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In this review, we summarize the recent literature on the biology of endogenous stem cells in adult lung
injury repair. We focus on in vivo studies in mice with an emphasis on data generated using cell-specific
Cre-dependent lineage-tracing systems. These studies provide new information on the identification of
lung stem cells, their hierarchical relationships, the plasticity of their behavior in different types of
injury, and the molecular signals that control their fates. Although most of this work has been on
epithelial hierarchies, we expect that further development of robust genetic tools will foster meaningful
investigations into how nonepithelial cell populations are controlled during lung injury repair in adults.
The ultimate challenge will be to translate these findings to the pathogenesis and treatment of human
lung diseases. (Am J Pathol 2016, 186: 2544e2550; http://dx.doi.org/10.1016/j.ajpath.2016.05.023)
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The adult lung is a complex structure composed of multiple
specialized epithelial cell types, two parallel circulations
(systemic and pulmonary), two distinct smooth muscle
populations (bronchial and vascular), fibroblasts, and a
unique local immune system. This complexity is one of the
factors that have limited understanding of mechanisms by
which lung cells are reconstituted during homeostasis and
repair. The recent development of novel lineage-tracing
tools and the discovery of informative cell markers have
facilitated the clarification of lung progenitor cellular hier-
archies. Much of this work has been focused on the
epithelium, with less emphasis on other cellular elements in
the lung. This reflects the fact that cell-specific lineage-
tracing systems are better developed for the epithelium.
Collectively, these experiments indicate that lung epithelial
stem cells are regionally specific. There is no evidence that a
single lung stem cell, as in the hematopoietic system, gives
rise to all cell lineages during homeostasis or repair. Rather,
differentiated epithelia are derived from local epithelial
progenitors. Although mesenchymal progenitors in the
embryonic mouse lung have regional specificity,1 it is un-
clear whether mesenchymal progenitors in the adult lungs
are similarly geographically localized.

The adult lung is a highly quiescent tissue with a remark-
ably low level of cellular turnover. Recent data indicate that
cellular quiescence in the mouse airway epithelium and
stigative Pathology. Published by Elsevier Inc
mesenchyme is an active processmediated by sonic hedgehog
signaling.2 Although it is not yet clear whether this pathway
functions similarly in the human lung, this important obser-
vation may be relevant to the pathogenesis of lung diseases
characterized by aberrant repair and regeneration.
Historically, understanding how cell turnover and

replenishment are regulated has been particularly chal-
lenging in the adult lung because of the prolonged quies-
cence of lung parenchymal cells. Indeed, most of the
information learned about the biology of adult lung stem
cells came from studies of lung injuries in mice. A further
challenge is the fact that there are many morphologically
distinct cell types in the lung. At least 40 different cell
phenotypes have been described from the trachea to the
alveolar space, underscoring the lung’s intrinsic complexity.
The increasing interest in this field is based, in large part, on

the hope that stem cellebased strategies could be used to
reconstitute functional lung tissue in human diseases. In this
review,we summarize and highlight recentfindings regarding
the phenotypes of putative lung stem and progenitor cells and
their role in injury repair. Our emphasis is on in vivo studies
. All rights reserved.
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Stem Cells in Lung Injury and Repair
that use state-of-the-art genetic models. The review is orga-
nized by anatomical location and cell type.

Trachea and Proximal Bronchi

The mouse trachea and main stem bronchi are lined by a
pseudostratified mucociliary epithelium composed of basal
cells and three types of differentiated luminal cells (secre-
tory or club, ciliated, and neuroendocrine). Airway basal
cells are notable for their expression of TRP63, nerve
growth factor receptor, keratin 5 (KRT5), and podoplanin.
A subpopulation of basal cells also expresses keratin 14.
In vivo lineage tracing experiments indicate that basal cells
comprise approximately equal numbers of stem cells and
committed precursors3 and give rise to differentiated
luminal cells during steady state and epithelial repair.4

