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ABSTRACT Numerous studies across a wide range of taxa have demonstrated that immune genes are routinely among the most
rapidly evolving genes in the genome. This observation, however, does not address what proportion of immune genes undergo strong
selection during adaptation to novel environments. Here, we determine the extent of very recent divergence in genes with immune
function across five populations of Drosophila melanogaster and find that immune genes do not show an overall trend of recent rapid
adaptation. Our population-based approach uses a set of carefully matched control genes to account for the effects of demography
and local recombination rate, allowing us to identify whether specific immune functions are putative targets of strong selection. We
find evidence that viral-defense genes are rapidly evolving in Drosophila at multiple timescales. Local adaptation to bacteria and fungi is
less extreme and primarily occurs through changes in recognition and effector genes rather than large-scale changes to the regulation
of the immune response. Surprisingly, genes in the Toll pathway, which show a high rate of adaptive substitution between the
D. melanogaster and D. simulans lineages, show little population differentiation. Quantifying the flies for resistance to a generalist
Gram-positive bacterial pathogen, we found that this genetic pattern of low population differentiation was recapitulated at the
phenotypic level. In sum, our results highlight the complexity of immune evolution and suggest that Drosophila immune genes do

not follow a uniform trajectory of strong directional selection as flies encounter new environments.
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A current challenge in evolutionary biology is to under-
stand the genetic changes that drive local phenotypic
adaptation (Hereford 2009; Stapley et al. 2010; Stephan
2016). In recent years, numerous studies have addressed this
challenge by examining genome-wide changes in allele fre-
quencies across clines or between populations (Turner et al.
2008; Stapley et al. 2010; Lamichhaney et al. 2012; Pespeni
et al. 2012; Hubner et al. 2013). In limited instances, such
genome-wide patterns could even be connected back to spe-
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cific phenotypic traits or environmental variables, greatly
increasing our understanding of the genetic processes under-
lying phenotypic evolution (Turner et al. 2010; Jones et al.
2012; Jeong and Di Rienzo 2014). While analytic approaches
differ, these studies often rely on the detection of outlier loci
that display patterns of high population differentiation or
other extreme signatures of local selection. Such approaches
are particularly adept at detecting single loci that have expe-
rienced strong selective sweeps.

Immune genes are often evolutionary outliers in such
studies, displaying fast rates of evolution and high popula-
tion differentiation across multiple taxa including humans
(Fumagalli et al. 2011; Daub et al. 2013; Quintana-Murci and
Clark 2013), Daphnia (McTaggart et al. 2012), mosquitoes
(Waterhouse et al. 2007; Crawford et al. 2010), and bees
(Chavez-Galarza et al. 2013; Erler et al. 2014). Across Dro-
sophila species, immune genes are known to evolve faster
than the genome average (Sackton et al. 2007), and on
shorter timescales, both genome-wide studies and studies
of individual genes have highlighted examples of immune
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genes displaying unusually high population differentiation
across Drosophila melanogaster populations (Juneja and
Lazzaro 2010; Fabian et al. 2012; Hubner et al. 2013). Sim-
ilarly, clinical studies have identified numerous immune
genes displaying high levels of population differentiation
(Kolaczkowski et al. 2011b; Fabian et al. 2012).

These studies highlight the major role pathogens play in
shaping the evolution of their hosts. But, while such obser-
vations suggest that certain Drosophila immune genes may be
subject to unusually strong, spatially variable selection, they
provide only a partial picture of how immunity, as an inte-
grated complex phenotypic trait, is evolving. “Immune com-
petence” is in reality a suite of phenotypes that are affected
not only by pathogen pressures but also by environmental
factors and genotype-by-environment interactions (Lazzaro
et al. 2008; McKean et al. 2008; Lazzaro and Little 2009;
Howick and Lazzaro 2014). While their resistance to similar
types of pathogens may be weakly correlated (Lazzaro et al.
2006), flies show no evidence of cross-resistance to distinct
pathogen classes (Kraaijeveld et al. 2012). Similarly, resis-
tance is often decoupled from tolerance, highlighting the
numerous physiological processes that influence host fitness
(Ayres et al. 2008; Ayres and Schneider 2009). Further com-
plicating the process of adaptation, trade-offs involving
immune defense and other key life history traits are docu-
mented (Kraaijeveld et al. 2001; McKean et al. 2008; Ye et al.
2009), as are behavioral traits that lie outside the canonical
immune system (Kacsoh et al. 2013; Babin et al. 2014). Such
factors may lead to a scenario where populations experience
broad shifts in immune regulation as they confront different
optimal immune strategies in different environments. For
such a complex trait, local adaptation may occur through a
process of polygenic selection, where multiple variants expe-
rience weak selection leading to small allele frequency
changes (Pritchard and Di Rienzo 2010; Pritchard et al
2010; Turchin et al. 2012). Still, the literature contains nu-
merous examples of single alleles that carry strong pheno-
typic effects against specific pathogens (Magwire et al. 2011;
Sironi et al. 2015).

Here, we seek to determine the extent and routes of recent
D. melanogaster immune adaptation. As populations adapt to
novel environments do they experience large-scale changes
across immune genes, or alternatively, is immune adaptation
driven by a subset of rapidly evolving genes? Do we find
changes across all immune processes or does a limited num-
ber of pathogen types drive adaptation? To answer these
questions, we undertake a comprehensive analysis of im-
mune gene diversity and divergence across five populations
of D. melanogaster. We compare known immune genes with
genomic controls matched for size, genome location, and
local recombination rate—factors known to affect patterns
of polymorphism and the efficacy of selection (Larracuente
etal. 2008; Comeron et al. 2012; Castellano et al. 2016). With
this approach, we identify not only putative single-gene
targets of local selection but also examine whether entire
pathways and gene classes show evidence of heightened
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selection. In addition, we compare patterns of interspecific
divergence in Drosophila immunity genes with patterns of
population-level differentiation and find both similarities
and differences between the results of these two different
analyses.

