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1  Introduction

Functional recovery and regain of independence follow-
ing neurological injury are commonly assessed via clinical 
scores, comprising capacity and time measures, and subjec-
tive questionnaires [11]. Objective information on arm use 
in the home environment could provide a valuable comple-
ment to insights gained from clinical assessments.

Wearable sensor technology has enabled unobtrusive 
monitoring of arm movements in the natural environ-
ment, with accelerometry representing the most estab-
lished approach. Activity counts (AC) derived from the 
acceleration signals provide quantitative information 
about arm activity, such as total duration [27, 28] and 
intensity of movements [5, 23]. However, AC provide 
only information about the amount of arm use but not 
about functional arm use. For example, accelerometry 
in wrist-worn applications is sensitive to any kind of 
movements, e.g., passive arm swinging during ambula-
tory activities, which leads to an overestimation of real-
world arm activity [1, 12]. Ambulatory activities can be 
detected by means of accelerometry [18, 33], and upper 
extremity activity can be adjusted accordingly [22], but 
this requires additional, temporally synchronized sen-
sors which may negatively impact patient compliance. 
To reject the influence of ambulatory activities, the ratio 
of arm use between paretic and non-paretic arm is com-
monly used [2, 26, 28–30]. However, ratios are a rela-
tive measure of intensity or duration of use and therefore 
are not suitable to capture potential changes in absolute 
activity or use.
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Whereas clinical tests assess function and impairment, 
accelerometry measures only the effects of impairment in 
the form of reduced activity levels or reduced duration of 
arm use, but does not consider motion patterns. In contrast 
to accelerometers only, inertial measurement units (IMUs) 
comprising accelerometers and gyroscopes (angular rate 
sensors) can be used to precisely measure and monitor 
movements of body segments and have been proposed for 
portable motion capture of gait [6, 13] or arm movements 
[35, 36]. The inclusion of gyroscopes is especially benefi-
cial as they allow to measure angular displacement during 
highly dynamic activities. Inertial sensors worn in a clinical 
setting during assessments such as the Functional Ability 
Scale of the Wolf Motor Function Test [7, 10, 19, 20] or the 
Fugl-Meyer Assessment [3], have allowed the reconstruc-
tion of these scores based on the recorded signals, demon-
strating that qualitative information of arm movements can 
also be extracted. Still, there is a need for a metric moti-
vated by the characteristics of typical object grasping and 
manipulation movements, complementing the quantitative 
measures of accelerometers with measures of functional 
arm use. Single-sensor setups are preferable because there 
is no risk of swapping sensors and no need for sophisti-
cated synchronization, and compliance in patients as well 
as clinicians is increased.

We propose a novel method to qualitatively assess func-
tional arm use in the home environment, relying on only a 
single wrist-worn sensor module. To evaluate this method, 
we monitored 10 subacute/chronic stroke survivors in their 
home environment during 48 h using five inertial measure-
ment units (IMUs) placed on wrists, shanks and waist. We 
compare our method against setups involving sensors worn 
at multiple anatomical locations and investigate its ability 
to reject influence of ambulatory activities on arm use. Per-
formance measures are compared with clinical measures 
for gross manual dexterity.

2 � Methods

2.1 � Rationale

The goal of this work is to assess functional arm use, as in 
the case of reaching to and manipulating an object, with 
a single wrist-worn IMU. IMUs are subject to drift, espe-
cially in the horizontal plane, and measurement of abso-
lute wrist orientation can therefore not be guaranteed. The 
use of magnetometers could add an absolute reference in 
the horizontal plane and reduce drift, but these are “dif-
ficult to use in the vicinity of ferromagnetic metals” [16], 
which are often encountered in daily settings (e.g., doors, 
elevators, speakers). Robust measurement of wrist orienta-
tion and position relative to the trunk during ADL would 

require absolute tracking as provided by magnetic sens-
ing [8, 24]. However, when considering only short time 
windows of sensor recordings, the effects of drift can be 
neglected, and angular displacements can be measured 
reliably.