Lineage tracing using a club cellespecific Scgb1a1-
CreER allele reveals that ciliated cells can come from club
cells after tracheal injury,5 suggesting that club cells are
situated between basal cells and ciliated cells in a cellular
hierarchy. However, it is also possible that basal cells act
through a transient-amplifying cell that differentiates into
either club or ciliated cells. Pardo-Saganta et al6 found that
after injury two distinct basal cell subpopulations emerge
that are defined by expression of the intracellular domain of
NOTCH2 (N2ICD; indicative of active Notch2 signaling) or
c-MYB (an inhibitor of Notch signaling). Their findings
indicate that N2ICDþ basal cells directly replenish club
cells, whereas c-MYBþ basal cells directly populate ciliated
cells. The central role of the Notch pathway in mediating
acquisition of a club cell fate is further underlined by ex-
periments revealing that an increase in Notch activation in
basal cells expands the secretory lineage at the expense of
the ciliated lineage in vivo.7 To date, experimental evidence
indicates that ciliated cells are terminally differentiated cells
that do not proliferate or give rise to other tracheal epithelial
cell types after injury.8

Interestingly, after ablation of KRT5þ basal cells,
differentiated club cells can undergo dedifferentiation and
replenish lost basal cells; these reconstituted basal cells have
the same regenerative properties as the so-called normal
basal cells.5,9 These observations suggest a greater degree of
cellular plasticity than previously recognized in the tracheal
epithelium. The implication of this important observation is
that differentiated tracheal epithelial cells can undergo
adaptive phenotypic switching to ensure proper repair.
Notably, mucous-producing goblet cells, which are a key
pathological feature of upper airway inflammation in mice,
arise from club cells through a distinct genetic program that
requires the transcription factor SPDEF.10

Distal Airway

The epithelium of the mouse distal airway is composed of a
monolayer of ciliated and secretory cells. KRT5þ/TRP63þ
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basal cells are present in this region in humans, but their
presence in the uninjured distal airway is not well estab-
lished in mice. Ciliated cells throughout the airway are
marked by expression of the transcription factor FOXJ1
and the cytoskeleton protein TUBB4. In addition, neuro-
endocrine cells (NECs) are also present and express the
transcription factors ASCL1 and PROX1. In contrast to
tracheal NECs that are scattered throughout the epithelial
surface, the NECs in the distal airways cluster as small
aggregates that are situated at airway branching points;
these collections of NECs are termed neuroepithelial
bodies. Secretory cells, which are also known as club cells,
are characterized by the expression of SCGB1A1. Recent
data indicate that the club cell phenotype is actively
maintained during homeostasis through the interaction of
ciliated cellederived Jagged ligands (JAG1 and JAG2)
with the club cell NOTCH2 receptor.11 Disruption of this
signaling axis at steady state leads to a gain of ciliated cells
at the expense of club cells in large and small airways in
mice and can reverse goblet cell metaplasia in asthmatic
mice.11,12

Most of the data regarding regeneration of the epithelium
in this region are from studies that use the club cellespecific
toxin naphthalene. Exposure to this toxin induces a stereo-
typic injury response that results in the death and sloughing
of most club cells. There exists, however, a subpopulation
of club cells that is resistant to naphthalene injury and is
characterized by the lack of expression of the cytochrome
P450 family member CYP2F2. Such cells are termed variant
club cells and are located adjacent to neuroepithelial bodies
and at the bronchioalveolar duct junction.13 The variant club
cells that are located adjacent to neuroepithelial bodies are
also marked by UPK3A.14

Lineage tracing after naphthalene injury reveals that
SCGB1A1þ/CYP2F2� cells reconstitute the injured epithe-
lium through self-renewal and differentiation into ciliated
cells and CYP2F2þ club cells,15 indicating that variant club
cells are epithelial progenitors in small airways after injury.
The precise anatomical locations of variant club cells
suggest the possibility of a discrete cellular-molecular niche.
However, deletion of NECs does not always affect the ca-
pacity of variant club cells to regenerate the small airway
epithelium after injury.14,16 Parabronchial smooth muscle
may be essential to variant club cell progenitor function by
serving as a source of the fibroblast growth factor 10.17 In
mice, deletion of histone deacetylases 1 and 2 in postnatal
club cells results in reduced club cell proliferation and
persistent loss of the epithelium, indicating that histone
deacetylases 1 and 2 are required for small airway epithelial
regeneration after naphthalene injury.18 In keeping with the
phenotypic plasticity of the upper airway epithelium, lineage
tracing studies suggest that NECs can give rise to club cells
after injury of distal airway epithelium, but tamoxifen
persistence may have confounded the results16 There is no
evidence that ciliated cells in this region have progenitor
properties.8
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Bronchioalveolar Duct Junction