Materials and Methods
Gene and fly line selection

Through literature searches, we assembled a list of 361 genes
with well-supported immune function, many of which have
appeared in previous large-scale studies (Sackton et al. 2007;
Obbard et al. 2009). When possible, we assigned each gene to
the immune pathway(s) or process(es) in which it functions
(Figure 1 and Table 1). In the humoral response—regulated
by the Toll and immune-deficiency (IMD) pathways—pat-
tern recognition receptors bind common bacterial and fungal
membrane components, triggering the downstream produc-
tion of antimicrobial peptides (AMPs) and other microbicidal
compounds. The cellular response coordinates the activities
of specialized hemocytes such as phagocytes, which engulf
foreign particles or necrotic cells, as well as lamellocytes and
crystal cells, which participate in defense against parasitic
wasps through the encapsulation and melanization of the
deposited eggs. Finally, antiviral defense largely operates
through RNA interference (RNAi) but also involves the
JAK-STAT and Toll pathways. Members of the JNK pathway,
together with other genes, contribute to various aspects of
immune tolerance and resistance by mediating tissue repair
and wound closure. Categories were not mutually exclusive
and some were nested within larger umbrella categories (for
instance, all Toll and IMD genes were also included in the
humoral class). We also assigned a functional class to each
gene. These included the broad categories of recognition re-
ceptor (identification of pathogens and parasites), signaling
molecule (signal transduction), and effector protein (patho-
gen destruction). When applicable, we used more specific
functional assignments (e.g., phagocytosis receptor, AMP).
The full list of genes, as well as their pathway and functional
class assignments, can be found in Supplemental Material,
Table S1.

For each immune gene, we identified four control, protein-
coding genes that were matched for size, genome location,
and local recombination rate. For size and position, we re-
quired that control genes had a total length (including in-
trons) within either 1500 bp of, or 0.5-2 times, the total
immune gene length, and we preferentially chose genes lo-
cated within 50 kb of the immune gene. Using the Drosophila
melanogaster Recombination Rate Calculator version 2.3
(Fiston-Lavier et al. 2010), we obtained the estimated local
recombination rate of each immune gene and required that
control gene recombination rates be within 1 ¢cM/Mb of this
value. The overall correlation between immune gene recom-
bination rate and the mean control genes’ recombination rates
was high, even at low levels of recombination (R?> = 0.9997,
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Figure S1). We additionally checked the genes using the
more fine-scale recombination estimates of Comeron et al.
(2012). As their estimates cover a wider range than the Re-
combination Rate Calculator, the correlation between im-
mune and control genes was weaker (R? = 0.9443, Figure
S2), but we ensured that all control gene recombination rates
were still within 2.5 cM/Mb of the immune gene rate. If
immune genes were found near the boundaries of known
segregating inversions, we ensured that the matched controls
were similarly within or outside of the inversion. In the event
that more than four control genes fulfilled these require-
ments for a particular immune gene, we randomly chose four.
Because of the restrictions, 15 immune genes had fewer than
four controls in the final data set.

We had no way of guaranteeing that the control genes have
no immune function. In particular, location matching carries
this risk as genes of similar function—including immune
function—often cluster in the genome. To minimize this risk,
we excluded from the initial control pool 595 genes that had
weak evidence of immune involvement (for example, mod-
erate expression changes in large-scale immunity screens or
homology with known immune gene families). We performed
no further filtering on the control set. For example, we did not
exclude genes that are known to be rapidly evolving.

We obtained information on nucleotide polymorphism
within these genes for each member of the D. melanogaster
Global Diversity Lines. These are a set of 84 inbred lines from
five populations (15 from Beijing, China; 19 from Ithaca, NY;
19 from the Netherlands; 18 from Tasmania; and 13 from
Zimbabwe) that have been sequenced to an average depth of
12X (Grenier et al. 2015). We masked genomic regions with
poor “callability” (as defined in Grenier et al. 2015) to ensure
that our analyses excluded genomic regions with large
amounts of missing data. Using the Ensembl database Variant
Effect Predictor script (Berkeley Drosophila Genome Project
5.25 assembly, release 64), we annotated the putative effect
of each SNP within our genes of interest (nonsynonymous
coding, synonymous coding, intronic, splice site, 3'-UTR,
and 5’-UTR).

Viral Defense

Figure 1 Main pathways in the Drosophila immune
system.

Phagocytosis

Analysis of D. melanogaster-D. simulans divergence

Using FlyBase (version FB2013_06) we determined which of
our genes had known one-to-one orthologs in D. simulans. We
then downloaded all transcripts for each gene from FlyBase
and performed codon-based alignments for all D. mela-
nogaster-D. simulans pairs using PRANK (Loytynoja and
Goldman 2005). For each transcript pair, we used custom
Perl scripts to count nonsynonymous and fourfold degener-
ate substitutions using the Nei-Gojobori method (Nei and
Gojobori 1986) and to calculate the length of the aligned
regions after removing all gaps. For each gene, we then iden-
tified the transcript pair with the longest aligned region and
the fewest number of nonsynonymous substitutions. We in-
troduced this second, more conservative, criterion to reduce
the likelihood of spuriously aligning paralogous transcripts for
immune genes that show a high level of alternative splicing.
The values and the dy/ds values calculated using the longest
transcripts were highly correlated (immune genes, R? = 0.93;
control genes, R? = 0.97), and our approach did exclude a few
incorrect immune gene alignments whose errors were easily
detected on visual inspection (Figure S3). We used these tran-
scripts to represent the gene in all downstream analyses.

Incorporating polymorphism data from the ancestral
Zimbabwe population, we used DFE-alpha version 2.13
(Eyre-Walker and Keightley 2009) to determine the propor-
tion of adaptive substitutions («) and the relative rate of
adaptive substitutions (w,) within each pathway or functional
class. Both statistics were calculated relative to substitutions
at fourfold degenerate sites. In brief, this method uses a max-
imum likelihood method to infer the distribution of fitness
effects of new mutations from the folded site frequency spec-
trum. We ran DFE-alpha using a two-epoch model, allowing
variable mutation-effect sizes and variable shape parameters
for the gamma distribution. Gene classes with <10 genes
were excluded from the analysis.

