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activated PBNK (P =  0.002). Equally superior cytotoxic-
ity over activated PBNK alone was achieved by UCB-NK 
(P  <  0.001). Both PBNK- and UCB-NK-mediated cyto-
toxic activity was dependent on the NK-activating recep-
tors natural killer group 2, member D receptor (NKG2D) 
and DNAX accessory molecule-1 (DNAM-1) (P  <  0.05) 
and unrelated to expression levels of the inhibitory recep-
tors HLA-E and/or HLA-G. Most strikingly, whereas the 
PBNK’s cytotoxic activity was inversely correlated with 
HLA-ABC levels (P =  0.036), PBNK + CET and UCB-
NK cytotoxicity were entirely independent of HLA-ABC 
expression. In conclusion, this study provides a rationale to 
initiate a clinical trial for cervical cancer with adoptively 
transferred allogeneic NK cells, employing either UCB-NK 
or PBNK +  CET for EGFR-expressing tumors. Adoptive 
transfer of UCB-NK might serve as a generally applicable 
treatment for cervical cancer, enabled by HLA-, histology- 
and HPV-independent killing mechanisms.
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Abstract  Down-regulation of HLA in tumor cells, low 
numbers and dysfunctionality of NK cells are commonly 
observed in patients with end-stage cervical cancer. Adop-
tive transfer of high numbers of cytotoxic NK cells might 
be a promising treatment approach in this setting. Here, we 
explored the cytotoxic efficacy on ten cervical cancer cell 
lines of activated allogeneic NK cells from two sources, 
i.e., peripheral blood (PBNK) with and without cetuxi-
mab (CET), a tumor-specific monoclonal antibody directed 
against EGFR, or derived from umbilical cord blood (UCB-
NK). Whereas CET monotherapy was ineffective against 
the panel of cervical cancer cell lines, irrespective of their 
EGFR expression levels and despite their RASwt status, it 
significantly enhanced the in  vitro cytotoxic efficacy of 
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PBNK	� Peripheral blood natural killer cells
PVR	� Polio virus receptor
UCB-NK	� Umbilical cord blood natural killer cells
ULBP	� UL16 binding proteins
VU	� Vrije Universiteit

Introduction

Persistent infection of the cervical epithelium by high-risk 
HPV can lead to cervical intraepithelial neoplasia which 
may progress to invasive cervical cancer, such as squamous 
cell carcinoma, adenosquamous cell carcinoma or adeno-
carcinoma [1–3].

Treatment for cervical cancer includes conventional 
surgery, chemotherapy and/or radiation. In addition, in 
advanced (metastatic) disease, targeted therapies are widely 
explored. Unfortunately, targeted intervention strategies 
using small molecules, angiogenesis inhibitors and mono-
clonal antibodies directed against specific tumor antigens 
and proliferation pathways have had limited success in 
restricting cervical tumor growth so far [4, 5]. In cervical 
cancer, EGFR is variably expressed in 80 % of the tumor 
tissues [6]. Overexpression of EGFR has been associated 
with poor prognosis in cervical cancer, making EGFR an 
obvious candidate for therapeutic targeting [7, 8]. How-
ever, treatment with cetuximab (CET) (chimeric IgG1, anti-
EGFR mAb) as monotherapy or CET in combination with 
chemotherapy was ineffective in patients with cervical can-
cer, in spite of the apparent absence of activating mutations 
in the EGFR pathway [9, 10].

Immunotherapy of cervical cancer has been clinically 
explored with limited success. Efforts so far have mostly 
focused on vaccination approaches against HPV-derived 
oncogenes (E6 and E7) to trigger an efficacious antitu-
mor T cell response [11]. Failure to improve clinical out-
come may at least in part be due to extensive HLA down-
regulation commonly observed in cervical cancer [12, 13] 
(Heeren et  al. 2015, submitted). In these cases, NK cell-
based therapies may prove more effective than T cell-based 
approaches. Indeed, the role of the innate immune response 
in host defense and viral clearance during (early) infection 
is well recognized [14]. NK cells are potent in exerting 
rapid cytotoxicity by releasing cytotoxic granzyme B and 
perforin in order to lyse virus-infected cells and tumor cell 
targets. Functional activity of NK cells is regulated by an 
equilibrium between inhibitory (e.g., CD94/NKG2A) and 
activating (e.g., CD16, DNAM-1, CD94/NKG2C, CD94/
NKG2D) receptors [15, 16].

