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ABSTRACT Gene expression is imperfect, sometimes leading to toxic products. Solutions take two forms: globally reducing error rates,
or ensuring that the consequences of erroneous expression are relatively harmless. The latter is optimal, but because it must evolve
independently at so many loci, it is subject to a stringent “drift barrier”—a limit to how weak the effects of a deleterious mutation s can
be, while still being effectively purged by selection, expressed in terms of the population size N of an idealized population such that
purging requires s , 21/N. In previous work, only large populations evolved the optimal local solution, small populations instead
evolved globally low error rates, and intermediate populations were bistable, with either solution possible. Here, we take into
consideration the fact that the effectiveness of purging varies among loci, because of variation in gene expression level, and variation
in the intrinsic vulnerabilities of different gene products to error. The previously found dichotomy between the two kinds of solution
breaks down, replaced by a gradual transition as a function of population size. In the extreme case of a small enough population,
selection fails to maintain even the global solution against deleterious mutations, explaining the nonmonotonic relationship between
effective population size and transcriptional error rate that was recently observed in experiments on Escherichia coli, Caenorhabditis
elegans, and Buchnera aphidicola.
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IN classical population genetic models of idealized popula-
tions, the probability of fixation of a new mutant depends

sharply on the product of the selection coefficient, s, and the
population size, N. As s falls below 21/N, fixation probabil-
ities drop exponentially, corresponding to efficient selective
purging of deleterious mutations. For s . 21/N, random
genetic drift makes the fate of new mutants less certain. This
nonlinear dependence of fixation probability on sN has given
rise to the “drift barrier” hypothesis (Lynch 2007), which
holds that populations are characterized by a threshold or
“barrier” value of the selection coefficient, s, corresponding
to the tipping point at which the removal of deleterious muta-
tions switches between effective and ineffective. In idealized
populations, described byWright-Fisher or Moran models, the

drift barrier is positioned at s = �21/N. Drift barriers also
exist, albeit sometimes with less abrupt threshold behavior, in
more complexmodels of evolution inwhich some assumptions
of an idealized population are relaxed (Good and Desai 2014).

Thedrift barrier theoryargues thatvariationamongspecies
in their characteristic threshold values for s, thresholds that
are equal by definition to the inverse of the selection effective
population size, Ne, can explain why different species have
different characteristics, e.g., streamlined vs. bloated genomes
(Lynch 2007). The simplest interpretation of the drift barrier
would seem to imply that large-Ne species show stricter quality
control over all biological processes, e.g., higherfidelity inDNA
replication, transcription, and translation, than small-Ne spe-
cies, because molecular defects in quality control mechanisms
are less effectively purged in the latter (Lynch 2010; Traverse
and Ochman 2016a).

However, the data reveal more complex patterns. Unsur-
prisingly, Buchnera aphidicola, which has exceptionally low
Ne (Mira and Moran 2002; Rispe et al. 2004), has a higher
transcriptional error rate, at 4.67 3 1025 (Traverse and
Ochman 2016b), than the error rate 4.1 3 1026 previously
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reported for Caenorhabditis elegans (Gout et al. 2013). But,
to the surprise of the authors, the error rate in large-Ne

Escherichia coli is highest of all, at 8.23 3 1025 (Traverse
and Ochman 2016b).

A more refined drift barrier theory can explain these
findings. As the fitness burden accumulates from the slightly
deleterious mutations that a small-Ne species cannot purge,
some forms of quality control may evolve as a second line of
defense. The ideal solution is to purge all deleterious muta-
tions, even those of tiny effect; when this first line of defense
fails, the second line of defense is to ameliorate the cumula-
tive phenotypic consequences of the deleterious mutations
that have accumulated (Frank 2007; Rajon and Masel
2011; Warnecke and Hurst 2011; Lynch 2012; Wu and Hurst
2015). The first line of defense bears no fitness cost (purging
is free), but faces a stringent drift barrier; the second line of
defense also solves the problem but at a cost. In some circum-
stances, as described further below, strict quality control can
act as a second-line amelioration strategy (Rajon and Masel
2011). The existence of two distinct lines of defense compli-
cates the naive drift barrier logic that large-Ne species should
generally exhibit stricter quality control in all molecular
processes. The superior performance of large-Ne species in a
primary line of defense other than quality control may remove
any advantage of strict and costly quality control as a second-
ary line of defense. This creates a seemingly counter-intuitive
pattern in quality control, in which small-Ne species can evolve
more faithful processes than large-Ne species such as E. coli.

