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ABSTRACT Statistical models in medical and population genetics typically assume that individuals assort randomly in a population.
While this simplifies model complexity, it contradicts an increasing body of evidence of nonrandom mating in human populations.
Specifically, it has been shown that assortative mating is significantly affected by genomic ancestry. In this work, we examine the
effects of ancestry-assortative mating on the linkage disequilibrium between local ancestry tracks of individuals in an admixed
population. To accomplish this, we develop an extension to the Wright–Fisher model that allows for ancestry-based assortative mating.
We show that ancestry-assortment perturbs the distribution of local ancestry linkage disequilibrium (LAD) and the variance of ancestry
in a population as a function of the number of generations since admixture. This assortment effect can induce errors in demographic
inference of admixed populations when methods assume random mating. We derive closed form formulae for LAD under an
assortative-mating model with and without migration. We observe that LAD depends on the correlation of global ancestry of couples
in each generation, the migration rate of each of the ancestral populations, the initial proportions of ancestral populations, and the
number of generations since admixture. We also present the first direct evidence of ancestry-assortment in African Americans and
examine LAD in simulated and real admixed population data of African Americans. We find that demographic inference under the
assumption of random mating significantly underestimates the number of generations since admixture, and that accounting for
assortative mating using the patterns of LAD results in estimates that more closely agrees with the historical narrative.
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ONE of themost common assumptions in human population
genetics analyses is that of Hardy–Weinberg Equilibrium

(HWE). TheHWEassumption in turn enforces a set of additional
conditions including the absence of selection, infinite population
size, and importantly, random mating. Assortative mating is a
common phenomenon (Mathews and Reus 2001; Risch et al.
2009) and many phenotypes including height, education
level, and personality traits are correlated between spouses
(Merikangas 1982). For Latinos and other admixed populations,
the African, Native-American, and European proportions of in-
dividual’s genomes can be correlated between spouses. We and

others have demonstrated that the genomic ancestry of Latino
couples is highly correlated (Risch et al. 2009; Zou et al. 2015),
and refer to this as ancestry-assortative mating. Thus, the as-
sumption of random mating and therefore HWE is not satisfied
in practice, and the implication of this observation for population
and evolutionary genetic studies remains unclear.

The assumption of random mating is used in many types of
population and quantitative genetics analyses. Particularly, ran-
dom mating is assumed both in analysis of population genetics
data and when inferring population parameters such as re-
combination rates, mutation rates, selection, heritability, and
others.Moreover,methods for quality control anddata cleaning
often make the random mating assumption. For example,
methods for haplotypephasing typically compute the likelihood
of the genotype as the product of the likelihoods of each of the
haplotypes, and this derivation is based on the randommating
assumption (Marchini et al. 2006). Similarly, such likelihood
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derivations are also common in methods for the inference of
identity-by-descent and inference of ancestry from genomic
data (Browning and Browning 2013). Thus far, the sensitivity
of these methods to the assumption of assortative mating has
not been evaluated. In principle, realistic violations of the ran-
dom mating assumption may not be detrimental to existing
methods; however, this needs to be taken to the test.

In this paper, we explore the robustness of specific genetic
features and their inference from genetic data to assortative
mating.Becauseancestryproportionhasbeenshowntobehighly
correlated in Latino spouses, we focused our analysis on the
behavior of ancestry linkage disequilibrium under assortative
mating. We propose a random generative model for population
dynamics under assortative mating that is due to population
structure. Our model follows the spirit of the Wright–Fisher
model, and makes the assumption that the correlation of ances-
try proportions between spouses stays fixed across generations.
Particularly, when the correlation of ancestry proportions is
zero, our model is equivalent to the Wright–Fisher model.