Population genetic analyses

Using custom Perl scripts, we calculated derived allele fre-
quency, pairwise nucleotide diversity (), pairwise Fsr, and
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Table 1 Immune gene groupings based on immune process and functional class

Immune process  Genes Basic role(s)
Cellular 131 Hemocyte-mediated responses to all classes of parasites and pathogens
Encapsulation 36 Initial recognition and coating of parasitoid wasp eggs
Phagocytosis 45 Cellular uptake of bacteria, fungi, and necrotic cells
Epithelial 30 Regulation of bacteria and fungi on epithelial surfaces, including the gut, trachea, and reproductive tract
Humoral 141 Recognition and elimination of bacteria and fungi in the hemolymph through the production of antimicrobial
compounds
IMD 57 Humoral pathway that targets mainly Gram-negative bacteria
Toll 61 Humoral pathway that targets mainly Gram-positive bacteria and fungi
JAK-STAT 26 Signaling pathway implicated in viral response, control of hemocyte differentiation, and regulation of humoral response
INK pathway and 44 Epithelial repair and cell growth
wound repair
Melanization and 32 Cell-mediated response that responds to wounding and the detection of parasitoid wasp eggs and microbes
PO production
ROS production 14 Production of reactive oxygen species; especially key in epithelial immune regulation
Viral defense 29 Destruction of viruses through RNAI; elimination of virus-infected cells
Functional class Genes Basic role(s)
Recognition 58 Initial detection of invading parasites and pathogens. Includes cell-surface (e.g., phagocytosis) receptors as well as
humoral-response pattern recognition proteins (e.g., GNBPs and PGRPs)
Signaling 198 Signal transduction following pathogen recognition; negative regulation of immune response; cross talk between
pathways
Effector 75 Pathogen destruction or sequestration. Includes AMPs, lysozymes, and ROS

ROS, reactive oxygen species; GNBPs, Gram-negative bacteria binding proteins; PGRPs, peptidoglycan recognition proteins.

global Fgr for each SNP. These same statistics, as well as
Watterson’s 8, Tajima’s D, Ksr, Hudson’s nearest neighbor (S,,,,),
and normalized Fay and Wu’s H (Zeng et al. 2006), were cal-
culated at the gene level. Although inbred, all fly lines retained
at least some residual heterozygosity. When a fly line was het-
erozygous for a given site, we randomly sampled a single allele
to use in all analyses. In all calculations, we used only biallelic
SNPs. For all calculations, we required that there was a base call
for at least eight lines in any given population and accounted for
missing data by adjusting the sample size at each SNP. We
calculated Fsr at each SNP according to Weir and Cockerham
(1984). The numerator and denominator were averaged sepa-
rately across regions to calculate Fsrfor transcripts. Negative Fgr
estimates were declared to be zero.

Analyzing gene classes using genomic controls

Evolutionary rate at a given gene can be influenced by factors
in the local genetic environment, such as recombination rate
or selection on nearby alleles. To control for these factors, we
leveraged genetic data from our set of matched control genes
to more conservatively assess the probability of selection
within specific gene classes. We determined whether the
genes in a given pathway or functional class deviated, as a
set, from control expectations by conducting a paired Wilcoxon
signed-rank test that compared the statistic for each immune
gene within the class to the mean of its four control genes’
statistics. This test therefore relied only on the relative, not
absolute, values of the immune and control statistics and
determined whether there was a directional trend in the im-
mune genes relative to the controls. Overall, this made the
test less sensitive to genome-wide outliers and more sensitive
to local variation. The test was conducted for our major test
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statistics: m, Fay and Wu’s H, Tajima’s D, and Fsr. Due to our
small sample sizes, we determined significance through
100,000 permutations. For each permutation round, we ran-
domly chose one of the four control genes to serve as the
“test” gene and averaged the statistics from the remaining
three controls and the immune gene. When genes had no
polymorphism in a given population, they were dropped from
the permutation round. As a result, the maximum V-statistic
varied among permutations and so we used the resulting
P-values to construct our null distribution.

We accounted for multiple testing at the level of the statistic
(m, Fay and Wu’s H, Tajima’s D, and Fsr), correcting for mul-
tiple testing across multiple gene process groups (n = 13,
with RNAi) or gene functional groups (n = 8). To do this,
we set a P-value threshold at the 0.19% tails. As many of our
groups are nonindependent and their significance values are
expected to correlate, we did not attempt to identify P-values
that reached study-wide significance. All statistical analyses
were carried out in R (R Development Core Team 2011).

Systemic bacterial infections

Using a septic pinprick through the thoracic cuticle, we in-
fected male flies (3-5 days old) with the bacterial pathogen
Enterococcus faecalis (Lazzaro et al. 2004). Bacterial cultures
had been grown at 37° overnight to an ODggg of 1.0 (+0.06).
Flies were reared and maintained on standard glucose-yeast
media at 25° with 12 hr light-dark cycles. Infections occurred
in the 1-4 hr after the flies’ “dawn.” After 28 (*=1) hr, we
homogenized pools of three flies and plated the homogenate
onto LB agar plates using a Spiral Biotech Autoplate 4000.
We counted the number of colonies that grew on each plate
with a QCount Colony Counter to infer the number of colony
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Figure 2 Adaptive divergence of Drosophila immune gene groups. (A) Proportion of adaptive substitutions («) and (B) relative rate of adaptive substitutions
(w,) calculated from D. melanogaster-D. simulans alignments using the DFE-alpha method (Eyre-Walker and Keightley 2009). Shown are the mean
estimates with 95% C.I. calculated with jackknife resampling at the gene level. The vertical gray lines denote the 95% C.I. as calculated with a set of
1208 control genes. Values are presented as deviations from the control gene estimates. Rec, recognition; ROS, reactive oxygen species.

forming units per infected fly. Infections were carried out in a
block structure, with each fly line infected on four different
days. To assess whether population of origin had a significant
effect on bacterial load, we constructed a linear model with
infector, experimental day, and experimental block as ran-
dom effects. The residuals were used to calculate the mean
and median for each fly line. We then conducted an ANOVA
with both the line means and medians to determine whether
there was a population of origin effect. All statistical analysis
were carried out in R (R Development Core Team 2011).