The existence of two substantively different strategies was
first proposed by Krakauer and Plotkin (2002), who con-
trasted “redundancy” (robustness to the consequences of
mutational errors) with “antiredundancy” (hypersensitivity
to mutations). By positing that the redundancy strategy is
costly, they find that only small-Ne species suffer from a large
enough drift load (Kimura et al. 1963) to make this cost, and
hence redundancy, worthwhile. Large Ne species not bur-
dened by drift load are able to adopt the alternative antire-
dundancy strategy, which bears no cost, and hence allows the
population to achieve higher fitness.

A related argument was made by Rajon and Masel (2011)
in the context of mitigating the harms threatened by errors in
molecular processes such as translation. Rajon and Masel
(2011) distinguished between “local” solutions, where a sep-
arate solution is required at each locus, and “global” solutions
that can deal with problems at many loci simultaneously.
The evolution of extensive quality control mechanisms was
deemed a global solution because a single mutation impacting
general quality control mechanisms can affect the prevention
of gene expression errors at many loci. Note that quality con-
trol includes not only mechanisms such as proofreading for
preventing errors from happening in the first place, but also
mechanisms that reduce downstream damage from errors,
e.g., degradation of mRNA molecules that seem faulty. Global
quality control should come with a cost in time or energy.

Rajon and Masel’s (2011) alternative, local solution is
to have a benign rather than a strongly deleterious “cryptic

genetic sequence” at each locus at which expression errors
might occur, making the consequence of an error at that locus
relatively harmless. In contrast to the global solution,
these local solutions bear no direct fitness cost, but be-
cause selection at any one locus is weak, they are more
difficult to maintain than global solutions. The local solution
corresponds to a low number of mutations, k, in Krakauer
and Plotkin (2002).

Both the quality control of Rajon andMasel (2011) and the
redundancy of Krakauer and Plotkin (2002) to the conse-
quences of mutations are global across loci, and also costly.
Meantime, both the local solutions of Rajon and Masel
(2011) and the reduction in the number of mutations, k, that
accompanies the antiredundancy of Krakauer and Plotkin
(2002) carry no true fitness cost, but instead require a large-Ne

drift barrier as a limit to their adaptation. A mutation disrupt-
ing a solution specific to a single locus requires a large value
of Ne for its purging, whereas a mutation disrupting a global
quality control mechanism will have large fitness conse-
quences and so be easier to purge. As a consequence, only
large Ne populations evolve the higher-fitness local solution,
while it is the small Ne populations that evolve global solu-
tions such as extensive (and costly) quality control.

Selection to achieve the local solution by purging delete-
rious mutations to cryptic sequences (leaving in place geno-
types whose cryptic genetic sequences are benign) may be
difficult and hence restricted to high-Ne populations. There
are, however, reasons to believe that it is not impossible. For
example, when the error in question is reading through a stop
codon, the local cryptic genetic sequence is the 39UTR, which
is read by the ribosome. One option for a more benign form of
this cryptic sequence is the presence of a “backup” stop codon
that provides the ribosome with a second and relatively early
chance to terminate translation. Such backup stops are com-
mon at the first position past the stop in prokaryotes (Nichols
1970). In Saccharomyces cerevisiae, there is also an abun-
dance of stop codons at the third codon position past the stop
(Williams et al. 2004). Moreover, conservation at this posi-
tion depends strongly on whether or not the codon is a stop,
and the overrepresentation of stops at this position is greater
in more highly expressed genes (Liang et al. 2005). In some
ciliates, where the genetic code has been reassigned, so that
UAA and UAG correspond to glutamine, this overrepresenta-
tion is much more pronounced (Adachi and Cavalcanti
2009). As with the consequences of erroneous readthrough,
selective pressure on erroneous amino acid misincorporation
and/or misfolding (Drummond and Wilke 2008), and on
erroneous protein–protein interactions (Brettner and Masel
2012), are also strong enough to shape protein expression
and interaction patterns. In the case of transcriptional errors,
while both E. coli and B. aphidicola have high error rates, only
E. coli shows signs of having evolved a first line of defense in
the form of a decreased frequency, with which observed
transcriptional errors translate into nonsynonymous changes
relative to randomly sampled transcriptional errors (Traverse
and Ochman 2016a).
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Rajon and Masel (2011) found that, for intermediate val-
ues of Ne that correspond strikingly well to many multicellu-
lar species of interest, the evolutionary dynamics of the
system were bistable, with either the global or the local so-
lution possible. This is a natural consequence of a positive
feedback loop; in the presence of a strict global quality con-
trol mechanism, specialized solutions at particular loci are
unnecessary, and mutations destroying them pass through
the drift barrier (we use the expression “pass through the
drift barrier” to mean that 0 . s . 21/N), with their sub-
sequent absence increasing the demand for quality control.
Similarly, when specialized solutions predominate, the advan-
tage to quality control is lessened, and resulting higher error
rates further increase selection for many locally specialized
solutions. If true, this bistability suggests that historical con-
tingency, rather than the current value of Ne, determines
which processes are error-prone vs. high-fidelity for popula-
tions at intermediate Ne.