Infiltrating NK cells are observed in low-grade and 
high-grade cervical intraepithelial neoplasia lesions and to 
a lesser extent in cervical carcinoma [13, 17–20]. In vitro 

studies have shown that peripheral blood NK cells (PBNK) 
are able to kill HPV-infected cell lines [18, 20, 21]. How-
ever, NK cells are often dysfunctional and low in number 
in cervical cancer patients and thereby unable to mount 
efficient cytotoxicity against tumors [22, 23]. NK cyto-
toxic function is also counteracted by several cervical 
tumor escape mechanisms, including low expression of 
activating NK cell receptor ligands (e.g., MICA/B, ULBPs, 
Nectin, PVR) and aberrant expression of suppressive non-
classical HLA molecules (e.g., HLA-E and -G) by tumor 
cells [18, 24–26] (Heeren et al. 2016, submitted). Ex vivo 
expanded autologous NK cells, adoptively transferred for 
the treatment of solid tumors, in most studies have yielded 
disappointing results, underscoring the dire need for the 
development of more powerful therapeutic approaches to 
overcome tumor-associated NK cell dysfunctionality and 
the inherent resistance to cytolysis of cancer cells. Clinical 
studies exploring the use of ex  vivo expanded allogeneic 
PBNK from healthy donors also yielded low antitumor effi-
cacy [27, 28], which may have been due to their limitations 
in terms of cell yield, purity, ability to expand in vivo and 
cytotoxic capacity [29].

An attractive alternative approach would be the use of 
umbilical cord blood CD34+ stem cell-derived NK cells 
(UCB-NK), which are feeder cell-free cultures that can be 
differentiated and efficiently expanded up to 10,000-fold, 
resulting in a highly pure product with a high cytolytic 
capacity [30]. Yet another alternative might be to enhance 
PBNK cell-mediated cytolysis of cervical tumor cells by 
the tumor-targeted IgG1 monoclonal antibody CET, to 
invoke antibody-dependent cell-mediated cytotoxicity 
(ADCC) [31].

In this comparative study, we explored the antitumor 
efficacy of two clinically applicable therapeutic strategies, 
i.e., UCB-NK versus allogeneic PBNK  +  CET, for cer-
vical cancer. Of note, the combination with CET is not a 
viable option for UCB-NK as in vitro they do not express 
sufficient levels of the required Fc receptor CD16 to obtain 
functional benefit [32] (Veluchamy et  al., manuscript in 
preparation). A series of in  vitro NK cytotoxicity assays 
was conducted to compare antitumor potency of PBNK 
from healthy volunteers, with or without co-incubation 
with CET with that of umbilical cord blood-derived NK 
cell (UCB-NK) monotherapy against various cervical can-
cer cell lines. These cell lines (n = 10) were stratified based 
on infection with different HPV types, histological origins 
and differential expression levels of NK-activating and 
inhibitory ligands. The findings from this preclinical study 
strongly support the use of allogeneic UCB-NK derived 
from umbilical cord precursor cells and outline the advan-
tages of their use as monotherapy in the treatment of cervi-
cal cancer.
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Materials and methods

Cell lines

Cervical cancer cell lines CSCC7, CC8, CC10A, CC10B, 
CC11A and CC11B were generated in the Department of 
Pathology of Leiden University Medical Center (The Neth-
erlands) from primary tumors as described previously [33]. 
These patient-derived cell lines as well as commercially 
obtained cervical cancer-derived cell lines, HeLa, SiHa, 
CaSki and C33A (American Type Culture Collection) were 
maintained in DMEM (Lonza) medium containing 4.5 g/L 
glucose, 10  % FCS (Hyclone), 10  µg/mL gentamicin and 
0.25  µg/mL amphotericin B (Gibco), 100 units penicil-
lin/100 units streptomycin/0.3 mg/mL glutamine (Thermo 
Fisher Scientific). Cell cultures were maintained at 37 °C in 
a humidified atmosphere containing 5 % CO2. See Table 1 
for cell line characteristics.