Data availability

Table S1 and Table S2 list the names and coordinates of the
immune and control genes and transcripts used in the anal-
ysis. Sequence data from the Global Diversity Lines are avail-
able on the National Center for Biotechnology Information
Sequence Read Archive as BioProject PRJINA268111. Custom
Perl scripts used for population genetic analysis are available
upon request.

Results
Construction and annotation of gene sets

The D. melanogaster immune system encompasses a network
of interacting pathways that regulate diverse immune func-
tions (reviewed in Ferrandon et al. 2007). By searching da-
tabases and the D. melanogaster literature, we assembled a
list of 361 genes with well-supported immune roles and cat-
egorized each gene according to 12 immune pathways or
processes and three functional classes, as outlined in Table
1. Categories were not mutually exclusive and some genes
were assigned to multiple categories. While our list is ex-
panded and updated, it maintains substantial overlap with

previous large-scale studies of Drosophila immune genes
(Sackton et al. 2007; Obbard et al. 2009).

We acquired SNP calls for each gene from 84 inbred
D. melanogaster lines from five populations (Zimbabwe; the
Netherlands; Beijing, China; Ithaca, NY; Tasmania, Australia;
Grenier et al. 2015). We discarded three genes that
had <25% sequence coverage within these lines, leaving us
with a final study set of 358 immune genes. For each gene, we
chose four control genes that were matched for size, location,
and recombination rate. In the case of 15 immune genes, we
were unable to identify four adequate control genes, leaving
us with a final set of 1402 control genes. Sequence data for
each control gene was similarly acquired for each of the 84 fly
lines. In total, we identified 129,083 SNPs, 21,519 of which
were in coding regions (6193 were nonsynonymous while
15,326 were synonymous; Figure S4).

Patterns of D. melanogaster-D. simulans divergence
differ among gene classes

Within our full set of genes, there were 1208 control genes and
280 immune genes with one-to-one orthologs in D. simulans.
For each of these genes, we calculated nucleotide divergence
at nonsynonymous and fourfold degenerate sites. Combining
these values with polymorphism data from the ancestral
Zimbabwe population, we then estimated the proportion
of adaptive substitutions (o) and the relative rate of adap-
tive substitutions (w,) for each gene class (Eyre-Walker and
Keightley 2009). The absolute values we obtained for o and
w, are given in Table S3. We acknowledge that the values
we obtained for these statistics are relatively high compared
to some other studies (but see Schneider et al. 2011). Our
aim, however, is not to present an absolute measure of ad-
aptation, but rather compare the relative o and w, values of
our various groups.
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Figure 3 Patterns of pairwise Fs7 for control (blue) and immune (red) genes. Levels of Fsy reflect D. melanogaster's spread out of its ancestral range in
sub-Saharan Africa (represented by the Zimbabwe population). Flies likely spread to Europe and Asia 10,000 years ago, only reaching Tasmania and
North America through colonization by European populations within the last 200 years. Population samples are from Zimbabwe (2); Beijing (B); the

Netherlands (N); Ithaca, New York (I); and Tasmania (T).

Consistent with previous cross-species comparisons
(Sackton et al. 2007; Obbard et al. 2009), we found that there
is apparent heterogeneity in patterns of adaptive substitution
across immune gene classes (Figure 2). The Toll pathway,
cellular defense genes, encapsulation genes, wound-repair
genes, and genes involved in melanization and phenoloxi-
dase (PO) production showed a significantly elevated « rel-
ative to the control estimate; consistent with a role of natural
selection driving a high proportion of adaptive, amino acid-
changing substitutions. Contrary to this, genes involved in
humoral defense and phagocytosis had low proportions of
adaptive substitutions relative to the control set (Figure
2A). The estimated « for viral response genes was not ele-
vated, a result that may appear surprising given that viral
response genes, and in particular genes involved in RNAI,
are among the fastest evolving genes across the Drosophila
phylogeny (Obbard et al. 2006, 2009; Kolaczkowski et al.
2011a). These genes, however, did have a markedly higher
rate of adaptive substitution (w,) relative to control estimates
(Figure 2B). When considered together, these values of a and
w, suggest that viral response genes have fixed adaptive mu-
tations at a high rate (high w,), but during this process have
also accrued a substantial number of substitutions that do not
carry a fitness advantage (nonsignificant ). In addition, w,
was significantly elevated in IMD and Toll genes. Consistent
with previous observations (Obbard et al. 2009), the effector
class of AMPs showed little evidence of adaptive evolution at
the nucleotide level (Table S3).

General patterns of polymorphism and Fsr are
comparable for inmune and control genes

Using the polymorphism data from our 84 inbred D. mela-
nogaster lines, we measured nucleotide diversity (m and 6),
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Tajima’s D, Fay and Wu’s H (Zeng et al. 2006), and Weir and
Cockerham’s unbiased estimator of Fgr (Weir and Cockerham
1984) for each gene. The general population genetic patterns
of both control and immune genes conformed to genome-
wide observations made within these lines (Grenier et al.
2015). For both sets of genes, nucleotide diversity and Fsy
between population pairs reflected known demographic pat-
terns in D. melanogaster, which arose in sub-Saharan Africa,
spread into Europe and Asia 10,000 years ago, and finally
reached Australia and North America from Europe in the last
200 years (Figure 3; David and Capy 1988; Thornton and
Andolfatto 2006; Keller 2007; Laurent et al. 2011). In the
non-African populations, genes on the X chromosome har-
bored less nucleotide diversity at coding sites than genes on
the four major autosomes (both m and 6,, Mann-Whitney
U-test, P < 0.001 for all control and immune comparisons).
This is the expected pattern of polymorphism recovery fol-
lowing a founding event. For the Zimbabwe flies, there was
no significant difference between nucleotide diversity on the
X and autosomes.

We next compared large-scale polymorphism patterns
within immune and control genes. Taken as a whole, immune
genes did not display elevated population differentiation in
any of the pairwise or global Fs; comparisons at nonsynon-
ymous sites (Figure 3, Wilcoxon signed-rank test, P > 0.05).
When comparing chromosomes individually, we did find differ-
ences between the groups, but there was no consistent trend
and none of the P-values survived multiple-test correction.

