiomyopathy, involves heart cham-
ber enlargement with thinning of walls and poor myocardium
contractility. In Drosophila, cardiac chamber enlargement is
caused by inhibition of rhomboid 3 and the Spitz–EGFR path-
way and by inhibition of either the EGF ligand or EGFR [29].
Cardiac-specific activation of EGFR, Ras, or Raf in
Drosophila causes cardiac hypertrophy with decreased heart
chamber lumen and enlarged cardio myocytes, but without
changes of cardiomyocyte cell numbers. In Drosophila,

enlarged cardiac chambers may result from addition of sarco-
meres. Enlarged myocytes may be associated with the addi-
tion of parallel sarcomeres or increased myofibers [30]. EGF
signaling, then, is evolutionarily conserved from flies to mam-
mals and its accuracy is required for maintenance of adult
heart function.

Heart failure associated with stress resistance

Oxidative stress contributes to the pathogenesis of age-
related heart failure in the fly, associated with decreased
stress resistance [9].

The degeneration driven by oxidation is counterbalanced by
several pathways involved in repair of oxidative damage and
redox balance. The Nrf2 (nuclear factor E2-related factor 2)
pathway is important in this regard. In the mouse, the Nrf2
pathway is associatedwith repair of damage from inflammatory
and autoimmune conditions, neurodegeneration, cancer, and
other causes [31]. The Nrf2 pathway is an evolutionarily con-
served regulator of longevity from invertebrates to mammals.
The activation of Nrf2 signaling extends lifespan in many ani-
mal models including Drosophila and Caenorhabditis elegans
[32]. However, the molecular mechanisms of its anti-aging
function are not clear.

MafS (Drosophila small Maf protein), a dimerization
partner of Nrf2, is the key component in the Nrf2 stress
response. With increasing age, the ability to activate Nrf2
targets for stress resistance progressively declines in
Drosophila. In aged flies, MafS overexpression protects
the heart by preserving the accuracy of Nrf2 signaling
[33]. Nrf2 anti-aging function declines in other animals
as well, including Macaca mulatta [34].

Many studies have addressed the regulatory mechanism
involved in oxidative stress. Classically, research into the ef-
fects of reactive oxygen species (ROS) focused on cell-
autonomous signaling [35]. ROS also act as paracrine signal-
ing mediators of the injury response by diffusing into nearby
cells. Paracrine interactions between myocytes and non-
myocytes are known to be important for normal myocardium
development and function but underlying mechanisms are not
well defined [36]. Recent studies suggest that ROS can medi-
ate paracrine interactions in the fly heart under physiological
conditions, with ROS generated by pericardial cells regulating
myocardial function [37]. Surprisingly, this occurs not
through direct intercellular signaling by ROS but indirectly
through D-MKK3-D-p38 signaling in pericardial cells by
ROS-induced activation, which influences myocardial func-
tion via cell–cell communication [36]. Anti-oxidant treatment
studies to address aging in mammals have very mixed results.
It is therefore not yet clear if this represents a viable treatment
strategy to combat heart failure.
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Canonical Wnt signaling and heart failure

The Wnt signaling pathway is an evolutionarily conserved
signaling cascade that plays essential roles in embryonic de-
velopment including heart development [38]. Wnt signaling is
also important in adult, stem cell regulation, skeletal muscle
regeneration, and cancer progression [39, 40], and recent stud-
ies indicated that Wnt signaling may be a novel target for
treatment of heart failure. In mice, Wnt/β-catenin signaling
contributes to heart failure, characterized by skeletal muscle
myopathy, through direct interaction with FOXO. Also, acti-
vation of Wnt signaling contributes to fiber type shift toward
fatigable fiber in chronic heart failure [41]. In a murine model
of myocardial infarction, increased canonical Wnt signaling
ameliorates fibrosis and cardiac dysfunction through elevated
heme oxygenase-1, adiponectin, and increased angiogenesis
[42]. Furthermore, Dickkopf-3 (DKK3), a modulator of Wnt
signaling, promotes cardiac protection by interrupting the
ASK1-JNK/p38 signaling cascade in mice [43]. Taken togeth-
er, these results show that novel therapeutic targets for curing
heart failure might be found in the Wnt signaling pathway. In
Drosophila, a body of evidence suggests that Wnt signaling
may be less important for adult heart function.