Phenotyping of cervical cancer cell lines

To phenotype cervical cancer cell lines, cell suspensions 
in PBS supplemented with 0.1 % BSA and 0.02 % NaN3 
(FACS buffer) were stained for 30 min at 4 °C using anti-
bodies to HLA-ABC (clone w6/32, Immunotools) (labeled 
with FITC), HLA-E (clone 3D12HLA-E, eBioscience), 
HLA-G (clone 87G, Biolegend), EGFR (clone EGFR.1, BD 
Biosciences), PVR (clone SK11.4, Biolegend), MICA/B 
(clone 6D4, Biolegend), ULBP2/5/6 (clone #165903, R&D 
systems), ULBP1 (clone #170818, R&D systems) and 
ULBP3 (clone #166510, R&D systems) (all labeled with 
PE). IgG1, IgG2a and IgG2b isotype antibodies were used as 
negative controls. After incubation, the cells were washed 

with FACS buffer and analyzed using a flow cytometer 
LSR Fortessa (BD Biosciences). Phenotypic analyses 
were obtained from at least two independent experiments 
performed on each cell line. Data were analyzed using 
Kaluza software (Beckman coulter) and calculated as spe-
cific (geometric) mean fluorescence intensity (MFI) (MFI; 
geometric mean fluorescence of marker − geometric mean 
fluorescence of isotype).

RAS typing

RAS status was obtained from rational molecular assess-
ments and innovative drugs selection (RAIDs) project 
data (http://www.raids-fp7.eu/project-overview.html) and 
www.lgcstandards-atcc.org for cell lines HeLa, SiHa, 
CaSki, C33A, CSCC7, CC10A and CC10B. In addition, 
full RAS typing (i.e., BRAF exon 15, KRAS exon 2–4 and 
NRAS exon 2–4) was performed for cell lines CC8, CC11A 
and CC11B at the molecular pathology lab of the Depart-
ment of Pathology of the VU University Medical Center 
(Amsterdam, The Netherlands) using high-resolution melt-
ing assay followed by Sanger sequencing of using high-res-
olution melting PCR products with an aberrant melt curve, 
essentially as described previously [34, 35].

PBMC isolation and NK cell isolation

Whole blood samples from four healthy volunteers were 
collected. PBMC were isolated using Lymphoprep™ 
(STEMCELL Technologies, The Netherlands) density 
gradient centrifugation. CD56+ NK cells were isolated 
from PBMC using a MACS® Human NK cell isolation kit 
(Miltenyi Biotech, Bergisch Gladbach, Germany) accord-
ing to the manufacturer’s instructions. The cell number 
and purity of the isolated PBNK was analyzed by flow 
cytometry. Isolated NK cells were activated overnight with 
1000 U/mL IL-2 (Proleukin®; Chiron, München, Germany) 
and 10 ng/mL IL-15 (CellGenix) before use in cytotoxic-
ity assays. NK cell purity and viability were checked by 
flow cytometry using the following antibodies: 7-aminoac-
tinomycin D (7AAD; Sigma-Aldrich), CD3 (labeled with 
VioBlue), CD56 (labeled with APC-Vio770) and CD16 
(labeled with APC) (all from Miltenyi Biotech). Purity of 
NK cells obtained from NK donors was 87 ±  6  %. For 
cytotoxicity assays, only PBNK with CD16 expression 
rates exceeding 80 % were used.

UCB‑NK isolation and cultures

Allogeneic NK cells were generated from cryopreserved 
umbilical cord blood hematopoietic stem cells as previ-
ously described [36]. CD34+ UCB cells (3  ×  105  mL) 
were plated into 12-well tissue culture plates (Corning 

Table 1   Cell line characteristics

AC adenocarcinoma, SCC squamous cell carcinoma, ASC adenosqua-
mous carcinoma
a  Characteristics adapted from www.lgcstandards-atcc.org and [33]
b  RAS status obtained from www.lgcstandards-atcc.org and RAS typ-
ing performed by the RAIDs FP7 Consortium and in own institute