Only two immune processes show evidence of
augmented population differentiation

Since general patterns of evolution are comparable across all
immune and control genes, we next investigated whether
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adaptation was elevated in certain immune processes or
functions. To do so, we divided genes into two types of groups:
(1) immune process or pathway, and (2) functional class
(Table 1). Classifying genes by immune process allowed us
to determine whether certain pathogen classes exert unusu-
ally strong, spatially variable selection on immune genes in
flies. Since the innate immune response is somewhat com-
partmentalized, this would lead to signatures of selection
being enriched within specific gene classes (Figure 1). For
instance, observing high signatures of selection within the
IMD pathway would suggest that Gram-negative bacteria
display global variation in abundance or virulence, leading
to differential selection pressures across populations. In ad-
dition, we analyzed genes grouped by functional class, a de-
scription of the gene’s position or function within a pathway.
Past work has found that species-level rates of evolution dif-
fer among Drosophila genes based on their functional classi-
fication as recognition receptors, signaling molecules, or
effector proteins (Sackton et al. 2007). This method of group-
ing allowed us to determine whether genetic adaptation was
concentrated in particular locations throughout immune
pathways.

We compared each immune gene class to its set of genomic
control genes that were carefully matched for size, position,
and local recombination rate. This approach partially con-
trolled for potential evolutionary confounders that can influ-
ence the signatures of evolution observed across genomes. We
compared each immune group to the mean of its relevant
control group with a paired Wilcoxon signed-rank test and
determined the significance of these comparisons through
permutations. All statistics that fell within the 2.5 and
0.19% (equivalent to a significance level of 0.05 after Bon-
ferroni correction) tails of the permuted null distributions are
listed in Table 2 and Table Sé6.

Viral defense and phagocytosis are the only immune
processes showing signs of rapid population differentia-
tion: Consistent with past studies, we found evidence of
directional selection and high population differentiation
within viral defense genes—and in particular RNAi genes.
At a significance level corrected for multiple testing,
two population pairs showed high Fgr for viral defense
(Zimbabwe-Ithaca and Zimbabwe-Tasmania) and RNAi (the
Netherlands-Tasmania and Zimbabwe-Ithaca). For both gene
groups, the tests for heightened Fs; between Zimbabwe
and all derived populations fell in the 2.5% tail. In addition,
values of Fay and Wu'’s H were significantly lower than the
background for RNAi genes in Beijing and Zimbabwe, sug-
gestive of higher levels of directional selection on derived
alleles in these genes.

Genes involved in phagocytosis also showed evidence of
unusually high population differentiation. In fact, the signal
we observed for phagocytosis genes was even stronger than
that seen for viral defense: global Fsr (Figure 4 and Figure S7)
as well as three pairwise Fsr comparisons were significantly
elevated compared to controls. As discussed below, however,

Table 2 Statistics showing different patterns in immune vs. control
gene classes

Direction of immune

Gene class Population(s)  Statistic vs. control statistic?
Cellular Neth-Ith Fsr Greater
Phagocytosis Global Fsr Greater
Ith-Tas Fsr Greater
Neth-Ith Fst Greater
Neth-Tas Fsr Greater
Epithelial Netherlands H Less
IMD Zimbabwe T Greater
Toll Zim-Neth Fst Less
JAK-STAT Tasmania D Less
Viral defense Zim-Ith Fst Greater
Zim-Tas Fsr Greater
RNAi Beijing H Less
Zimbabwe H Less
Neth-Tas Fsr Greater
Zim-Ith Fsr Greater
Recognition Beijing ™ Greater
Ithaca s Greater
Netherlands T Greater
Tasmania ™ Greater
Zimbabwe s Greater
Ith-Tas Fsr Greater
Neth-Ith Fsr Greater
Neth-Tas Fsr Greater
Phagocytosis Beijing T Greater
recognition Ithaca 13 Greater
receptors Ith-Tas Fsr Greater
Neth-Ith Fsr Greater
Neth-Tas Fst Greater
Zim-Beij Fst Greater
Zim-Tas Fst Greater
Humoral Beijing s Greater
recognition Ithaca T Greater
receptors Netherlands T Greater
Tasmania ™ Greater
Zimbabwe s Greater
Netherlands D Greater
Beijing H Less
Ithaca H Less
Tasmania H Less
Effectors Tasmania T Greater
AMPs Tasmania 1T Greater

Neth, the Netherlands; Ith, Ithaca, NY; Tas, Tasmania; Zim, Zimbabwe; Beij, Beijing.
@ All statistics were corrected for multiple testing and were significant at an a of
0.05, as determined by permutation.

this pattern was driven by recognition receptor genes. When
we limited the analysis to phagocytosis genes without recep-
tor function, we detected no deviations from background
patterns. The larger class of cellular response genes (of which
phagocytosis genes are a subset) also showed significantly
higher Fsr between a single population pair: the Netherlands
and Ithaca.

Rapid population differentiation is not a universal mark
of immune gene classes: The only additional statistically
significant Fsr comparison was lower—not higher—than
the control expectation. This was the pairwise Fsr between
the Netherlands and Zimbabwe for Toll genes. While this
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Figure 4 Levels of global Fsr within gene classes at nonsynonymous sites. Immune genes (red) were categorized according to (A) immune process or (B)
functional class, and then matched with four control genes (blue) based on chromosomal location, gene length, and local recombination rate. When
compared with a Wilcoxon signed-rank test, only phagocytosis genes displayed a significant difference between the two groups after multiple-testing

correction (e = 0.05). ROS, reactive oxygen species.

population pair was the only one to survive multiple-testing
correction, it was not an anomaly among Toll gene comparisons.
Tests for low Fgr fell within the 2.5% tail for four addi-
tional population pairs (Beijing-Tasmania, the Netherlands-
Tasmania, Zimbabwe-Ithaca, and Zimbabwe-Tasmania).