Reaching and manipulation movements performed dur-
ing ADL typically involve grasping objects placed on a 
table or shelf and displacing them by moving the arm 
over a certain angle in the horizontal or vertical plane, or 
a combination of the two. During walking, in return, the 
forearm is mostly oriented toward the ground and swings 
passively. It has been shown that, during ADL, wrist posi-
tion is mostly constrained around the sagittal plane [8] and 
above the waist [31], and thus absolute orientation with 
respect to the trunk, which could be influenced by sensor 
drift in the horizontal plane, is not essential. We assume 
that forearm elevation (the angle between the forearm axis 
and a horizontal plane) and/or yaw (the angle between the 
forearm axis and the sagittal plane) change significantly 
during functional arm use. Based on these assumptions, we 
propose to infer functional arm use by measuring the rela-
tive angular change in forearm orientation induced by such 
movements.

To derive a metric (subsequently called gross arm move-
ments, GM) based on these assumptions, thresholds for 
forearm elevation and lateral movement have to be deter-
mined. By observing reaching and manipulation tasks we 
defined a threshold of 30◦ for angular change in elevation 
and/or yaw in order to identify such movements (Fig.  2). 
Further, by constraining the elevation of the forearm to a 
range of −30◦ to +30◦, the influence of pro- and supination 
movements of the forearm (which we assume is not indica-
tive of functional movements) on the proposed metric can 
be reduced. This is an issue as pronosupination movements 
at forearm postures around ±90◦ are indistinguishable from 
lateral movement with the available sensor information. 
Furthermore, this guarantees that the analysis of arm move-
ments is not affected by singularities (where subsequent 
behavior can not be predicted) occurring at ±90◦ of fore-
arm elevation. Additionally, by excluding forearm elevation 
lower than −30◦ from the analysis, the influence of ambula-
tory activities can be reduced.

Stroke survivors show reduced activity of the paretic 
arm compared to the non-paretic arm in ADL as shown by 
reduced AC on the paretic side [12] and we assume that 
this discrepancy is also reflected in a reduction of GM per-
formed with the paretic arm during ADL. Also, lifting the 
affected arm against gravity is impaired by paresis in stroke 
survivors, and we therefore hypothesize that forearm eleva-
tion of left and right arm differ in stroke survivors, and that 
average forearm elevation is lower compared to the unaf-
fected arm. We further hypothesize that the proposed met-
ric describes meaningful arm function as assessed through 
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the Box and Block Test (BBT) and is robust against the 
influence of ambulatory activities.

2.2 � Subjects

Ten subacute/chronic stroke survivors were enrolled in this 
pilot study after providing written informed consent. Per-
sons with inability to give informed consent were excluded 
from the study. The study was approved by the local ethics 
commission. Subject demographics are shown in Table 1. 
All subjects were independent walkers. Subjects’ gross 
manual dexterity was assessed with the BBT [21] by a 
trained clinician either at their homes or during a therapy 
session in the clinic.

Subjects wore five wearable sensor modules for 48  h, 
one on the dorsal side of each wrist, one on the lateral side 
of each shank right above the ankle and one around the 
waist. Sensors were donned by a clinician either at their 
home or during a therapy session in the clinic. The modules 
at wrist and shanks were fixed with silicone straps, while 
the waist sensor was fixed with an elastic band. Subjects 

were instructed to wear all sensor modules during all activ-
ities and to keep them donned for bathing or showering in 
order to eliminate the risk of swapping the modules or plac-
ing them at a different location. The sensors were returned 
to the clinic by surface mail. Data from the waist sensor 
were excluded from the analysis.

2.3 � Sensors

For the purpose of precisely recording human posture and 
motion data over a period of 48 h we used ReSense, a low-
power 10-degrees-of-freedom (DOF) inertial measurement 
unit (IMU) comprising a 3-axis accelerometer, a 3-axis 
gyroscope, a 3-axis magnetometer and a barometric pres-
sure sensor [14]. This module can record continuously for 
at least 24 h at a sampling rate of 50 Hz, respectively up 
to 48  h through intelligent power management. Multiple 
modules can be synchronized temporally via a base station 
prior to the measurement and the calibrated clock in each 
unit guarantees <90 ms drift per day between modules. The 
system (Fig. 1) was specifically designed for use by clinical 
staff and self-use by patients.