Cell line Histologya HPV typea RAS statusb

HeLa AC 18 Wild type

SiHa SCC 16 Wild type

CaSki Epidermoid 16 Wild type

C33A SCC Negative Wild type

CSCC7 SCC 16 Wild type

CC8 ASC 45 Wild type

CC10A AC 45 Wild type

CC10B AC 45 Wild type

CC11A AC 67 Wild type

CC11B SCC 67 Wild type

http://www.raids-fp7.eu/project-overview.html
http://www.lgcstandards-atcc.org
http://www.lgcstandards-atcc.org
http://www.lgcstandards-atcc.org
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Incorporated, Corning, NY) in Glycostem Basal Growth 
Medium (GBGM®) (Clear Cell Technologies, Beernem, 
Belgium) supplemented with 10 % human serum (Sanquin 
Bloodbank, The Netherlands), 25  ng/mL of SCF, Flt-3L, 
TPO and IL-7 (CellGenix, Germany). In the expansion 
phase II, from day 9 to 14, TPO was replaced with 20 ng/
mL IL-15 (CellGenix). During the first 14  days of cul-
ture, low molecular weight heparin (LMWH) (Clivarin®; 
Abbott, Wiesbaden, Germany) in a final concentration of 
20  µg/mL and a low-dose cytokine cocktail consisting of 
10  pg/mL GM-CSF (Neupogen), 250  pg/mL G-CSF and 
50  pg/mL IL-6 (CellGenix) were added to the expansion 
cultures. Cells were refreshed with new medium twice a 
week and maintained at 37 °C, 5 % CO2. On day 14, the 
NK cell differentiation process was initiated by addition 
of NK cell differentiation medium consisting of the same 
basal medium with 2 % human serum but with high-dose 
cytokine cocktail consisting of 20  ng/mL of IL-7, SCF, 
IL-15 (CellGenix) and 1000 U/mL IL-2 (Proleukin®; Chi-
ron, München, Germany). Cultures were refreshed every 
2–3  days and maintained till day 35. For cytotoxicity 
assays, UCB-NK was used with CD56+ cells >85 % purity.

In vitro NK cytotoxicity assays

Cervical cancer cell lines (target cells) were labeled with 
5  µM pacific blue succinimidyl ester (PBSE; Molecular 
Probes Europe, Leiden, The Netherlands) in a concentra-
tion of 1 × 107 cells/mL for 15 min at 37 °C. After incu-
bation, cells were washed and resuspended in DMEM 
culture medium to a final concentration of 1 ×  106  mL. 
PBNK and UCB-NK were washed with PBS and also 
resuspended in GBGM medium to a final concentration of 
1 × 106 mL. Target cells were co-cultured in triplicate with 
effector cells (PBNK or UCB-NK), with or without 5 µg/
mL CET at an E:T ratio of 1:1 in a total volume of 100 µL 
in FACs tubes (5 ×  104 targets in 50  µL of DMEM cul-
ture medium incubated with 5 × 104 effectors in 50 µL of 
GBGM medium). PBNK, UCB-NK and target cells alone 
were cultured in triplicate as controls. To measure degranu-
lation by PBNK and UCB-NK, anti-CD107a PE (Miltenyi 
Biotech, Germany) was added at the beginning of the assay. 
After incubation for 4 h at 37 °C, cells were harvested and 
stained with 7AAD, CD56 (labeled with APC-Vio770) 
and CD16 (labeled with APC) (all from Miltenyi Biotech, 
Germany). For NK flow cytometry and blocking experi-
ments, NKG2D PE (clone ON72, Beckman Coulter) and 
DNAM-1 FITC (clone DX11, BD Pharmingen™) were 
used at 10  µg/mL. Further, killer-cell immunoglobulin-
like receptor 2D (PanKIR2D), FITC (clone NKVFS1) and 
CD94/NKG2A PE-Vio770 (clone REA110) (both from 
Miltenyi Biotech) were used to screen inhibitory receptor 
expression on PBNK and UCB-NK. BD LSR Fortessa™ 

was used for readout of the cytotoxicity assays. Data were 
analyzed using Kaluza software (Beckman coulter). Per-
centages of specific NK degranulation were calculated as 
∆CD107a+ NK cells [i.e., (target cells + NK cells) – (NK 
cells only)] and percentages of cytotoxicity as ∆7AAD+ 
target cells [i.e., (target cells +  NK cells)  –  (target cells 
only)]. See Supplementary Figure  1 for a representative 
gating example.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
software. Statistical significance of differences between 
conditions were determined using a parametric paired t 
test, unpaired t test or a one-way ANOVA with Bonferro-
ni’s multiple comparison test and a two-way ANOVA with 
multiple comparisons between column means. Correlation 
analyses between percentages NK degranulation, cytotox-
icity and MFI were performed using Pearson’s analysis. A 
P value of <0.05 was considered statistically significant.

Results

Comparative analysis of NK cell cytotoxic activity 
against cervical cancer cell lines

Initially, we compared the antitumor potency of healthy 
activated PBNK in the presence or absence of CET. Ten 
cervical cancer cell lines (EGFR-expressing except for 
C33A, and all RASwt; Table  1) were subjected to PBNK 
only, CET only, or to a combination of PBNK with CET 
in order to examine ADCC effects. In line with previous 
studies, CET as monotherapy did not induce cell death 
in any of the cell lines tested (data not shown). However, 
cervical cancer cell lines were sensitive in varying degrees 
to PBNK-induced cell lysis (Fig. 1a), independent of their 
EGFR expression levels (Fig.  1b), with consistently and 
significantly higher cytotoxicity rates when coated with 
CET (P  =  0.002) (Fig.  1c). C33A (EGFR-negative cell 
line) was the only cell line that did not display a higher 
cytotoxicity rate when PBNK were combined with CET 
(Fig. 1a–c).