The transition site from bronchioles to alveoli in the mouse is
termed the bronchioalveolar duct junction. This region con-
tains a few cells (<1 per bronchioalveolar duct junction) called
bronchioalveolar stem cells (BASCs), which co-express
SCGB1A1 and SFTPC, a marker of alveolar epithelial type 2
cells (AEC2s). The existence of this cell in the human lung is
uncertain because SCGB1A1þ/SFTPCþ dual positive cells
have not been clearly identified in human. Mouse BASCs are
resistant to bronchiolar and alveolar damage and proliferate
during epithelial cell renewal in vivo. They have been sug-
gested to possess stem cell activity for both small airway and
alveolar epithelium, based in large part on in vitro studies.19

Using Scgb1a1-restricted lineage tracing, BASCs did not
contribute to the epithelium during homeostasis or alveolar
repair after hyperoxia.5 In contrast, a similar lineage-tracing
strategy identified labeled alveolar epithelial cells after bleo-
mycin injury.20,21 Whether these labeled alveolar cells arise
fromclubcells orBASCs is not clear, however, because theCre
allele is active in both cell types. The ability of BASCs to
reconstitute injured alveolar epithelium in vivo is further
confounded by the fact that some AEC2s express both
SCGB1A1 and SFTPC.5 Definitive resolution of these issues
will require a BASC-specific Cre allele.

WNT signaling appears to play a specialized function in
BASC expansion after injury.22 However, selective deletion
of b-catenin (CTNNB1) in Scgb1a1þ cells did not inhibit
club cell regeneration after naphthalene injury, indicating
that canonical WNT signaling in BASC and club cells is
dispensable for epithelial repair.23
Alveolus

The alveolar epithelium is characterized predominantly by two
cell types. The alveolar epithelial type 1 cell (AEC1), which
comprises nearly 95% of the alveolar surface area, is a thin but
architecturally complex cell specialized for gas exchange.24

These cells express several distinct markers, including podo-
planin and aquaporin 5. Recent work indicates that a small
subset of AEC1s, characterized by expression of HOPX, may
proliferate and give rise to AEC2s after partial pneumonec-
tomy.25 However, whether AEC1s self-renew or serve as
progenitors in other types of injury remains controversial.

The AEC2 is a cuboidal cell situated at the corners of the
alveoli. This cell is notable for the production and pack-
aging of surfactant proteins into lamellar bodies for secre-
tion. A variety of cell-specific markers for AEC2s have been
identified, including SFTPC and LYZ2. By using a mouse
that expresses an inducible Sftpc-driven Cre recombinase,
adult AEC2s were found to serve as progenitors for both
AEC1s and AEC2s during homeostasis.21 During alveolar
repair after hyperoxia, bleomycin, or AEC2 ablation, cell
turnover is accelerated and characterized by clonal expan-
sion of a distinct subset(s) of AEC2s followed by
2546
differentiation into AEC1s.20,21,26 Signaling molecules
thought to regulate AEC2 self-renewal after injury include
epidermal growth factor receptor and oncogene KRAS.26

Notably, MMP14 derived from the pulmonary capillary
endothelium has been implicated in regenerative alveolari-
zation after pneumonectomy by increasing the bioavail-
ability of epidermal growth factor receptor ligands.27