2.4 � Data processing

All data processing was performed in MATLAB (2014a, 
The MathWorks, Natick MA, USA).

2.4.1 � Preprocessing

Raw data from all sensors were resampled at 50  Hz and 
gaps due to sensor standby during inactive time periods 
were filled by means of zero-order hold interpolation for 
acceleration. Angular rate was set to zero during these peri-
ods. Resampling was necessary because of the inaccuracy 
of the sampling rate of the low-cost MEMS sensors, which, 
according to our experience, may vary by up to 2 %. Resid-
ual zero offset and drift of the gyroscope data was then 
corrected linearly interpolating averaged signals from still 

Table 1   Demographics and Box and Block Test (BBT) scores of the 
10 subacute/chronic stroke survivors who participated in this study

# Gender Age Weeks since 
stroke

BBT par. BBT non-par.

1 m 61 24.2 11 41

2 m 52 47.8 6 42

3 m 70 22.1 23 42

4 m 47 8.5 55 65

5 m 61 26.0 7 52

6 m 63 21.0 35 51

7 m 31 14.4 65 62

8 m 33 14.2 58 70

9 m 44 20.1 41 60

10 m 65 17.6 23 41

52.7± 13.6 21.6± 10.6 32.4± 21.8 52.6± 11.0

Fig. 1   ReSense sensor modules 
and base station [14]. The base 
station allows data readout, 
battery charging and temporal 
synchronization of up to 5 sen-
sor modules simultaneously via 
a USB 2 port
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phases. These phases were identified by means of a mov-
ing variance filter. Data from barometer and magnetometer 
were excluded from the data analysis.

2.4.2 � Walking identification

Identification of walking phases was based on acceleration 
signals from the shank-worn sensor module at the non-
paretic leg [15]. Data streams were segmented into win-
dows (data segments) of 7.5  s duration (corresponding to 
375 datapoints) and fed into a support vector machine clas-
sifier previously trained on data from 12 stroke survivors 
[15]. The output of the classifier was further processed by 
morphological filters which filled gaps (non-walking) of ≤
4 windows (30 s) and removed small walking bouts of only 
1 window (7.5 s).

2.4.3 � Manual labeling

Manual labeling of corrupted/faulty segments and nightly 
sleeping phases was performed by visual inspection of the 
raw data of wrist and shank sensors and the identified walk-
ing phases. Faulty segments could occur when subjects 
did not wear their sensor modules for some time or when 
they accidentally swapped or inverted them, despite being 
clearly instructed not to do so. These periods were manu-
ally identified and excluded from the analysis. Nightly 

sleeping phases were defined manually from the time point 
where activity marginally dropped, after the last walk-
ing bout, and mostly static signals were visible until the 
time point where activity increased and the first walking 
bout could be identified. Active phases during nightly bed 
time were labeled as sleep phases even when they clearly 
included walking. Inactive periods during daytime were 
only labeled as sleep in case the duration exceeded one 
hour.

2.4.4 � Activity counts

Acceleration from the wrist-worn sensors was high-pass-
filtered at 0.3Hz in order to reduce the influence of grav-
ity on the final score. AC for epochs with window size of 
1  min (3000 samples) and no overlap were calculated by 
means of Eq. 1 adapted from [9].

where N = fs · Epoch · 60; Epoch, duration of an epoch in 
minutes; fs, sampling frequency in Hz; ax/y/z, acceleration 
in direction x y z.

A threshold of 0.05  g was applied on the acceleration 
magnitude to suppress very low sensor excitation mainly 
due to sensor noise.

AC were calculated during awake time including and 
excluding walking phases. To exclude walking phases from 
AC, the acceleration of wrist-worn sensors was set to zero 
during the periods where walking was detected by means of 
the shank sensor. The final outcome is the average number 
of counts per minute during awake time. When excluding 
walking phases from AC, the average was calculated over 
the duration of awake time minus walking time. Addition-
ally, also the duration of arm use was calculated by thresh-
olding the accelerometric data, as proposed by Uswatte 
et al. [27].