Next, activated PBNK were compared with UCB-NK for 
their ability to induce target cell death. UCB-NK was sig-
nificantly more cytotoxic than PBNK, consistently induc-
ing higher rates of tumor cell death in all tested cell lines 
(P < 0.001) (Fig. 2a, b). Note that the PBNK cytotoxicity 
data presented in Fig. 2a are the same as those in Fig. 1a. 
The cytotoxicity levels were similar for UCB-NK and 
PBNK +  CET (Figs.  1a, 2a). This was further borne out 
by observed degranulation levels of NK cells in response to 
exposure to the cervical cancer cell lines, as measured by 
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CD107a surface expression. These were comparably and 
significantly elevated in the PBNK + CET and UCB-NK 
conditions over PBNK alone (Fig. 2c, Supplementary Fig-
ure 2). UCB-NK were not tested in combination with CET 
due to their low surface expression of CD16a, which is 
essential for ADCC in combination with therapeutic mAbs 
(data not shown). Interestingly, PBNK degranulation levels 
were low in combination with CET upon exposure to cervi-
cal cancer cell lines expressing low levels of EGFR (C33a, 
HeLa and SiHa: denoted in Fig.  2c by triangles). In con-
trast, degranulation levels in UCB-NK were generally high. 
PBNK, PBNK  +  CET and UCB-NK cytotoxicity levels 

per histological subtype and HPV type of cervical cancer 
cell lines are shown in Supplementary Figure  3. It shows 
that irrespective of HPV or histological tumor type, highest 
cytotoxicity was consistently achieved by UCB-NK.

Expression of NK‑activating receptors and their ligands 
and their contribution to mediating cytotoxicity

To investigate the involvement of activating receptors in 
mediating the cytotoxic activity of PBNK and UCB-NK, 
the expression of the two major NK-activating recep-
tors DNAM-1 and NKG2D on the NK cells described to 
be involved in the recognition of cervical cancer cells, and 
their respective ligands, i.e., PVR and MICA/B, ULBPs, 

Fig. 1   PBNK cytotoxicity against cervical cancer cells alone and in 
combination with CET. a Cytotoxicity levels (Δ7AAD) of activated 
PBNK (open bars) and PBNK  +  cetuximab (CET) (closed bars) 
against ten cervical cancer cell lines, b arranged in order of EGFR 
expression level. Bars are means of triplicate values from four experi-
ments with four different PBNK  donors for C33A, HeLa, SiHa, 
CC11B, CC11A, CC10B, CC10A, CaSki and two experiments with 
two different PBNK  donors for CSCC7 and CC8. Bars represent 
mean ±  SEM. c Significantly higher cytotoxicity levels (Δ7AAD) 
were observed in all cell lines after co-culture with PBNK +  CET 
compared to PBNK, except for C33A (open circle). *P  <  0.05 and 
**P < 0.01 calculated with paired t test

Fig. 2   PBNK and UCB-NK cytotoxicity against cervical cancer 
cells. a Cytotoxicity levels (Δ7AAD) of PBNK (open bars) and 
UCB-NK (hatched bars) against ten cervical cancer cell lines. Bars 
are means of triplicate values from four experiments with four dif-
ferent PBNK donors for C33A, HeLa, SiHa, CC11B, CC11A, 
CC10B, CC10A, CaSki and two experiments with two different 
PBNK  donors for CSCC7 and CC8 and five experiments for UCB-
NK using five different UCB-NK donors for all cell lines; Bars rep-
resent mean ± SEM. PBNK data used to compare with UCB-NK in 
a are the same dataset as Fig.  1a. b Significantly higher cytotoxic-
ity levels (Δ7AAD) were observed in all cell lines after co-culture 
with UCB-NK compared to PBNK. c Significantly higher levels of 
NK degranulation (ΔCD107a) in PBNK  +  cetuximab (CET) and 
UCB-NK conditions compared to PBNK only condition. Triangles 
denote cell lines with low EGFR levels, i.e., C33A, HeLa and SiHa. 
*P < 0.05, **P < 0.01 and ***P < 0.001 calculated in A and B with 
unpaired t test, in C with one-way ANOVA, Bonferroni’s multiple 
comparison test