Signatures of adaptation differ across functional classes:
Analyzing genes based on their functional class showed that
recognition receptors are highly diverse and differentiated
across populations. Recognition molecules had elevated nu-
cleotide diversity relative to controls in all five populations,
and higher than background Fsr in three pairwise compari-
sons. When tested individually, both subclasses of recognition
receptors (phagocytosis and humoral) also showed strong

360 A. M. Early et al.

evidence of high polymorphism and population divergence.
Effector proteins only showed significantly elevated polymor-
phism in a single population (Tasmania) despite having a
mean level of polymorphism that is higher than that of rec-
ognition genes. This somewhat counterintuitive observation
is a result of our genomic control approach, which accounted
for recombination rate, gene location, and gene size. In other
words, effector molecules display patterns of polymorphism
and divergence that are largely consistent with other small
genes (mean transcript length = 792 nt), whereas recogni-
tion genes are unusual among the transcripts within their
longer length class (mean transcript length = 1465 nt). In
contrast to recognition and effector molecules, which func-
tion at the ends of their pathways, internal signaling
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Figure 5 Relative bacterial load in flies 28 hr after E. faecalis systemic infection. Flies were infected with the bacterial pathogen via septic pinprick and
total bacterial load was measured after 28 hr. The values plotted are the mean residuals (= SE) from a model that accounted for sources of experimental
error. Higher values correspond to a higher bacterial load and lower immune resistance. The color represents population of origin: Zimbabwe (orange);
Beijing, China (red); the Netherlands (green); Ithaca, New York (blue); Tasmania (purple).

molecules trended toward lower nucleotide diversity in all
populations, although none of these tests were significant
after multiple-testing correction.

It is worth noting that other genetic processes may con-
tribute to the adaptation of effector molecules and recognition
receptors. Both classes encompass large gene family groups,
and effector gene families, in particular, are known to expand
and contract at an unusually rapid pace (Sackton et al. 2007).
Our focus on single nucleotide variants does not reflect this
source of genetic novelty, and we note that these fly lines do
contain two segregating duplications in the drosomycin fam-
ily, a group of antifungal AMPs (Cardoso-Moreira et al. 2016).

Populations display similar levels of resistance to a
generalist bacterial pathogen

In our gene class analysis, we found a trend toward lower-
than-expected population differentiation in the canonical
genes of the Toll pathway, which is the primary response
pathway to fungal and Gram-negative bacterial infections. We
were next interested in testing how the flies compared phe-
notypically. To do so, we infected the 84 lines with the
generalist Gram-positive bacterial pathogen, E. faecalis. We
chose to use a generalist pathogen to detect general, large-
scale changes in immune response and regulation. This type
of phenotypic difference might result from geographic varia-
tion in environmental factors like temperature (Lazzaro et al.
2008), rather than adaptations to unique population-specific
pathogens. Questions of how populations are adapting to
Drosophila-specific and geographically variable pathogens
will need to be addressed once we gain a better understand-

ing of the identity and geographic distribution of Drosophila
pathogens.

Individually, the 84 lines showed significant variation in
bacterial load 28 hr after infection (Figure 5; ANOVA, d.f. =
83, F = 1.7, P = 6.9 X 107°). This result shows that flies
harbor extensive variation in immune resistance. On a pop-
ulation level, however, we detected no significant difference
in bacterial load (ANOVA, d.f. =4, F = 1.11, P = 0.36). This
relative phenotypic homogeneity across populations con-
trasts with the population-level variation observed in a num-
ber of other phenotypes assayed in these same lines,
including lipid content (Scheitz et al. 2013), metabolic regu-
lation (Greenberg et al. 2011), and transposable element
defense (Shigi Luo, Andrew G. Clark and Jian Lu, unpublished
data). Bacterial load is, of course, only one metric of immune
competence (Ayres and Schneider 2009; Howick and Lazzaro
2014), and we only measured responses under a single envi-
ronmental condition (Lazzaro et al. 2008). Nevertheless—and
especially when coupled with our genetic analysis—these re-
sults suggest that global fly populations have not undergone
widespread changes in their magnitude of response to general-
ist bacterial infection.

Immune genes with high population differentiation

Both our genetic and phenotypic analyses suggest that D.
melanogaster populations do not vary widely in basic immune
processes outside of viral defense and phagocytosis. Still, the
populations may have experienced more limited—perhaps
pathogen-specific—adaptations in a small number of genes.
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We therefore identified the individual genes showing signa-
tures most consistent with local adaptation. Because we were
primarily interested in identifying changes that are most
likely to carry phenotypic effects, we continued to focus on
statistics calculated at nonsynonymous sites (Table S5). It is
important to note, therefore, that a number of genes’ statis-
tics were calculated with data from a very small number of
SNPs. For comparison, statistics calculated across the entire
coding region are available in Table S4.

Table 3 lists the 20 immune genes that showed the highest
degree of global population differentiation at nonsynony-
mous sites as measured by Fsy. Demonstrating that these
patterns of population differentiation are robust to different
sampling schemes, population structure within several of
these genes has been previously discussed in the literature.
These include Takl (Yukilevich et al. 2010), lectin-24A
(Keebaugh and Schlenke 2012), and CHKov1 (Aminetzach
et al. 2005; Magwire et al. 2011). Naturally segregating hap-
lotypes of CHKovl (Magwire et al. 2011) and DptA (Unckless
et al. 2016) are even known to possess differential efficacy
against certain viruses and bacterial strains, respectively. To
our knowledge, natural variation in the remaining genes in
Table 3 has not been discussed in the literature, and so these
genes may represent novel candidate loci of local adaptation.

Previously, Maruki et al. (2012) demonstrated that loci
experiencing higher purifying selection show lower levels
of population differentiation. This can be a confounding fac-
tor in outlier approaches such as ours, biasing results toward
genes experiencing relaxed selective constraint. We, too, find
a positive correlation within our immune genes between
global Fsr at nonsynonymous sites and nonsynonymous diver-
gence between D. melanogaster and D. simulans (Spearman’s
p = 0.236, P = 0.0001; Figure 6). The pattern in two genes—
Eph and lectin-24A—is consistent with a model of relaxed
constraint as they are outliers for both global nonsynonymous
Fsr and D,,. Importantly, however, these are the only two high
Fsr genes that are outliers for both statistics, suggesting that
alleles within the other genes may not experience relaxed
constraint.