In the current work, we note that the model of Rajon and
Masel (2011) contained an unrealistic symmetry, namely that
the fitness consequence of a molecular error at one locus was
exactly equal to that at any other loci. Here, we find that, with
reasonable amounts of variation among loci (e.g., in their
expression level or the per-molecule damage from their mis-
folded form), the bistability disappears. Intermediate solu-
tions evolve instead, where cryptic deleterious sequences
are purged only in more highly expressed genes, and quality
control evolves to intermediate levels. Variation among loci
does not change the previous finding that evolvability tracks
the proportion of loci that contain a benign rather than a
deleterious cryptic sequence.

Thehigh rate of transcriptional error inB. aphidicola canbe
explained by adding a second bias toward deleterious muta-
tions (in error rate), and hence a second drift barrier to our
model. B. aphidicola and E. coli have high error rates for
different reasons; high-fidelity quality control is redundant
and unnecessarily expensive in E. coli, but unattainable in
B. aphidicola, leading to similarly high transcriptional error
rates.

Methods

Fitness

We follow the additive model of Rajon and Masel (2011), as
outlined below, with a few important modifications to accom-
modate variation in gene expression levels. The model’s ca-
nonical example is the risk that a ribosome reads through a
stop codon during translation.

The globalmitigation strategy is to improve quality control
of this gene expression subprocess.We assume that additional
quality control that reduces the error rate, r, by some pro-
portion, consumes a certain amount of time or comparable
resource. Relative to a generation time of 1 in the absence of
quality control costs, this gives generation time 1þ dlnð1=rÞ;
where d scales the amount of resources that could have been

used in reproduction, but are redistributed to quality control.
Malthusian fitness is the inverse of generation time, giving

wQC ¼ 1
1þ dlnð1=rÞ (1)

Following Rajon and Masel (2011), we set d = 1022.5, such
that reducing r from 1022 to 1023 corresponds to a 0.7%
reduction in fitness.

When a readthrough error happens, with frequency r,
the consequences for fitness depend on the nature of the
“cryptic sequence” that lies beyond the stop codon in the
39UTR. The consequences of mistakes, mutational or other-
wise, have a bimodal distribution, being either strongly del-
eterious (often lethal), or relatively benign, but rarely in
between (Eyre-Walker and Keightley 2007; Fudala and Korona
2009). For example, a strongly deleterious variant of a protein
might misfold in a dangerous manner, while a benign variant
might fold correctly, although with reduced activity. We assume
that alternative alleles of “cryptic genetic sequences” can be
categorized according to a benign/deleterious dichotomy.

The local mitigation strategy, the alternative to global
quality control, is thus for each cryptic sequence to evolve
away from “deleterious” options and toward “benign” op-
tions. The local strategy of benign cryptic sequences has no
direct fitness cost, but it is nevertheless difficult to evolve at
so many loci at once. In contrast, expressing deleterious cryp-
tic sequences has an appreciable cost. This cost scales both
with the base rate of expression of the gene, and the pro-
portion, r, of gene products that include the cryptic sequence.

Let the expression of gene i be Ei. We assign the concen-
tration Ei of protein molecules of type i by sampling values
of Ei from a log2-normal distribution with standard devia-
tion (SD) sE. We define D to be the total frequency of
protein expression that would be highly deleterious if ex-
pressed in error:

D ¼
P

i2loci with del crypt seqEiP
i2lociEi

(2)