Recent work supports the existence of alternative epithelial
stem cell populations in the distal lung. For example, an
integrin a6b4-positive SFTPC-negative alveolar stem cell has
been identified and postulated to play a part in reconstituting
injured alveolar epithelium.28 After severe influenza infection
in mice, data suggest the emergence or expansion of distal
airway stem cells with reparative properties. In one study,
these cells (distal airway stem cells) were found to express the
basal cell markers TRP63 and KRT5 and were capable of
generating differentiated alveolar and bronchiolar epithelium
after injury.29 Some of the observations in this study may be
confounded, however, by the identification of AEC1s by
podoplanin expression, which is also expressed in other lung
cell types, including basal cells. In another study, a lineage-
negative epithelial progenitor cell was identified that re-
constitutes AEC2s and distal airway club cells after severe
influenza infection in mice. These cells appear to express
KRT5 after activation.30 Interestingly, differentiation of
lineage-negative epithelial progenitor cells into AEC2s
required inhibition of Notch signaling, whereas persistent
Notch signaling led to the appearance of cysts reminiscent of
honey-combing in human lung fibrosis.30 Whether these two
studies have identified the same cell type is unclear at this time.
Regardless, this is an intriguing area that requires further study.
Fibroblasts and Myofibroblasts

Historically, there has been significant ambiguity in how
fibroblasts and myofibroblasts are defined and distinguished
from one another. This reflects, in part, the lack of robust
markers that can clearly differentiate these cell types. Both
cells are characterized as matrix producing and of mesen-
chymal origin. Myofibroblasts are largely viewed as being
the predominant source of excess connective tissue proteins
at sites of lung injury in the proximal and distal airways.
They express a-actin-2 (alias a-smooth muscle actin), a
relatively nonspecific intracellular marker. Using a
PDRGRa-GFP reporter mouse, two transcriptionally
distinct populations of resident fibroblasts were identified
during lung regeneration after partial pneumonectomy. One
population expressed a set of genes suggestive of a matrix-
or lipo-fibroblast phenotype, whereas the other population
expressed a transcriptional profile indicative of a myofi-
broblast phenotype,31 suggesting that myofibroblasts are
heterogeneous. Future progress in this area will be aided by
use of single-cell RNA sequencing technology.
In view of the importance of myofibroblasts in lung

fibrosis, considerable effort has focused on identifying the
ajp.amjpathol.org - The American Journal of Pathology
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origin of these cells. One hypothesis is that lung myofibro-
blasts originate from a circulating hematopoietic cell. The
findings of bone marrow transplantation studies in mice and
humans, however, are inconclusive.32,33 During lung allo-
graft rejection in humans, myofibroblasts have been found to
be of donor origin.34 On the basis of this and other recent data,
the general consensus is that myofibroblasts originate from a
source within the lung. One possibility put forth is that these
cells arise during distal lung injury from AEC2s through an
aberrant epithelial-mesenchymal transition event, although
this is controversial. In this regard, lineage tracing using an
inducible Sftpc-Cremouse reveals no significant contribution
of AEC2s to myofibroblasts after bleomycin injury.20

Whether myofibroblasts are derived from resident differen-
tiated cells, such as smooth muscle cells, is not clear because
of a lack of informative lineage tracing strategies. Recently,
there is evidence that lung myofibroblasts originate from
perivascular mesenchymal stem cells (see Pericytes).

Multiple signaling pathways, including transforming
growth factor-b, WNT, vascular endothelial growth factor,
and phosphatidylinositol 3-kinaseeAKT, have been impli-
cated to promote lung fibrosis in the setting of injury.35 One
study suggests that fibrotic reactions in the distal lung,
which occur in the setting of repetitive injury, involve
WNT/b-cateninedependent Notch activation in pericapil-
lary fibroblasts.36
Pericytes

Pericytes are contractile cells that surround capillaries and
venules and are notable for being embedded in the endo-
thelial basement membrane. Pericyte markers include pro-
teoglycan CSPG4 (also known as NG2), platelet-derived
growth factor-b receptor, desmin, a-actin-2, ATP binding
cassette protein ABCG2, and transcription factor FOXD1.
There are data to strongly suggest that these cells are resi-
dent mesenchymal stem cells in multiple organs, including
lung.37

Using a Cspg4-dependent Cre lineage-tagging system,
pericytes were found to proliferate but did not contribute to
the myofibroblast population that emerged after bleomycin
injury20; however, pericyte labeling was highly inefficient in
this study. On the other hand, using an Abcg2-dependent
Cre labeling system, this subpopulation of pericytes was
found to contribute to the myofibroblast pool after bleo-
mycin injury.38 The expression of ABCG2 in other
mesenchymal cell types renders these findings difficult to
interpret. Similar findings and limitations are also present in
studies using a Foxd1-dependent Cre mouse.39 Notably, the
downstream sonic hedgehog effector GLI1 marks a popu-
lation of perivascular cells that express mesenchymal stem
cell and pericyte markers. Genetic-labeling and ablation
studies found that these cells contribute to myofibroblast
pools after lung injury.40 Definitive clarification of the stem
cell properties and the role of pericytes in lung injury repair
The American Journal of Pathology - ajp.amjpathol.org
will require development of an efficient and specific lineage
tracing system.
Smooth Muscle