2.4.5 � Forearm elevation

Acceleration and angular rate from wrist-worn sensors 
were used to estimate the forearm orientation relative to 
the earth referential frame. For this purpose the gradient 
descent orientation filter proposed by Madgwick et al. [17] 
was selected, which fuses sensor measurements of gravity 
and angular rate into an optimal orientation estimate and 
also assures convergence from initial conditions and com-
pensates for eventual drift in a vertical plane (the weighting 
of the accelerometer measurements in the error correction 
was set to β = 0.03). The filter outputs orientation in a qua-
ternion representation q = [q0, q1, q2, q3], which can be 
transformed into a 3× 3 direction cosine matrix R [34]. To 

(1)AC =
1

fs · Epoch

N
∑

n=1

√

ax[n]2 + ay[n]2 + az[n]2

Vertical
(gravity)

Horizontal Yaw

ElevationForearm axis

+30°

-30°

Fig. 2   Illustration of the forearm angles extracted from the IMU. 
Elevation is the angle between the horizontal and the forearm axis 
and yaw is the angle covered in lateral movements. The red area in 
the vertical plane illustrates the region where gross arm movements 
are identified and movements outside of this area are not captured by 
the algorithm. Note that shoulder abduction, flexion and rotation as 
well as elbow flexion can influence elevation and yaw



145Med Biol Eng Comput (2017) 55:141–150	

1 3

calculate the forearm elevation (Fig. 2), the forearm vector 
as = [1 0 0]⊤ was expressed in the earth fixed referential e: 
ae = R⊤as = R⊤[1 0 0]⊤. The elevation � of the forearm 
vector ae = [aex aey aez] can then be computed as:

The normalized probability distribution of forearm ele-
vation � during daily routines was established in a polar 
representation between −90◦ and 90◦ with a histogram 
bin-size of 1◦ (Fig. 3). Phases of inactivity were detected 
by means of a threshold of 0.05  g on the acceleration 
magnitude and were excluded from the probability dis-
tribution. Probability distributions were established 
for both forearms during awake time, including and 

(2)� = arctan





aez
�

a2ex + a2ey





excluding walking phases. The first moments (mean) 
were extracted from the distributions and plotted against 
BBT scores to examine its value as a performance 
metrics.

2.4.6 � Gross arm movement identification

GM identification is based on the orientation estimate 
determined for forearm elevation. In addition to eleva-
tion �, the rotation around the vertical axis in the earth 
referential (collinear with gravity), i.e., the yaw, was cal-
culated and also considered (Fig. 2). Yaw (�) was com-
puted by numerically integrating the angular rate ωez 
over time:

(3)
�[k] =

1

fs

k
∑

n=1

ωez[n]

Fig. 3   Top: Polar representation 
of the probability distribution of 
the forearm elevation of subject 
2 (top, BBT score of 6) and 
subject 7 (bottom, BBT score 
of 65) during activity of paretic 
(red) and non-paretic (blue) 
arm, including (left) and exclud-
ing (right) walking phases. 
The bold circles mark the first 
moment (mean) of the distribu-
tions. 90◦ means the forearm 
points upward against gravity, 
while −90

◦ means the forearm 
points downward along gravity. 
The forearm angle is independ-
ent of upper arm orientation. 
Bottom: Scatter plot of the 
difference of forearm elevation 
probability distribution’s mean 
between paretic and non-paretic 
arm (excluding walking phases) 
with the Box and Block Test, 
showing a high correlation 
(color figure online)
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where ωe = [ωex , ωey, ωez] = R⊤ωs fs is the sampling 
frequency in Hz, k = [1 . . .N] where N is the total num-
ber of samples to be integrated.

Elevation and yaw were then segmented into windows 
of 2 s with 75 % overlap, to increase the probability of cap-
turing movements within a window that match the defined 
heuristic rules. In each of the windows, the following heu-
ristic rules were tested

where range(x) = max(x)−min(x) and true was assigned 
for valid conditions, false otherwise.

Put simply, arm movement is counted as GM if the 
sum of a change of forearm orientation in yaw and eleva-
tion is more than 30◦ within a time period of 2 s, but only 
if the movement occurs within a range of forearm eleva-
tion between −30◦ and +30◦. Angular ranges were defined 
based on the assumptions listed in the Rationale section. 
The final output was the total amount of windows labeled 
true multiplied with the difference of window size minus 
window overlap, thus resulting in the total duration of GM 
during the recording period.