where the numerator sums only over loci that are deleterious,
and the denominator sums over all loci. This normalization
cancels out the effect of the mean value of Ei. We assume the
costs of deleterious readthrough are additive across genes,
based on the concept that misfolded proteins (Thomas et al.
1995) may aggregate in a nonspecific and harmful manner
with other proteins and/or membranes (Kourie and Henry
2002), or may simply be expensive to dispose of (Goldberg
2003). After the stop codon is read through, translation will
usually end at a backup stop codon within the 39UTR. Under
the assumption of additivity, readthrough events will reduce
fitness by crD, where c represents the strength of selection
against misfolded proteins. Geiler-Samerotte et al. (2011)
found that an increase in misfolded proteins of �0.1% of
total cellular protein molecules per cell imposed a cost of
about 2% to relative growth rate. This gives an estimate
of c = 0.02/0.1% = 20.
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Readthrough involving benign cryptic sequences does not
incur this cost. However, when all cryptic sequences are
benign (i.e., D = 0), nothing stops r from increasing to
unreasonably large values, i.e., r . 0.5, which makes “erro-
neous” expression into the majority (and hence the “new
normal”) form. This represents the antiredundancy solution
of Krakauer and Plotkin (2002), in which any mutation has
an extremely deleterious effect; indeed, as their per-locus
penalty s (analogous to our rcE) approaches 1, the fit-
ness of their k = 0 genotype (analogous to our D = 0)
approaches infinity. To avoid this scenario in our model of
quality control, we add a cost in fitness cr2(12D), whose
impact is felt only at high values of r. One possible biological
interpretation of this second order term is that, with proba-
bility r2, readthrough occurs not just through the regular stop
codon, but also through the backup stop codon at the end
of the benign cryptic genetic sequence. To reflect the effects
of the double-error scenario under this interpretation, we
therefore multiplied the second order term by the probabil-
itymdel/(mdel + mben) that a neutrally evolving cryptic sequence
will be deleterious, where mdel is the rate of deleterious-to-
benign mutations, and mben the reverse rate. Other double-
error interpretations might involve different constants. In
our case, the fitness component representing the cost of
misfolded proteins is given by

wmisfolding ¼ max
�
0; 12 crD2 cr2ð12DÞ mdel

mdel þ mben

�

(3)

Equation 3 is a natural extension of the additive model of
Rajon and Masel (2011), generalizing to the case of variation
in the degree of importance of cryptic loci. Where previous
work referred to the number, Ldel, of loci having the deleterious
rather than benign form, we now distinguish between two
measures, Ldel and D, the latter reporting the proportion of
gene product molecules rather than the number of gene loci.

Rajon andMasel (2011) also obtained near-identical results
using a very different, multiplicativemodel.While this suggests
that the exact function form of Equation 3 is unimportant, we
chose the additive Equation 3model as themore reasonable of
the two options. The multiplicative model is premised on loss-
of-function of the wild-type proteins, which likely has negligi-
ble impact for small losses of a protein whose activity is already
close to saturation. In contrast, the additive model is premised
on gain-of-negative-function effects of misfolded proteins.
These plausibly constitute a major burden on fitness, through
a combination of toxicity, disposal costs, and resources spent to
replace a faulty molecule with a normal one.

To study evolvability, let a subset of K (typically 50) out of
the L (typically$600) loci affect a quantitative trait, x, selec-
tion on which creates a third fitness component. Error-free
expression of locus, k, occurring with frequency 12r, has
quantitative effect ak, while expression that involves a benign
version of the cryptic sequence has quantitative effect
ak þ bk: Expression that involves a deleterious version of

the cryptic sequence is assumed to result in a misfolded
protein that has no effect on the quantitative trait. We
assume that expression level, Ek, is constant and already
factored into values of ak and bk. This gives

x ¼
XK
k

½ð12 rÞak þ rBkðak þ bkÞ� (4)

where Bk=1 indicates a benign cryptic sequence, and Bk=0 a
deleterious one. As in Rajon and Masel (2011), we impose
Gaussian selection on x relative to an optimal value xopt

wtraitðxÞ ¼ e
2ðx2xoptÞ2

2sf
2 (5)

where sf = 0.5.
Putting the three fitness components together, the relative

fitness of a genotype is given by the product

w ¼ wQC 3wmisfolding3wtrait: (6)

Variance in expression levels

We estimated the variance in expression sE
2 from PaxDB

(Wang et al. 2012, 2015), which is based on data released
by the Global Proteome Machines (GMP) and other sources.
We inferred sE equal to 2.24 (based on GMP 2012 release) or
3.31 (GMP 2014 release), for S. cerevisiae, and 2.93 (GMP
2014 release) for Schizosaccharomyces pombe. Note that,
while our quantitative estimate of sE comes from variation
in the expression levels of different proteins, consideration of
variation along other lines might make a SD of 2.25 into a
conservative underestimate of the extent of variation. See
Supplemental Material, Figure B in File S1 for an exploration
of this parameter value.

Mutation

Thereare sixkindsofmutation: (1)conversionofadeleterious
cryptic sequence to a benign form, (2) conversion frombenign
to deleterious, (3) change to the error rate, r, (4) change in the
a value of one of the K quantitative trait genes, (5) change in
the b value of one of those K genes, and (6) the co-option of a
cryptic sequence to become constitutive, replacing the value of
replacing akwith that of ak + bk and reinitializing Bk and bk.