Bronchial smooth muscle (BSM) is a highly quiescent tissue
during homeostasis. Alterations in BSM mass, however, are
a key pathological feature of the asthmatic airway. The
relative contributions of hypertrophy and hyperplasia to this
alteration in BSM mass are not entirely clear because there
are data to support both mechanisms in humans and mice.41

Overall, these data are difficult to interpret because the
human data are largely derived from autopsy studies of fatal
asthma, and the mouse data are derived from disease models
of uncertain relevance to human asthma.

Similarly, vascular smooth muscle (VSM) is also highly
quiescent. Increase in VSMmass is a key pathological feature
in pulmonary artery structure in pulmonary hypertension.42

Another feature of vascular remodeling in this disease in-
volves the muscularization of distal pulmonary artery
branches that normally are devoid of mural cells.43 Several
distinct sources of excess VSM in this condition have been
proposed. One possibility is that already-differentiated VSM
reenters the cell cycle and proliferates in response to an un-
known signal. It has also been suggested that a non-VSM
source, such as pericyte, endothelial cell, or mesothelial
cell, may be contributory.42 Recently, investigators have
identified in mice a novel VSM progenitor, the primed cell,
which is localized at the pulmonary arteriole muscular-
nonmuscular border. In a murine model of pulmonary hy-
pertension, this cell was found to proliferate, migrate, and
establish the pathological muscularization of distal vascular
sites. In this work, a specialized role for the transcription
factor KLF4 in these VSM progenitors was identified.43

Endothelium

The arterial, capillary, and venous vessels of the lung are
lined by endothelial cells. The degree to which cells from
these different anatomical sites are similar is not clear.
Overall, there is a paucity of knowledge relating to the
identification of cells that reconstitute lung endothelium
after injury. Whether there are differences in endothelial
reparative mechanisms at different levels of the lung’s
complex vascular network is not known. It is also unclear
whether there is a distinct endothelial progenitor population.
In this regard, the lack of specific markers has limited the
use of lineage-tracing strategies for analysis of endothelial
injury in mice. Current consensus is that a circulating
endothelial progenitor population that repairs the pulmonary
vasculature does not exist.44 Some have speculated that the
injured endothelium is replaced through a process that in-
volves proliferation of neighboring, differentiated endothe-
lial cells, whereas others have postulated the existence of a
local endothelial progenitor.42 Data pointing to a progenitor
2547
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Table 1 Identity and Location of Putative Stem Cell Populations Mediating Tissue Repair

Tissue and region Stem cell Marker genes Daughter cells Key signals References

Trachea and
proximal airway

Basal cell TRP63þ, KRT5þ, NGFRþ,
PDPNþ, KRT14þ

Ciliated, club, self NOTCH 4,6,7

Club cell SCGB1A1þ, CYP2F2þ Basal, ciliated, goblet,
self

NOTCH, SPDEF, HDAC1/2 5,9,10,17

Distal airway Variant club cell SCGB1A1þ, CYP2F2�, UPK3Aþ Ciliated, club, self NOTCH, FGF10 15,17,18