Wedevelopmathematical theory thatdescribes thedecayof
local ancestry disequilibrium (LAD) as a function of assortative
mating strength, migration rate, recombination rate, and the
number of generations since admixture began. Thus, one can
use these results to infer the demographic history of admixed
populations. Several methods for demographic inference in
admixed populations exist including ones that use patterns of
linkage disequilibrium (LD) decay (Loh et al. 2013), local an-
cestry track length distribution (Price et al. 2009), and the
distribution of identity-by-descent segments (Gravel et al.
2013). However, these methods assume random mating, and
under assortative mating LD decay follows a different pattern
(Parra et al. 2001). Using simulations, we demonstrate that
our mathematical derivation matches empirical LAD decay.
Furthermore, we develop the theory withmigration rates from
the ancestral populations, and we demonstrate that, in the
presence of assortative mating, one may erroneously conclude
that there has been active migration and vice versa.

We applied our analysis to a data set of 1730 African
Americans fromtheStudyofAfricanAmericans,Asthma,Genes
and Environments (SAGE) study (Borrell et al. 2013). The
existence of ancestry-assortative mating in African Americans
has been previously suggested by indirect examinations of re-
lated features including skin color and varying ancestry distri-
butions across geographic regions (Udry et al. 1971; Bryc et al.
2015; Baharian et al. 2016). Here, we present the first direct
evidence of ancestry-assortment in African Americans. We
usedANCESTOR (Zou et al. 2015) to show that the correlation
of African ancestry between the spouses in the last generation
is �0.32. We then used our analysis to infer the number of
generations and migration patterns in the African American
population. Under the assumption of no migrations and ran-
dom mating, an analysis of LAD resulted in an estimate of the
number of generations since admixture of three. Adding as-
sortment and migrations, we find that the estimated number
of generations since the admixture event is 15. Assuming a
generation time of 25 years, this places the initial migrations

in the mid-17th century, which is consistent with the history of
African Americans (Schroeder et al. 2015).

Methods

The model

We assume the following alternative to Wright–Fisher. Let N
be the number of individuals in each population. Each indi-
vidual has two haplotypes, so the total number of haplotypes
is 4N across both populations. Also, we assume the popula-
tion is a recently admixed population with two ancestral pop-
ulations (referred to as population 1 and population 2), and
let ui denote the fraction of the genome with population
1 ancestry in individual i.

In the next generation, each individual picks two parents
from the current generation, such that the correlation be-
tween the ancestry of the two parents is a fixed value P. One
way of generating such mating in silica is the following.
We randomly pick the set of mothers (with or without
replacement) from the original distribution. We then ran-
domly choose the set of fathers (with or without replace-
ments). Now, for each of the parents we give a score
scorei ¼ ui þ ei; where ui is the global ancestry of the parent,
and ei is drawn from a normal distribution Nð0;s2Þ:We then
sort the mothers and the fathers based on their score and we
let the mother with i-th largest score marry the father with
the i-th largest score. We then compute the correlation be-
tween corrðum; uf Þ; where uf ; um are the ancestries of the
mother and the father. We search for mate pairs that give
us an empirical corrðum; uf Þ within 0.01 of P by increasing s

by 10% when the correlation is too large and decreasing s by
10%when the correlation is too small. Faster algorithms may
exist, but this approach works well in practice. We note that
our analysis below does not rely on this specific procedure;
particularly, the distribution of parents for the new genera-
tion can be quite general, and our only assumption is that P is
constant across the generations. Note that this assumption
may seem restrictive at first, however the case of random
mating is far more restrictive, since there one requires that
P ¼ 0 in all generations.

LAD

Denote by gt
1 the probability of having an allele from ancestry

1 at a given position at generation t. Furthermore, for a pair of
positions, let gt

11 denote the probability of having an allele
from ancestry 1 at the two positions. We define a new statis-
tic, termed LAD, denoted by LAD:We define LAD ¼ g11 2 g2

1:

We are interested in the expected value of LADt (LAD at
generation t) as a function of the recombination rate r, the
number of generations t, and the original LAD LAD0:

For the following derivations, we will assume that the
population and genome size are infinite. We will later show
empirically that the infinite population size assumption does
not have a substantial effect for realistic values of N. We will
first assume that there is no migration and we will relax this
assumption in the next section.
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Since there is no migration and the population size is
infinite, the mean of u is fixed across the generations (re-
member that the marginal distribution of the mothers and
the fathers is the same and is simply a random draw from the
current generation) (Chakraborty and Weiss 1988). We de-
note m ¼ E½u� and let ut the ancestry of random individual
from generation t where t ¼ 0 is the onset of admixture. Let
Vt ¼ VarðutÞ be the variance of u in generation t. Note that the
expectations and variances are defined over the set of all
individuals in one generation, rather than over multiple re-
alizations of the process. Finally, let rt ¼ PVt be the covari-
ance rt ¼ covðum; uf Þ: For t.1 we have:

Vtþ1 ¼ E
�
u2tþ1

�
2m2

¼ E
��
utm þ utf

��
utm þ utf

��
4
�
2m2

¼ 1
4

�
2E

�
u2t
�þ 2E

�
utmu

t
f
��

2m2

¼ 1
2

�
m2 þ Vt þ rt þ m2�2m2

¼ Vtð1þ PÞ
2

This demonstrates that the variance of genome-wide ancestry
is larger when there is assortative mating. Note that previous
work has shown that sampling from a finite genome can lead
to substantial departures for the distribution of u across time
even under random mating (Gravel 2012). Now, we know

rtþ1 ¼ PVtþ1 ¼ PVtð1þ PÞ
2

¼ 1þ P
2

rt (1)

Note that for t ¼ 0; r0 ¼ V0 since there was no assortative
mating prior to the admixture event, and therefore for t ¼ 1
the above calculation gives V1 ¼ V0; and r1 ¼ PV0 ¼ Pr0: To
simplify the notation, we change the indices, so that genera-
tion t ¼ 2 1 corresponds to the time of encounter of the two
populations and t ¼ 0 is the first generation after admixture.
Therefore, we have that Equation 1 holds for every t$ 1:

We now find a recursion formula for LADt: Let r be the
probability for an odd number of recombinations between
the two positions in a given meiosis. Hence,

LADtþ1 ¼ gtþ1
11 2m2

¼ ð12 rÞgt11 þ rE
�
utmu

t
f

�
2m2

¼ ð12 rÞLADt þ r
�
E
�
utmu

t
f

�
2m2

�
¼ ð12 rÞLADt þ rrt

We are now ready to describe our main result:

Lemma 3.1:

LADt ¼ ð12rÞtLAD0 þ rr0
ð1þ PÞt 2 ð12rÞt2t
2t21ðPþ 2r2 1Þ

Proof. We show this is true by induction. It is easy to verify
that since LAD1 ¼ ð12 rÞLAD0 þ rr0; the base case t ¼ 1

holds. Assume the lemma holds for t and we will prove it
for t þ 1:

LADtþ1 ¼ ð12 rÞLADt þ rrt

¼ ð12rÞtþ1LAD0 þ ð12 rÞrr0
ð1þ PÞt 2 ð12rÞt2t
2t21ðPþ 2r21Þ þ rrt

¼ ð12rÞtþ1LAD0 þ rr0

�
ð12 rÞ ð1þ PÞt 2 ð12rÞt2t

2t21ðPþ 2r21Þ þ ð1þ PÞt
2t

�

¼ ð12rÞtþ1LAD0 þ rr0
ð1þ PÞtþ1 22tþ1ð12rÞtþ1

2tðPþ 2r2 1Þ

LAD under migration

We now assume that, in each generation, a fractionm1 of the
population is replaced by individuals from the first popula-
tion (u ¼ 1), and a fraction m0 of the population is replaced
by individuals from the population u ¼ 0: We denote by
m ¼ m1 þm0; and a ¼ m1=m: Since there is migration, the
mean global ancestry is changing over time, and we let
mt ¼ E½ut� the average values of u when an individual is ran-
domly sampled from the population. For simplicity of nota-
tion, we denote xt ¼ mt 2a; and we note that xt is
exponentially decreasing. Since mtþ1 ¼ amþ ð12mÞmt; we
have that xtþ1 ¼ ð12mÞxt and therefore xt ¼ x0ð12mÞt:

We now show the following lemma:

Lemma 3.2: If there is a sequence y0; y1; . . . ; satisfying the
recursion equation ytþ1 ¼ ð12mÞq1yt þ a3x2t þ a2qt2xtþ
a1xt þ a0; where xt is defined as above, and ai; qi are abitrary
constants, then

yt ¼ b4x2t þ b3qt1xt þ b2qt2xt þ b1xt þ b0

where:

b0 ¼ a0
12 ð12mÞq1

b1 ¼ a1
ð12mÞð12 q1Þ

b2 ¼ a2
ð12mÞðq2 2 q1Þ

b4 ¼ a3
ð12mÞð12m2 q1Þ

b3 ¼ y0 2 b4x20 2 ðb1 þ b2Þx0 2 b0
x0

Proof. To prove the base of the induction, we need to satisfy
y0 ¼ b4x20 þ ðb1 þ b2 þ b3Þx0 þ b0; which is a simple linear
equation. We will show that the induction step adds two
more linear equations. Assume the lemma holds for t, and
consider ytþ1 :

ytþ1 ¼ ð12mÞq1yt þ a3x2t þ a2qt2xt þ a1xt þ a0

¼ ð12mÞq1
�
b4x2t þ b3qt1xt þ b2qt2xt þ b1xt þ b0

�
þ a3x2t þ a2qt2xt þ a1xt þ a0
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Now, note that xtþ1 ¼ ð12mÞxt: Therefore:

ytþ1 ¼
�
q1b4ð12mÞ þ a3

ð12mÞ2
�
x2tþ1 þ b3qtþ1

1 xtþ1

þ
�
b2q1ð12mÞ þ a2

q2ð12mÞ
�
qtþ1
2 xtþ1

þ
�
q1ð12mÞb1 þ a1

12m

�
xtþ1 þ ðð12mÞq1b0 þ a0Þ

Substitution gives the definitions of bi stated above.
Next, we observe:
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2

By Lemma 3.2, we have Vt ¼ b4x2t þ b3xt
ð1þ PÞt

2t
þ b0; for

b4; b3; b0 specified in the lemma. Note that, based on the
lemma’s proof, b1 ¼ b2 ¼ 0: Now,

LADtþ1 ¼ gtþ1
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tþ1
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Therefore, noting that mtþ1 ¼ ð12mÞxt þ a; we have

LADtþ1 ¼ ð12mÞð12 rÞLADt þ ð12mÞm2
t 2m2

tþ1 þ am

þ ð12mÞrrt
¼ ð12mÞð12 rÞLADt

þ ð12mÞðxt þ aÞ2 2 ðaþ xtð12mÞÞ2 þ am

þ ð12mÞrrt
¼ ð12mÞð12 rÞLADt þ x2t mð12mÞ þmað12aÞ

þ ð12mÞrrt

Now, recall rt ¼ Pb4x2t þ Pb3xt
ð1þPÞt

2t þ Pb0: Therefore, we have
the form LADtþ1 ¼ ð12mÞq1LADt þ a3x2t þa2qt2xt þ a1xt þ a0
satisfying Lemma 3.2 with the following values:

q1 ¼ 12 r

q2 ¼ 1þ P
2

a3 ¼ ð12mÞðmþ rPb4Þ
a2 ¼ ð12mÞrPb3
a1 ¼ 0

a0 ¼ amð12aÞ þ ð12mÞrPb0
Thus, for c0; c1; c2; c3; c4 taken from Lemma 3.2 we have

LADt ¼ c4x2t þ c3qt1xt þ c2qt2xt þ c1xt þ c0:

Plugging in the values of q1; q2; and the fact that
xt ¼ x0ð12mÞt; we get

LADt ¼ c4x20ð12mÞ2t þ x0ð12mÞt
�
c3ð12rÞt þ c2ð1þ PÞt

2t
þ c1

�
þ c0

(2)

Data availability

All genetic data are available via dbGAP with the accession
number phs000355.v1.p1 and software is freely available at
https://github.com/dpark27/ancassort.