2.4.7 � Statistical analysis

Pearson’s correlation coefficients were calculated for the 
BBT of the paretic arm with: the difference of forearm ele-
vation probability distribution’s mean between paretic and 
non-paretic arm (excluding walking), AC of the paretic arm 
(including and excluding walking), GM of the paretic arm 
(including and excluding walking), and duration of paretic 
arm use (including and excluding walking). Correlation 
coefficients for the ratio of the BBT paretic/non-paretic arm 
were calculated with: the ratio of AC paretic/non-paretic 
arm (including and excluding walking), the ratio of GM 
paretic/non-paretic arm (including and excluding walking), 
and the ratio of arm use duration paretic/non-paretic arm 
(including and excluding walking). Correlations of AC and 
GM and arm use duration were compared with the Steiger’s 
Z-test for dependent correlations [25] in order to identify 
significant differences in correlation strength.

3 � Results

Forearm elevation distributions of two representative sub-
jects are depicted in Fig. 3. The distributions of paretic and 
non-paretic forearm elevation differed in a subject with a 
low BBT score of 6, with the mean of the paretic forearm 
displaying a lower elevation during activity. In return, these 
were similar for a subject with a high BBT score of 65. 
During walking, in average 64 % (±22.7%) of movements 

(4)|�| ≤ 30◦ and range(�)+ range(�) ≥ 30◦

of the impaired arm were measured below −30◦ (average 
mean −38.2◦ ± 14.1◦), and removing walking phases from 
the recordings resulted in less activity with an elevation 
lower than −30◦ and thus raised the mean. Similar results 
were found in all 10 subjects. Pearson’s correlation coef-
ficients of BBT score of the paretic arm correlated with the 
difference of means (paretic–nonparetic) of ten chronic 
stroke survivors is r = 0.68 (p = 0.03) (Fig. 3). 

Correlations of arm AC and arm GM with the BBT are 
shown in Fig. 4. Correlation of total paretic arm AC includ-
ing walking with BBT was r = 0.69 (p = 0.029) and total 
paretic arm AC excluding walking with BBT was r = 0.93 
(p < 0.001). Steiger’s Z-test on the two latter correlations 
was Z̄ = 2.99, and this value, when compared to the nor-
mal curve rejection points of ±1.96, is significant. Corre-
lation of the ratio of paretic/non-paretic arm AC including 
walking with ratio of the BBT was r = 0.49 (p = 0.155 ) 
and the ratio of paretic/non-paretic paretic arm AC exclud-
ing walking with the ratio of the BBT was r = 0.84 
(p = 0.002). Steiger’s Z-test again showed a significant dif-
ference (Z̄ = 2.95). GM correlated significantly better with 
BBT than AC with BBT when walking phases are included. 
This applies to the ratios (Z̄ = −4.82) and absolute values 
(Z̄ = −2.58). Correlation coefficients increased in the case 
of AC with BBT when walking phases are excluded and no 
significant difference compared to GM with BBT could be 
identified using Steiger’s Z-test. In all four tested condi-
tions, the correlation of GM with BBT resulted in high cor-
relation coefficients r ≥ 0.90 (p < 0.001) and no significant 
difference could be identified by means of the Z-test. Dura-
tion of paretic arm use including walking correlated with 
BBT was r = 0.77 (p = 0.009) and the correlation differed 
significantly from GM correlated with BBT (Z̄ = −2.51). 
The three remaining conditions of arm use duration cor-
related well with the BBT (r ≥ 0.90; p < 0.001 ) and there 
was no significant difference between the correlation coef-
ficients in comparison to GM.