In the fly, pygo is essential for maintaining the structure and
function of the adult heart but functions independently of Wnt
signaling [44, 45]. Cardiac-specific knockdown of pygo dras-
tically compromised heart function and structure, but, knock-
down of other canonical Wnt signaling components, such as
arm/β-Cat or pan/TCF, caused only mild cardiac defects.
Also, pygomutants fail to show significant genetic interaction
with Wnt signaling components. Pygo was also shown to be
independent of Wnt signaling in lens development [46] and
human cancer [47]. Pygo may be associated with histone
modification. It was reported that pygo could interact with
Lgs to form a Pygo-BCL9/Lgs-H3K4me complex to regulate
Wnt targets [48, 49], and Pygo also combined with theWDR5
core component of H3K4 histone methyl transferase (HMT)
[50], suggesting pygo involvement in epigenetic modifica-
tions that regulate cardiac function.

Cytoskeletal remodeling and heart failure

The cortical cytoskeleton in cardiomyocytes which couples
sarcomere to the membrane at cell–matrix and cell–cell junc-
tions and translates sarcomeric contraction into cell shortening
undergoes remodeling in aging and during heart failure [51].
The sarcomere is the fundamental unit of muscle, consisting
mainly of cytoskeletal proteins. In addition, sarcomeric myo-
sin heavy chain (Mhc), troponin T, sarcoglycan, dystrophin,
and integrin are critical for normal muscle function. The cy-
toskeleton is subject to turnover throughout the lifespan in
Drosophila. Screening for cytoskeletal and associated proteins

in Drosophila revealed 46 genes needed for muscle function,
many not previously reported [52].

Integrins are transmembrane receptors that mediate adhe-
sion between the cell and its external environment (such as the
extracellular matrix, ECM). Activation of integrins has an
effect on cytoskeletal remodeling [53]. There are also reports
that integrin-linked kinase( Ilk) promotes senescence of cardi-
ac cells in the rat. Overexpressing Ilk specifically in cardiac
fibroblasts caused cell senescence, while inhibiting Ilk ame-
liorated senescence-related phenomena [54]. However, other
studies came to the opposite conclusion, with Ilk playing a
protective role and inhibited Ilk inducing serious cardiac de-
fects sufficient to cause a sudden death [55]. In Drosophila,
Ilk/integrin was shown to play dual roles in modulating car-
diac aging [56], such that overexpression or severe inhibition
of Ilk/integrin signaling in young flies caused an accelerated
cardiac-aging phenotype, while moderate reduction ameliorat-
ed the phenotype. Thus, results from the fly model can con-
firm the observations from mammalian studies and together
show Ilk/integrin signaling important for normal longevity
and heart function.

Integrin signaling was reportedly regulated by con-
served vertebrate proteins called kindlins [57]. Kindlin-2
was suggested to play a role in the development of cardiac
syncytium [58] and this was confirmed in Drosophila.
There are two orthologues of vertebrate kindlin-2 in
Drosophila, Fermitin1 and Fermitin2, and silencing both
them can cause heart failure due to the inability of
cardiomyocytes to form a functional syncytium [59].
Kindlin-2 is structurally and functionally conserved from
invertebrates to vertebrates, essential for maintenance of
heart function through regulation of integrin signaling.

The integrin-like protein vinculin is reportedly associated
with heart failure in humans, and carriers of vinculin missense
mutation are more sensitive to HF [60]. In Drosophila,
cardiac-specific vinculin overexpression was associated with
increased myocardial shortening velocity, 150% longer medi-
an life span, and partial rescue of cardiac deficiency due to
cardiac myosin heavy chain knockdown. These observations
suggest that vinculin reinforces the myocardial cytoskeleton
and positively influences contractility and prolongs life.
Kaushik et al. also showed that age-related increase in vincu-
lin is conserved across humans, rhesus monkeys, rats, mice,
and Drosophila [61].

Statin mechanisms in the Drosophila heart

Statins, such as simvastatin, are a mainstay of cardiovascular
disease therapy. Molecular mechanisms are well described,
including protein prenylation [62]. InDrosophila, simvastatin
can protect adult cardiac function, significantly prolong life,
reduce arrhythmia, and increase contractility. These functions
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appear to be associated with down-regulation of protein
prenylation, rather than changes in juvenile hormone or
ubiquin levels [63]. Moreover, isoprenoid synthesis inhibitors
increased Drosophila lifespan. In mice, simvastatin down-
regulated Ras GTPase prenylation leading to weaker mem-
brane association. Overall, these results provide direct evi-
dence that statins protect cardiac function and prolong life
span by reducing protein prenylation.