Results

Whenapplied to thegenome,wecanestimate thevalueofLAD
for known values of r by averaging the observed LAD across
the genome.We can now fit the values ofm; t; and P based on
the distribution of the LAD as a function of r in the current
generation. Therefore, it is important to understand the de-
pendency of the distribution of LAD for varying values of r as

Figure 1 The distribution of local ancestry linkage disequilibrium (LAD)
for different values of t with no migration (and P ¼ 0:6). The thick lines
correspond to the expected LAD based on Lemma 3.1, and the thin lines
correspond to simulation runs of a single locus in the genome.
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a function of t; P; and m. In what follows, we explore the
behavior of LAD under different settings.

We first consider the casewherem1 ¼ m2 ¼ 0; i.e., there is
no migration, and P ¼ 0:6: In Figure 1, we observe that there
is a clear separation between the different curves for the
different numbers of generations since admixture, and it
should therefore be easy to estimate the time of admixture
event under the assumption of no migration and P ¼ 0:6:

Next, we study the effect of P on the LAD distribution. In
Figure 2, we plot the LAD distribution under no migration,
after 10 generations of admixture, with varying values of
P. Evidently, strong assortative mating with large values of
P results in a substantially different levels of LAD. However,
we observe that low values of P are harder to distinguish, and
therefore we expect that random mating is a robust assump-
tion for any statistic that uses LAD or its derivatives, as long as
assortative mating is weak (e.g., P, 0:5).

Since typical analysis of genetic data assumes random
mating, we attempted to understand the potential risk in
making the assumption in the presence of assortative mating.
Thus, we consider the case where there is assortative mating,
and we try to estimate the time of admixture under the
assumption of random mating. For ancient admixture, the
difference between the estimates under assortative mating
and random mating is not substantial (about 10%, data not
shown). For recent admixture (10–20 generations), we ob-
serve that there is a considerable difference between the true
LAD curve compared to the LAD curve under random mating
and, moreover, the true LAD curve is similar to LAD curves
that assume random mating but that are substantially more
recent. Specifically, in Figure 3, the admixture event occurred
10 generations ago under a strong assortative mating
(P ¼ 0:8); however under random mating, the LAD curve
that corresponds to t ¼ 4 is the most similar to the true

LAD curve. In Figure 4, the admixture event occurred 15 gen-
erations ago under a somewhat weaker assortative mating
(P ¼ 0:6), while the estimated number of generations would
be 11 under random mating.

Next, we explore the effect of migration on the LAD func-
tion. We consider both the case where the two populations
migrate at the same rate (m1 ¼ m2) as shown in Figure 5, as
well as the case in which m1 ¼ 0; as shown in Figure 6. Ev-
idently, the theoretical calculations capture the empirical
well in the sense that they allow for a clear distinction be-
tween different migration rates.

Wenote thatmigrationandassortativemating can result in
similar LAD decay. We estimated the LAD curve using the
formula of Lemma 3.1 under randommating with migration,
as well as under assortative mating with different values of
migration. Since the parameter space (m1;m2; P) is large,
there are triplets of values with very similar LAD curves, thus
in practice the model parameters will not necessarily be iden-
tifiable. In Figure 7 we present an example where identifi-
ability requires the comparison of LAD decay over dozens of
megabases.

Results on real data

To examine the properties of our model in real data, we used
genetic data from1730AfricanAmerican individuals from the
SAGE study. The individuals in the SAGEdatawere genotyped
at 800,000 SNPs on the Affymetrix Axiom Genome-Wide LAT
1 Array, and genotype calling and quality control (QC) were
performed as previously described (Torgerson et al. 2012).

To compute LAD, we first called local ancestry using the
LAMP-LD software package (Pasaniuc et al. 2013) and ge-
nome-wide ancestry was inferred from the mean value of
local ancestry for each individual. We measured the LAD

Figure 2 The distribution of local ancestry linkage disequilibrium (LAD)
for different values of P with no migration and t ¼ 10: The thick lines
correspond to the expected LAD based on Lemma 3.1, and the thin lines
correspond to simulation runs of a single locus in the genome.