56	 Cancer Immunol Immunother (2017) 66:51–61

1 3



57Cancer Immunol Immunother (2017) 66:51–61	

1 3

on the tested cervical cancer cell lines, were assessed. 
Similarly, high levels of DNAM-1 and NKG2D were 
observed on both PBNK and UCB-NK (Fig. 3a). The cell 
lines showed differential expression of the NK-activat-
ing ligands, but all were positive for PVR, the DNAM-1 
ligand, and at least one of the NKG2D ligands (Fig.  3b). 
From the panel of cell lines, SiHa (with highest expression 
levels of PVR and ULBP-2/5/6) and C33A (with lowest 
expression levels of PVR and ULBP-2/5/6) were selected 
as target cells in functional blocking studies. The relatively 
low ligand expression levels on C33A required combined 
blocking of DNAM-1 and NKG2D to achieve a significant 
reduction in either PBNK- or UCB-NK-mediated cytotox-
icity (Fig.  3b). In contrast, blocking either DNAM-1 or 
NKG2D already led to significant reductions of cytotoxic-
ity in SiHa cells (Fig. 3c). These data show dependence (at 
least in part) of both PBNK and UCB-NK on DNAM-1 and 
NKG2D for their cytotoxic potency.

Differential expression of NK inhibitory receptors 
and their ligands in relation to level of cytolysis

To investigate the effect of NK inhibitory receptors on 
the observed cytotoxic efficacy, the expression levels of 
KIR2D and NKG2A on the NK cells, and of their respec-
tive ligands, i.e., HLA-ABC/-G and HLA-E [37], on the 
cervical cancer cell lines, were assessed (Fig. 4a, b). Irre-
spective of overnight activation with IL-2/IL-15, PBNK 
expressed high levels of both KIR2D and NKG2A, whereas 
UCB-NK only expressed equivalent levels of NKG2A, but 
no KIR2D. All classical and non-classical HLA molecules 
were expressed on all ten cervical cancer cell lines, but 
in widely varying degrees (Fig.  4b). Correlation analyses 
showed a relationship only between HLA-ABC expression 
levels and levels of cytotoxicity achieved by PBNK, with 

lower HLA-ABC levels allowing for higher levels of cyto-
toxicity (P =  0.036, Fig.  4c). In contrast, PBNK +  CET 
(Fig. 4d) and UCB-NK cytotoxicity were totally independ-
ent of HLA-ABC expression levels (Fig.  4e). No other 
correlations were found between cytotoxicity levels and 
HLA-E or HLA-G expression levels on cervical cancer cell 
lines (data not shown).

Discussion

Cervical cancer is the fourth most common malignancy in 
women worldwide. Survival is severely reduced in case of 
lymph node metastasis, with no curative treatment options 
available. In cervical cancer, ACT involving T cell or NK 
cell-based therapies has not yet been widely explored, but 
they have been successfully applied in the treatment of 
various other cancer types [38–40]. In one clinical trial, 
adoptive transfer of tumor-infiltrating T cells in metastatic 
cervical cancer resulted in tumor responses in 3/9 patients 
with complete remission in 2/9 patients [41]. These find-
ings suggest that ACT could be a viable treatment option for 
some patients with cervical cancer. However, most cervi-
cal tumors have HLA class I alterations and will therefore 
not respond completely to T cell-based therapies [13, 42] 
(Heeren et al., submitted). NK cell-based therapies present a 
viable alternative in that case, but in advanced cervical can-
cer, these effector cells are often impaired in their function-
ality [23, 24]. In this study, we therefore explored the pos-
sible therapeutic efficacy of allogeneic NK cells. Clinically 
applicable NK cells may be derived from two sources, i.e., 
NK cells derived from peripheral blood and NK cells cul-
tured and expanded from umbilical cord blood stem cells. 
We tested their cytotoxic efficacy (with and without CET 
for PBNK) on ten cervical cancer cell lines representing dif-
ferent histological subtypes, HPV types and expressing dif-
ferential levels of NK-activating and inhibitory ligands.

Initially, we investigated the effect of PBNK alone and 
a combination of PBNK with CET on the cervical can-
cer cell lines. From the literature, it is known that cervi-
cal tumors often present with variable levels of EGFR [6, 
8]. In colorectal cancers, mutant KRAS is associated with 
resistance to CET [43]. Although most of the cervical can-
cer cell lines were EGFR positive and all were RASwt, their 
EGFR expression levels were relatively low, and, in keep-
ing with clinical observations for cervical cancer, they did 
not respond to CET as a single agent [9, 10, 44]. Our obser-
vation of increased PBNK cytotoxicity upon combination 
with CET is in line with a report by Meira et al. [45] who 
showed that one of the antitumor effector mechanisms upon 
combined CET and chemoradiation actually was ADCC.