CCR4-Not complex and chromatin remodeling

The CCR4-Not complex is evolutionarily highly conserved,
with roles in chromatin transcriptional activation, RNA
deadenylation, and microRNA-mediated mRNA degradation
[64–66]. A frequently occurring Not3 SNP is correlated with
abnormal cardiac QT intervals, which cause arrhythmias. In
Drosophila, recent studies confirm that RNAi-mediated si-
lencing of the CCR4-Not components Not3 and UBC4 in
adult flies induced myofibrillar disarray and dilated cardiomy-
opathy [67]. In mice, not3+/− heterozygotes exhibit spontane-
ous cardiac contractility defects and greater susceptibility to
heart failure [68]. A link to epigenetic chromatin remodeling
was suggested by reversal of these defects through inhibition
of HDACs.

Scox/Sco and apoptosis in cardiomyopathy

In humans, Sco1 and Sco2 gene mutations resulting in cy-
tochrome C oxidase (COX) deficiency are associated with
cardiomyopathy [69]. Drosophila has a single orthologue
of Sco1 and Sco2, called Scox. Heart-specific knockdown
of Scox induced dilated cardiomyopathy and reduced adult
fly lifespan. It was shown that p53-dependent apoptosis
was directly implicated in development of the fly cardio-
myopathy. In Sco2 knockout mice apoptosis is increased in
the muscle and liver, strongly implicating cell death in
COX deficiency-associated cardiomyopathy caused by
Sco gene mutations in humans [70].

Neurodegenerative disease and heart function

Epidemiological evidence reveals an association between HF
and neurodegenerative disease. The mechanisms by which cer-
tain genes may underlie this linkage have been studied in
Drosophila. Presenilin gene mutations lead to early-onset fa-
milial Alzheimer’s disease and can cause dilated cardiomyopa-
thy. In flies, either knockdown or overexpression of the
Drosophila orthologue of mammalian Presenilin (dPsn) in-
creased age-related cardiac arrhythmias and both myofibrillar
and mitochondrial degeneration [71]. Altering dPsn also

affected key calcium signaling genes such as inositol 1, 4, 5-
triphosphate receptor (dIP3R), dSERCA, and RyR gene [24].

Huntington’s disease (HD), caused by expanded Huntingtin
protein’s polyglutamine (PolyQ) repeats, is associated with
both cardiovascular events including heart failure and
amyloid-like inclusions, and heart failure causes high mortality
among HD patients [72, 73]. Research in the Drosophila heart
model provides insights into molecular mechanisms of HF in-
duced by amyloid protein. Both ROS stress response pathways
and amyloid protein unfolding can mediate the detrimental ef-
fects of PolyQ in the Drosophila heart [74].

One of the main pathologic processes associated with
Parkinson’s disease and cardiomyopathy is functional disor-
der of PTEN-inducible kinase 1 (PINK1), Parkin, which me-
diates mitophagic elimination of damaged or senescent mito-
chondria [75]. InDrosophila, knockout of Parkin and cardiac-
specific Parkin suppression both caused cardiomyopathy and
mitochondrial abnormalities. This was completely prevented
by suppressing cardiomyocyte mitochondrial fusion suggest-
ing a central role of mitochondrial fusion in the cardiomyop-
athy caused by impaired mitophagy [76].

Conclusion

Despite clear anatomical differences between the invertebrate
and vertebrate hearts, many key processes and regulatory
mechanisms driving cardiac development and function are
evolutionarily conserved from Drosophila to humans. Thus,
the fly heart can be used to model HF mechanisms.

Abnormal ion channels contribute to heart failure, and inhi-
bition of CaMKII reduced spontaneous heart rate and increased
the incidence of asystole. Copper (Cu) is required in cardiac
tissue mitochondrial oxidative phosphorylation to provide en-
ergy for cardiac contraction. K+ channels are conserved in reg-
ulating heart rate and rhythm in bothDrosophila andmammals.
The strong conservation of energy metabolism including IGF
and dTOR signaling extends to the regulation of obesity, as well
as effects on adult cardiac function. Furthermore, the interac-
tions between IGF and dTOR signaling were discovered in
Drosophila. Cardiac ROS, increased by a high-calorie diet, also
plays an important role in HF.Drosophila studies have revealed
distinctions in Wnt signaling pathway contributions to adult
heart function, suggesting the emergence of epigenetic mecha-
nisms of target gene activation. Statins prolong lifespan and
protect adult cardiac function by reducing protein prenylation.
The study of heart failure may also contribute to understanding
of molecular mechanisms of neurodegenerative diseases.

From the standpoint of advancing therapeutic interventions
to treat HF, Drosophila is the model platform par excellence
for the design and conduct of whole animal, in vivo screening
approaches to identify small molecules targeting key genes,
proteins, and pathways in the development of heart disease.
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