For 10 of the outlier genes in Table 3, the high global Fsris
largely driven by differences between the ancestral Zim-
babwe population and the other four derived populations.
This pattern is consistent with D. melanogaster’s known de-
mographic history, and so might be attributed to neutral
forces. To further assess these genes’ validity as selection
candidates, we therefore included other statistics like nucleo-
tide diversity and Fay and Wu’s H, which specifically con-
sider changes in the derived allele frequency (Table 3).
Interestingly, two of the outlier genes (lectin-24A and
Adgf-A) have low values of H that fall within the bottom
5% of African haplotypes. This suggests that the differences
in population allele frequencies are partially attributed to
recent changes in Africa and not solely the result of an out-
of-Africa bottleneck.

There are also instances where a single derived pop-
ulation largely drives the global signature of population
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Table 3 Immune genes showing the highest global Fs; at nonsynonymous sites

Population differentiation (Fs7)

Fay and Wu's H

Nucleotide diversity () (x1000)

Zim-Beij Zim-Neth Zim-Ith Zim-Tas Beij-Neth Beij-Ith Beij-Tas Neth-Tas Neth-Ith Ith-Tas Global

Tas
—-5894 0.885
—1.049

Ith
0.284 —4.974

0.860
0.402

NA
—3.446 —3.677 —3.655 0.494

Neth  Beij Ith Tas Zim Neth Beij
—1.804

7 0.278 0.204 0.085 0.254 0.142

Chr S Zim

Gene
Tak1

0.000 0.662
0.053

0.854 0.052 0.062 0.028 0.051 0.074

0.692
0.499

0.797
0.750
0.580
0.473
0.590

0.851

0.477

X

0.476

0.218  0.092 0.065 0.022

0.243

0.732
0.510

0.626

—-2.839

—4.875 —1.292

2.364 4.061

lectin-24A 2L 24 4.904 2.644 6.891

0.028 0.401

0.024

0.000
0.137

0.043  0.035
0.172
0.107 0.035

0.479
0.015

0.036

—4.162 0.470

NA
—0.988

—1.703

—4.216
—3.465
-0.572

0.821
-0.215

0814 0 0.339

4 2740 0.321

3L

LysP

0.048 0.342

0.311 0.047

0.609 0.270 0.056
0.518

0.776

5 4330 2595 0.000 3.996 5.455

2R

DptA
Ect4
slor
Eb1

0.029 0.342

0.032 0.033

0.055

0.610

1.538
0.294
0.578
0.911

0.556

3L 23 0.875 0.333 0.598 0.403

X
2R

0.432 0.012 0.038  0.000 0.340

0.000
0.003

0.418

0439 0413

0.429

0.394
0.726
0.732
0.401

0.537 0.610 0.202

—2.043

—-2.023
—1.434

0.426

0.646

1.136 0.270 0.456 0.107 0.203

15

0.006 0.337
0.037

0.164

0.087

0.069

0.122
0.265

0.525
0.452
0.390
0.322

-2.644 0592
-1.252

0.480
—1.500

NA
-1.777

2 0.662 0.000 0.355 0.810 0.459

19 0.731

0.336

0.221

0.048
0.403
0411

0.527
0.528

0.254

0.462

0.690 0.716 0.750
1.067 0.803

0.167
1.137

X

hep
Tl

0.325 0.335

0.346
0.109
NA
0.287
0.021

0.053

0.075

0.023

0.393

1.597
0.552

1.095
0.480

1.191

—0.309

0.040
0.595
NA

1.154
1.895

0

3R 36 2.940

0.008 0.332

0.394 0.076

0.652
0.326

0.762 0.450

0.292

0.679
NA

1.637

1.384 0.307

0

9 0.540

X
X

2R

PGRP-LE
Dsp1

0.317

NA
0.028 0.308

NA
0.499

0.334
0.000
0.061

0.342

NA
0.052

NA
0.126
0.541

NA
0.583
0.628
0.630
0.516

NA
0.477

0.546
0.284
—0.549
—0.351

NA
—1.145
—2.409
—0.831

0.520 0

0.076

0.588
0.209
0.285

0.039

0.647
—4.373
-0.077

0.451

0.272
1.791

1.410

0.541

0.434 0.113

5 0.261

dnri

0.033 0.304

0.212 0.301
0.005

0.082

0.143
0.132
0.082

0.446

—4.415 0.265

—1.049

0.883
—3.002
—0.537

1.383
1.086

3R 33 3.326 0.613 3.352

3L

Vps33B
Adgf-A
modSP

caq

0.343 0.066

0.073

0.153
0.300
0.058

0.543
0.433

0.388

1.002 1.168

14 0.606

0.299

0.106
0.363
0.000
0.155
0.000
0.053

0.176
0.024
0.100

0.005

0.158
0.043
0.361

0.060

0.537 0.611 0.502
0.037

0.331

0.502
0.284
-1.134

0.607

0.285 0.196 0.292

8 0.589 0.291

3R

0.398 0.297
0.071

0.337

0.031

0.037 0.323

NA
0.828

0.234
0.595

0.318
—0.436
—0.693

4 0135 0.092 0.117 0450 O

5

2L
2R

0.292

0.357
0.209

0.395 0.255 0.474
0.082
0.037

0.475

0.236

0.810

1.035
0.203

0.741

1.534 0.535 0.941

Atf-2
Eph

0.284

0.045

0.098
0.000
0.305

0.449
0.356
0.280

0.469
0.530
0.306

0.481

0.575 0.704 0.556
—3.864
-0.673

0.284

0.546
—8288 —5975 —7.584

—2.478

0.221

5 0202 0.152 0.053
15 5.429

4
3R

0.048 0.273
0.007

0.066
0.043

0.038
0.191

0.571

0.402

0.281

2.430 4.302

3.623

1.783

CHKov1
DptB

0.272

0.206

0.453

0.284 —0.959 0.638

8 6.550 2.893 0.488 4.407 4.041 1.153

2R

Values that fall in the extreme 5% of the population’s distribution are marked with italic font. Chr, chromosome; S, number of segregating sites; Zim, Zimbabwe; Neth, the Netherlands; Beij, Beijing; Ith, Ithaca, NY; Tas, Tasmania.
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Figure 6 Gene divergence and global population differ-
entiation at nonsynonymous sites. Across 264 immune
genes (black), D. melanogaster-D. simulans nucleotide di-
vergence and global Fsr correlate (Spearman’s p = 0.236,
P =0.0001). The solid, dashed, and dotted lines mark the
median, the lower and upper quartiles, and the quartiles
+1.5 interquartile range, respectively, as calculated with
the control genes (gray). The genes identified in Table 3
are marked in red.
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differentiation. For instance, the patterns of pairwise Fsr, re-
duced m, and low H suggest that LysP and Vps33B may have
experienced directional selection in the Netherlands before
the recent colonization of North America and Australia.

Discussion

The results in this study demonstrate that rapid adaptation is the
exception, not the rule, among immune genes in D. melanogaster.
As has been previously demonstrated (Obbard et al. 2006,
2009), genes involved in viral defense—and in particular the
RNAI portion of this process—display signs of elevated selec-
tion. Our analysis of other pathways, however, shows that the
extent of this adaptive signature is unusual, not only in a
genome-wide context but also in comparison to other im-
mune processes. Indeed, several immune processes even
showed unexpectedly low levels of population differentiation