Next, we compared the functionality of PBNK with that 
of ex  vivo generated UCB-NK derived from cord blood 

Fig. 3   NK-activating receptors in PBNK and UCB-NK and their 
ligand expression in cervical cancer cell lines and their  influence 
on NK cytotoxicity. a Percentage of positive cells within the NK cell 
population for NK-activating receptors DNAM-1 and NKG2D for 
PBNK only, PBNK stimulated with cytokines (IL-2  +  IL-15) and 
UCB-NK only were determined by flow cytometry. The data pre-
sented is from three representative donors for PBNK and UCB-NK. 
PBNK only are denoted by open circles, PBNK (IL-2 +  IL-15) are 
denoted by closed circles and UCB-NK only by closed squares. b 
Representative example of histograms showing geometric mean flu-
orescence intensity (MFI) for NK-activating ligands PVR (ligand of 
DNAM-1 receptor), MICA/B and ULBP1, −3 and −2/5/6 (ligands 
of NKG2D receptor). c PBNK and UCB-NK were coated with 
NKG2D and/or DNAM-1 blocking antibodies and incubated with 
C33A and SiHa cells. Cytotoxicity levels (Δ7AAD) were measured 
from 7AAD + C33A and SiHa cells at the end of a 4 h assay. Data 
presented are means of triplicate values from three different PBNK 
and three different UCB-NK donors; Bars represent mean ±  SEM. 
*P < 0.05 and **P < 0.01 calculated with paired, two-way ANOVA 
multiple comparisons of column means

◂
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Fig. 4   Effects of NK inhibi-
tory ligands on NK cytotoxicity 
against cervical cancer cells. 
a Percentage of positive cells 
within the NK cell population 
for NK inhibitory receptors 
KIR2D and CD94/NKG2A for 
PBNK only, PBNK stimulated 
with cytokines (IL-2 + IL-15) 
and UCB-NK only were 
determined by flow cytometry. 
The data presented is from three 
representative donors for PBNK 
and UCB-NK. PBNK only are 
denoted by open circles, PBNK 
(IL-2 + IL-15) are denoted by 
closed circles and UCB-NK by 
closed squares. b Representa-
tive histogram plots showing 
geometric mean fluorescence 
intensity (MFI) of NK inhibi-
tory ligands HLA-ABC, HLA-E 
and HLA-G on cervical cancer 
cells; representative plots of 2–3 
separate analyses are shown. 
Correlation analysis of MFI of 
HLA-ABC with % cytotoxic-
ity (Δ7AAD) by c PBNK, d 
PBNK + cetuximab(CET) 
and e UCB-NK. Dotted lines 
represent 95 % confidence 
interval of the regression line. 
Four experiments with four dif-
ferent PBNK donors for C33A, 
HeLa, SiHa, CC11B, CC11A, 
CC10B, CC10A, CaSki, two 
experiments with two different 
PBNK donors for CSCC7 and 
CC8 and five experiments with 
five different UCB-NK donors 
were used for this experiment. 
P value was calculated with 
Pearson’s analysis
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stem cells and showed that UCB-NK were significantly 
more cytotoxic than PBNK (Fig.  2). NK cytotoxicity and 
NK degranulation levels were equivalent for UCB-NK and 
PBNK  +  CET. Further study of the NK killing mecha-
nism revealed that the cytotoxic activity of both PBNK and 
UCB-NK was at least in part dependent on DNAM-1 and 
NKG2D receptors, as also previously reported for an NK 
cell line (NKL) and cytotoxicity it induced in the CaSki and 
SiHa cell lines [18]. This was in keeping with high expres-
sion levels of both NKG2D and DNAM-1 observed on both 
PBNK and UCB-NK. As complete abrogation of tumor 
cell killing was not achieved by combined blocking of 
DNAM-1 and NKG2D on activated PBNK and UCB-NK, 
other NK killing mechanisms such as NKp44/NKp44L, 
TRAIL (tumor necrosis factor-related apoptosis-inducing 
ligand) and FAS (Fas ligand interactions) also might con-
tribute to the observed target cell lysis [46, 47]. Indeed, 
NKp44 has been previously reported as highly expressed 
on expanded UCB-NK, in sharp contrast to PB-NK cells, 
which in the steady state do not express NKp44 [32]. The 
known ligands for NKp44 have mostly been associated 
with microbial responses, whereas the identity of cancer-
associated ligands until recently has remained mostly 
obscure. A ligand for NKp44 has now been identified on 
tumor cells, designated NKp44L, which opens the way for 
further exploration of the relative importance of this acti-
vating receptor axis in NK-mediated tumor cytolysis [48].