Figure 3 Demonstrating the effect of a random mating assumption
when truly P ¼ 0:8;   t ¼ 10: All curves correspond to scenarios with no
migrations. The thick lines correspond to the expected local ancestry
linkage disequilibrium (LAD) based on Lemma 3.1, and the thin lines
correspond to simulation runs of a single locus in the genome.
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decay in 164 10-Mb overlapping windows with a 1 Mb over-
lap. We calculated themean LAD decay across all windows as
well as the squared distance of each window to the mean.
Regions that are under selection or in which the estimates
of recombination rates are inaccurate will result in a differ-
ent LAD decay. Therefore, we performed additional QC by
removing windows with a LAD decay . 2 SD from the
mean. We repeated this process until convergence, leaving
96 windows.

We measured the assortative mating over the last gener-
ation by applying themethod ANCESTOR (Zou et al. 2015) to
the data. ANCESTOR takes as input local and global ancestry
and determines the ancestral proportions of the mother and
the father of each individual. The Pearson correlation coeffi-
cient between the parental ancestries was P ¼ 0:32 esti-
mated across all individuals. This establishes that there was
strong spousal ancestry correlation in African Americans in
the last generation. If this ancestry-based assortative mating
exists in previous generations, our theory shows that LAD
decay will be affected. Under the assumption that this corre-
lation was stable throughout history, one can use this esti-
mate to constrain the potential demographic histories of
African Americans inferred via LAD.

We fitted themigration and assortativemating parameters
using a grid search over the entire range of parameters. The
best fit resulted in an estimate of t ¼ 13 generations, with
migration rates m1 ¼ 0:01;m2 ¼ 0:05; and assortative mat-
ing P ¼ 0:46 (Figure 8A). Next, we made the assumption of
no migration by searching the grid but with the constraint
m1 ¼ m2 ¼ 0; but we allowed for assortative mating. In this
case, the number of generations was dramatically shortened
to eight generations, and the assortative mating value in-
creased dramatically to P ¼ 0:6 (Figure 8B). Similarly, we

search the grid with the constraint P ¼ 0 to study the case
of random mating with migration. In this case the number of
generations was 16, and the migration values slightly in-
creased to m1 ¼ 0:02;m2 ¼ 0:05 (Figure 8C). Finally, under
random mating and no migration the estimated number of
generation is t ¼ 3; which is clearly a vast underestimate of
the true number based on the known history of African Amer-
icans (Figure 8D). Notably, there is no good fit under random
mating and no migration, and the best fit is obtained in the
presence of both migration and assortative mating.

Clearly, the LAD decay is only one summary statistic that
depends on the parameters m1;m2; t; P; and other statistics
may give somewhat different results. For example, it may be
possible to examine the distribution of IBD (Gravel et al.
2013), local ancestry (Price et al. 2009), and LD (Loh et al.
2013) under an assortative matingmodel. Moreover, the LAD
decay is not identifiable since different sets of parameters
often lead to similar LAD decay. In particular, in the case of
the African Americans in SAGE, the best fit was followed by a
few different sets of parameters. Under the assumption that
P ¼ 0:32 is fixed across the generations, the best fit was
with t ¼ 15 generations, and the migration rates were
m1 ¼ 0:08;m2 ¼ 0:01: Due to the computational complexity
of the grid search used to estimate model parameters, it was
not feasible to estimate confidence intervals. However, as was
the case in simulations, migration rates and generation times
could be altered to accommodate the removal of assortative
mating from the model.

Discussion

We presented an adaption of the Wright–Fisher model
that incorporates ancestry-assortative mating in admixed

Figure 4 Demonstrating the effect of a random mating assumption
when truly P ¼ 0:6;   t ¼ 15: All curves correspond to scenarios with no
migrations. The thick lines correspond to the expected local ancestry
linkage disequilibrium (LAD) based on Lemma 3.1, and the thin lines
correspond to simulation runs of a single locus in the genome.