that were nominally significant when compared to the ge-
netic background. In addition, instead of occurring through
small changes in numerous genes throughout a pathway—as
in the polygenic selection model—most local immune adap-
tation appears to progress through allele frequency changes
in a few genes at the periphery that are likely to interact
directly with pathogens. This suggests that abiotic factors in
the flies’ environment may not be major drivers of local im-
mune adaptation at the amino acid level.

Across all populations, recognition genes showed high
amino acid diversity and signs of heightened population
differentiation. While we have not shown that this variation
drives changes in pathogen recognition, previous lines of
evidence suggest that the variation in recognition receptors
does carry phenotypic effects. First, this observation is in line
with theoretical predictions that recognition molecules serve

0.6

as the main locus of host-pathogen coevolution (Nuismer and
Dybdahl 2016) and with observations in mice that upstream
initiation genes are more likely to undergo positive selection
(Casals et al. 2011; Webb et al. 2015). Second, past quanti-
tative genetic studies in Drosophila have suggested that nat-
ural variation in immune resistance is largely driven by
polymorphisms in recognition and, to a lesser extent, signal-
ing genes (Lazzaro et al. 2006; Sackton et al. 2010). This
implies that D. melanogaster recognition genes carry a sub-
stantial level of functional standing variation. Selection could
act on this standing variation in a population-specific manner,
leading to differentiation across populations. Alternatively,
recognition genes, like effector genes (Unckless and Lazzaro
2016), may experience balancing selection, and the resulting
asynchronous fluctuations across populations could heighten
the population differentiation measured in our samples.
Balancing selection and temporal fluctuations in allele fre-
quencies might also play a role in one of the more intriguing
results from this analysis: the discordance between the species-
level and population-level analyses of adaptation. Phagocytosis
genes and recognition receptors showed no evidence of ele-
vated rates of adaptation in the divergence data, but showed
heightened levels of population differentiation. These gene
classes maintain a large number of polymorphic sites (Figure
S5 and Figure S6), a common hallmark of balancing selection,
which would drive down values of a and w,. Conversely, we
found that both the Toll and IMD pathways showed elevated
rates of adaptive substitution, but Toll genes trended toward
lower levels of population differentiation. The full reason for
this incongruity across different timescales remains an open
question (Messer et al. 2016), but one likely factor is that
our analyses are static snapshots of dynamic processes. Our
population samples captured a single time point that provides
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no information on the known temporal fluctuations that occur
in wild populations (Bergland et al. 2014). Similarly, species
divergence data focus on fixed differences, an endpoint that
is largely blind to the trajectory alleles took on their way to
fixation. Antiviral genes are perhaps the only class where
directional selection is sufficiently strong to create robust
signatures of positive selection in the genome on both time-
scales. Further research on the interactions between the
Drosophila host and its pathogens, the variability in patho-
gen distributions, and the temporal dynamics of immune
processes will greatly extend our understanding of these
evolutionary patterns.

Looking to studies performed in other organisms, we see that
our results are not without precedent. In a laboratory-based
study with the insect Tribolium castaneum, Berenos et al.
(2011) demonstrated that evolution in the presence of para-
sites counteracted the effects of drift, leading to higher levels
of allelic diversity within populations and lower levels of dif-
ferentiation between populations. Although more diverged
and in possession of an adaptive immune response, humans
also show patterns in their innate immune genes that are sim-
ilar to what we find here: while numerous single genes show
signs of directional selection, innate immune genes have glob-
ally experienced stronger purifying selection than nonimmune
genes (Mukherjee et al. 2009; Deschamps et al. 2016). To-
gether, these results highlight that immune evolution is more
complex than the outlier scenarios that garner the greatest
attention in the literature. To fully understand immune adap-
tation, it will therefore be key to not only search out the points
of rapid divergence, but also consider what drives—or allows
for—the maintenance of low genetic variability across diverse
environments. This more inclusive view of immune evolution
will no doubt yield increased insight into the process of adap-
tation in this key ecological trait.
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Figure S1. Plot of each immune gene’s center recombination rate versus the mean of the
control genes’ center recombination rates as calculated with the Recombination Rate Calcula-
tor v 2.3 (Fiston-Lavier et al. 2010).
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Figure S2. Plot of each immune gene’s center recombination rate versus the mean control
genes’ center recombination rates as calculated by Comeron et al. (2012).
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Figure S3. Plot of transcript-level D. melanogaster-D. simulans divergence (Dn/Ds) as calculated
with the longest transcript pair versus our method which additionally chose the pair with the
fewest non-synonymous changes.
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Figure S4. Site frequency spectra for SNPs found within immune genes.
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