4 � Discussion

AC are an established means for assessing daily arm use 
but are sensitive to ambulatory activity. Ambulatory activi-
ties can lead to overestimation of AC and consequently 
weaker correspondence with clinical scores, as already 
reported previously [2, 30]. In our study, absolute AC of 
the paretic arm during awake time correlated significantly 
better with a clinical score of arm function when walk-
ing phases, detected by a shank-worn sensor on the unaf-
fected side, were excluded (r = 0.93) compared to when 
they were not excluded (r = 0.69) (Fig. 4). In contrast, our 
results demonstrate that measuring GM is robust against 
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arm movements during ambulatory activities, as shown by 
the strong correlation with the BBT (r = 0.95). Arm move-
ments during ambulation mostly occur below −30◦, and 
oscillations in the forearm elevation due to walking are 
typically below the amplitude threshold we have set, and 
therefore these arm movements remain undetected by the 
GM method. Further, we observed that using activity ratios 
between the paretic and non-paretic arms can only partially 
reject the influence of ambulatory activities.

Previous research suggested to quantify arm use by 
thresholding accelerometric data [27] as an outcome meas-
ure which can be robust against ambulatory activities [28]. 
Indeed, the ratios correlated well with the BBT (r = 0.95 ), 
but this approach, however, rejects intensity of arm use and 
can therefore not be considered a measure of functional 
arm use. Also, in a single-sensor setup, GM correlated 

significantly more strongly with BBT (r = 0.95) than dura-
tion of impaired arm use (r = 0.77).

While GM correlated strongly with the BBT score, the 
latter is sensitive to both arm and hand function (e.g., dif-
ficulty in grasping a block), whereas our proposed method 
only assesses arm use. Nevertheless, similar correla-
tions could also be found with other clinical tests such as 
the Chedoke Arm and Hand Activity Inventory (r ≥ 0.91; 
p < 0.001).

The strong correlation of the proposed metric with the 
BBT suggests that it may provide valuable insights into the 
true use and performance of the paretic arm. In comparison 
with the BBT administered in a clinical environment and 
at few discrete time points, the proposed method is a cost-
effective tool to continuously track recovery. The ability of 
this tool to capture intra- and inter-day-variability might 
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additionally increase the overall reliability of these assess-
ments, and provide additional insights on the recovery pro-
cess. It has to be noted, however, that the proposed single-
sensor method neither allows to directly measure reaching 
distance/workspace, nor to isolate the impairments result-
ing in reduced GM score. In order to obtain such informa-
tion, additional inertial sensors would need to be placed on 
each segment of the arm as well as on the trunk to allow 
reconstruction of arm kinematics. Such a setup, however, 
would likely negatively impact usability and compliance

Comparing the forearm elevation distributions includ-
ing and excluding walking phases illustrates that, in case 
of a paretic arm with a low BBT score, arm swing dur-
ing walking may constitute a substantial part of captured 
overall activity. This motivated the rejection of movements 
with an elevation of less than −30◦. This may have biased 
activity levels in previous studies [1, 4, 26, 30]. The differ-
ence of means of the paretic and non-paretic forearm eleva-
tion distribution correlated well with the BBT, suggesting 
that this measure could be a clinically relevant parameter 
of arm impairment. These findings are in accordance with 
measurements of vertical wrist position [32], where stroke 
survivors showed a reduced amount of activity with their 
affected wrist when located above mid-trunk level.

Results show that forearm elevation, which we assume 
to be linked to arm function, can be monitored during daily 
life by means of wrist-worn 6-DOF IMUs. By using gyro-
scopes, the precise orientation of a sensor module could 
be reconstructed, even during fast movements, and also 
changes in orientation in the horizontal plane could be cap-
tured, which is impossible with accelerometers only.

5 � Conclusions

We conclude that GM measured with one 6-DOF IMU 
worn at the paretic wrist qualifies as assessment of func-
tional arm use in real life. The proposed method is sensitive 
to absolute changes in arm activity and is robust against 
overestimation of passive arm movements, e.g., by ambu-
lation and has the advantage of relying on a single-sensor 
unit as opposed to accelerometers on both arms to calcu-
late ratios, or on additional sensors on the shank to exclude 
walking episodes. A single-sensor setup is highly desirable 
as it may improve user compliance and ease usability. We 
identified that patients removed and accidentally swapped 
sensor modules even though they were instructed not to do 
so. Such a risk could be minimized in a single-sensor setup. 
In order to consolidate our findings further validation needs 
to be performed with a larger sample size. Nevertheless, the 
proposed method promises more detailed and qualitative 
insights into functional arm use in the home environment 
beyond what is possible with pure accelerometry.
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