Figure 5 The distribution of local ancestry linkage disequilibrium (LAD)
for different values of m1;m2; with equal migration rates from both
populations. The thick lines correspond to the expected LAD based on
Equation 2, and the thin lines correspond to simulation runs of a single
locus in the genome.
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populations. We demonstrated that, under this model, the
LAD between markers is a function of their recombination
rate, the ancestral population migration rates, and the
strength of ancestry-based assortment. Assortative mating
is likely impacting other estimates of population and medical
genetic parameters, both within admixed and continental
populations including identity-by-descent distributions, esti-
mates of heritability, joint site frequency spectra, runs of ho-
mozygosity, and the distribution of local ancestry track
lengths.

While the focus of this work is the definition and pre-
sentation of the ancestry-assortativemodel and its properties,
wealsoestimated theparameters of themodel in a realAfrican
American data set. Our estimate of 15 generations since
admixture in African Americans is larger than previous esti-
mates (Price et al. 2009; Bryc et al. 2015; Baharian et al.
2016), and is consistent with admixture beginning with the
slave trade in the mid-17th century and a 25-year generation
time. This suggests that taking assortative mating into ac-
count may, in some cases, be critical to obtain the correct
demographic history or other population parameters.

Previouswork has also leveraged LDproperties of admixed
genomes to infer aspects of demographic history (Moorjani
et al. 2011; Loh et al. 2013). These Alder and Roloff statistics
use a similar idea to the LAD statistic, but rely on linkage
disequilibrium between genotypes as opposed to local ances-
try. However, they assume random mating, which likely re-
sults in an underestimate of the number of generations in the
presence of assortative mating. In future work, it will be in-
teresting to examine the Alder/Roloff statistics in the pres-
ence of assortative mating.

The approach we presented for estimating the number of
generations since admixture using LAD has its limitations.
First, this approach involves a very inefficient grid search,

resulting in an inability to provide errors around estimates via
bootstrap. Second, in some cases, both migration and assor-
tative mating can give rise to similar LAD distributions, and
therefore in those cases one can mistakenly believe that the
migration is higher and assortative mating is lower or vice
versa. However, the latter raises an interesting question; in
previous attempts to learn the demographic histories of hu-
mans and other species, is it the case that the migration
coefficients were inflated, or that the number of generations
since admixture were deflated, due to assortative mating?

Going forward, it will be interesting to determine if assor-
tative mating has biased other recent estimates of demo-
graphic events, such as the introgression of Neanderthals
(Sankararaman et al. 2014) or the domestication of dogs
and pigs (Freedman et al. 2014; Frantz et al. 2015). We will
also explore extensions to multi-way admixed populations
and the use of MCMC to provide confidence intervals for
parameter estimates. In addition to altering the distribution
of LAD, we have shown that assortative mating increases
the variance of global ancestry. Under certain polygenic
models this will induce a concomitant increase in phenotypic
variance, which may have implications for selection and
evolution.

Our method makes several strong assumptions, which
are likely incorrect, such as constant ancestry-assortment
strength andmigration rates. However, these are a relaxation
of previous methods, since, for example under the standard
Wright–Fisher model, both randommating and no migration
are assumed, and thus both migration rates and ancestry-
assortative strengths are fixed across the generations in this
case (fixed with value 0). While assortative mating has been
well-studied, to the best of our knowledge this is the first

Figure 7 The expected local ancestry linkage disequilibrium (LAD) decay
under two conditions, one with assortative mating and another with
random mating. In the presence of migration, the two curves almost
overlap, and distinguishing between the two cases will be challenging
in practice, particularly if LAD is measured only up to a few dozen cen-
timorgans.

Figure 6 The distribution of local ancestry linkage disequilibrium (LAD)
for different values of m1;m2; with no migration from population 1. The
thick lines correspond to the expected LAD based on Equation 2, and the
thin lines correspond to simulation runs of a single locus in the genome.
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attempt to include ancestry-assortment in the estimation of
demographic histories. We also reported, for the first time,
the strength of ancestry-assortment in African Americans
in the previous generation. In future work, we intend to ex-
amine the effect of ancestry-assortment on other genetic
features as well as the resulting impact in population and
medical genetics.
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estimated as 16. (D) The best fit under the assumption of random mating and no migration – the number of generations is estimated as 3.
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