Interestingly, in the present study, we have shown the 
predominant effect of HLA class I expression on the 
functionality of PBNK. In contrast to PBNK, UCB-NK 
have the ability to overcome resistance to cytolysis due 
to HLA-ABC expression as demonstrated by the correla-
tive studies with all ten cell lines which revealed effi-
cient UCB-NK-mediated cytolysis of both HLA-ABC 
high- and low-expressing cell lines (Fig. 4c). A lack of 
expression of inhibitory KIRs on UCB-NK may provide 
a mechanistic explanation for their ability for HLA class 
I independent cytotoxicity. Indeed, whereas PBNK and 
UCB-NK expressed similar levels of NKG2A, inhibi-
tory KIRs, as measured by a panKIR2D antibody, were 
completely lacking from the UCB-NK cell surface. In 
keeping with this observation, we previously published 
the profiling of UCB-NK using an expanded panel of 
antibodies to inhibitory KIR, which revealed low expres-
sion levels of KIR2DL1/DS1, KIR2DL2/DL3/DS2 and 
KIR3DL1/DS1 as compared to PBNK [32]. Cervical 
tumors have been shown to also have aberrant non-clas-
sical HLA class I expression which might help them to 
escape from NK cell killing (Heeren et al. 2016, submit-
ted). Remarkably, in our hands, NK cytotoxicity was not 
impaired by higher levels of HLA-E or HLA-G expres-
sion. The apparent ability of UCB-NK to overcome 
the possible resistance related to expression of both 

inhibitory classical and non-classical HLA molecules 
may offer an excellent treatment modality for cervical 
cancer.

NK cells are often dysfunctional and low in number in 
cervical cancer patients [18, 22, 23]. In order to achieve 
a more potent and effective cytotoxic effect of NK cells 
in patients with cervical cancer, it is therefore critical to 
have adequate numbers of functional effector NK cells. In 
regard to generating large numbers of NK cells for thera-
peutic purposes, NK cells expanded from PBMC and other 
sources have limited expansion capacity as compared to 
cord blood-derived NK cells [49]. Adoptive transfer of 
large numbers of cytotoxic UCB-NK could be a viable 
treatment option, because UCB-NK have a highly acti-
vated phenotype with more than 75  % stable expression 
rates of NKG2D, DNAM-1, NKp30, NKp44 and NKp46 
in all mature UCB-NK, and lack inhibitory KIRs, resulting 
in HLA-independent cytolytic efficacy; additional advan-
tages of UCB-NK over PBNK are fewer impurities (such as 
T and B cells) detected upon full NK maturation, thereby 
reducing chances of GVHD upon adoptive transfer [30, 
36]. In this study, UCB-NK were not tested in combination 
with CET due to their low surface expression of CD16a 
in vitro; however, UCB-NK further mature upon adoptive 
transfer in  vivo which is accompanied by an increase in 
CD16a expression [50], and this feature could be exploited 
to enhance tumor killing even more via ADCC using CET 
and other IgG1 therapeutic antibodies. To facilitate clinical 
application, a GMP-based NK cell expansion and differ-
entiation protocol has already been established, approved 
by regulatory authorities and applied in a Phase-I clinical 
trial for elderly acute myeloid leukemia patients and num-
bers of over 30 × 106/kg body weight cytotoxic UCB-NK 
(oNKord®) can easily be achieved for therapeutic purposes 
(CCMO no NL31699 and Dutch trial register no 2818). 
Therefore, it is now entirely feasible to develop clinical 
protocols to explore, for the first time, adoptive transfer of 
UCB-NK in patients with solid tumors like cervical cancer.

In conclusion, our data provide a clear rationale for 
the use of UCB-NK to treat cervical tumors and also the 
possibility of using PBNK in combination with CET for 
EGFR-expressing tumors, with both significantly higher 
cytotoxicity and degranulation levels than in PBNK only 
conditions. Notably, treatment with UCB-NK might serve 
as a generally applicable treatment for cervical cancer ena-
bled by HLA-, histology- and HPV-independent killing 
mechanisms.
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