NEC ASCL1þ, CGRPþ, PROX1þ Ciliated, club, self ? 16

DASC TRP63þ, KRT5þ, KRT6þ AEC2, club, self, AEC1? ? 29

LNEP ITGA6þ, ITGB4þ, SFTPC�,
SCGB1A1�, KRT5�

AEC2, club, self NOTCH 30

BADJ BASC SFTPCþ, SCGB1A1þ Self, club? AEC2? WNT 19e22

Alveolus AEC2 SFTPCþ, LYZ2þ AEC1, self WNT, EGFR-KRAS 20,26,27

AEC1 HOPXþ, AQP5þ, PDPNþ AEC2, self TGFb 25

ITGA6þITGB4þSFTPC�

AEC
ITGA6þ, ITGB4þ, SFTPC�,
SCGB1A1�

AEC1, AEC2, club, self ? 28

Mesenchyme Pericyte CSPG4þ, ABCG2þ, PDGFRbþ,
FOXD1þ, GLI1þ

Myofibroblast, self SHH, WNT-NOTCH, TGFb,
VEGF, PI3K-AKT

35e40

Endothelium Endothelial cell TIE2þ Myofibroblast TGFb 47

VSMC Primed cell ACTA2þ, MYH11þ, PDGFRbþ,
KLF4þ

VSMC, self PDGF-KLF4 43

?, unknown; AEC, alveolar epithelial cell; AEC1, type 1 alveolar epithelial cell; AEC2, type 2 alveolar epithelial cell; AKT, protein kinase B; BADJ, bron-
chioalveolar duct junction; BASC, bronchioalveolar stem cell; DASC, distal airway stem cell; EGFR, epidermal growth factor receptor; FGF10, fibroblast growth
factor 10; HDAC, histone deacetylase; KLF4, Kruppel-like factor 4; KRAS, Kirsten rat sarcoma viral oncogene homolog; LNEP, lineage-negative epithelial
progenitor; NEC, neuroendocrine cell; PDGF, platelet-derived growth factor; PI3K, phosphoinositide 3-kinase; SHH, sonic hedgehog; SPDEF, SAM pointed
domain containing ETS transcription factor; TGFb, transforming growth factor beta; VEGF, vascular endothelial growth factor; VSMC, vascular smooth muscle
cell; WNT, wingless-type MMTV integration site family.
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population largely rest, however, on observations in which
isolated KDRþ cell populations that express putative stem
cell markers (CD34 and CD133) exhibit morphologic and
molecular characteristics of mature endothelial cells after
stimulation in culture.45 The lack of standardized isolation
procedures and functional assays are limiting issues for this
field.
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There are data suggesting that endothelial cells undergo
an endothelial-to-mesenchymal transition in pathological
lung conditions. For instance, the presence of cells co-
expressing endothelial and smooth muscle markers in lung
sections from patients with pulmonary hypertension raises
the possibility that endothelial cells contribute to the excess
VSM that characterizes this disease.46 In addition,
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myofibroblasts in bleomycin lung injury were found to be
derived from a TIE2-expressing population in mice.47 This
latter finding, however, does not definitively establish a role
for endothelial-to-mesenchymal transition in lung fibrosis
because the expression of the Tie2 gene is not endothelium
specific.
Mesothelium

The fetal mesothelium serves as a source of mesenchymal
progenitor cells for differentiated BSMs, VSMs, and peri-
bronchial fibroblasts in the developing lung.48,49 In contrast,
the adult mesothelium does not contribute to the accumu-
lation of myofibroblasts or smooth muscle that characterizes
several specific mouse models of lung disease and injury.50

Whether there are conditions where the adult lung meso-
thelium contributes to repair remains unclear at this time.
Conclusion

In the past decade, there have been considerable advances in
our understanding of progenitor cells and their hierarchical
relationships, particularly in the epithelial compartments of
the lung during injury repair (Table 1 and Figure 1). These
advances have been largely attributable to the development
of vigorous lineage-tracing systems that support in-
vestigations into the turnover and differentiation of the lung
epithelium. In contrast, a lack of cell-specific markers and
genetic tools has limited our knowledge of the progenitor
populations that sustain and regulate the nonepithelial
components of the lung. In the future, we expect that further
development of robust genetic tools will not only deepen
our understanding of lung epithelial stem cells but also
foster more meaningful investigations into how non-
epithelial cell populations are controlled during lung injury
repair. Additional studies in this field should also enhance
our understanding of cellular plasticity and the role of
recently and yet to be identified novel stem cell populations
in lung regeneration. The translational significance of the
findings in mice must be considered with caution, however,
in view of the significant differences in lung structure be-
tween mouse and human and the questionable relevance of
murine models to human diseases. A major challenge for the
field is thus figuring out how all this work relates to the
pathogenesis and treatment of human lung disease.
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