It is this sixth kind of mutation that is responsible for the
evolvability advantage of the local solution of benign cryptic
sequences, providingmoremutational rawmaterial by which
x might approach xopt (Rajon and Masel 2011, 2013). The
mutational co-option of a deleterious sequence (B = 0) is
too strongly deleterious to be favored, even when replacing
ak and bk might be advantageous. In other words, only be-
nign cryptic sequences are available for mutational co-option.
We use the term co-option of a 39UTR readthrough sequence
to refer to the case when a stop codon is lost by mutation, and
not just read through by the ribosome (Giacomelli et al. 2007;
Vakhrusheva et al. 2011; Andreatta et al. 2015). Mutational
co-option for mimicking the consequences of errors other
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than stop codon readthrough might involve mutations that
change expression timing to make a rare protein–protein in-
teraction common, or switch a protein’s affinity preference
between two alternative partners.

Because we use an origin-fixation approach to simulate
evolution (seebelow),only relativeandnotabsolutemutation
rates matter for our outcomes, with the absolute rates setting
only the timescale—our rates are therefore effectively unit-
less. We use the same mutation rates as Rajon and Masel
(2011), reduced 10-fold for convenience. Each locus with
a benign cryptic sequence mutates to deleterious at rate
mdel = 2.4 3 1028, while deleterious loci mutate to benign
less often, at rate mben = 6 3 1029. Changes to the error
rate r occur at rate, mr = 1026, while the a and b values of
quantitative loci each change with rates ma = 3 3 1027

and mb = 3 3 1028, respectively. Mutational co-option oc-
curs at each quantitative locus at ratemcoopt = 2.56 3 1029.

Each mutation to r increases log10r by an amount sam-
pled fromNormal(rbias, sr

2). By default, we set rbias = 0 and
sr = 0.2. To study extremely small populations with drift bar-
riers to evolving even a global solution, we set rbias = 0.256
and 0.465, corresponding to ratios of r-increasing mutations:
r-decreasing mutations of 9:1 and 99:1, respectively.

A similar scheme for a and b might create, in the global
solution case of relaxed selection, a probability distribution of
b whose variance increases in an unbounded manner over
time (Lande 1975; Lynch and Gabriel 1983). Following pre-
vious work (Rajon and Masel 2011, 2013), we therefore let
mutations alter a and b by an increment drawn from a nor-
mal distribution with mean –a/a or –b/a, with a set to 750,
and with SD of sm/K in both cases, with sm set to 0.5. In the
case of neutrality, this mutational process eventually reaches
a stationary distribution with mean 0 and SD as calculated in
Equation S3 of Rajon and Masel (2011):

Vða;K;smÞ ¼ ðsm=KÞ2
12 ðða21Þ=aÞ2 (7)

A co-option at gene k changes the gene’s quantitative effect to

ð12 rÞðak þ bkÞ þ rB9k
�
ak þ bk þ b9

k

�
(8)

where Bk’ and bk
9 are the state and the quantitative effect of

a new cryptic sequence created by co-option. Following a
co-option mutation at locus k, we set the new Bk equal to
1 or 0, with probabilities proportional to mben and mdel, and
resample the value of bk from Normal[0, V(a, K, sm)].

Evolutionary simulations by origin-fixation

We model evolution using an approach known as “weak mu-
tation” (Gillespie 1983), or “origin-fixation” (McCandlish
and Stoltzfus 2014). This approximation of population genet-
ics is accurate in the limit where the waiting time until the
appearance of the next mutation destined to fix is substantially
longer than its subsequent fixation time. The population can
then be approximated as genetically homogeneous in any

moment in time. While unrealistic for higher mutation rates
and larger population sizes, origin-fixation models are compu-
tationally convenient. Still more importantly, origin-fixation
models, unlike more realistic models with segregating varia-
tion, allow the location of the drift barrier to be set externally
in the form of the value of the parameter,N, rather than having
the location of the drift barrier emerge from complicated link-
age phenomena within the model. Fortunately, for quantita-
tive traits affected by multiple cryptic loci, most evolvability
arises from diversity of the effects of co-option of different
loci, rather than among the diversity of the effects of co-option
from different starting genotypes (Rajon and Masel 2013).
This allows us to study evolvability [in the population sense
of Wagner (2008)], even in the absence of genetic diversity
that is imposed by the origin-fixation formulation.

Our computationally efficient implementation of origin-
fixation dynamics is described in detail in File S1, simulating
a series of mutations that successively fix, and the waiting
times between each.

Initialization and convergence

We initialized the trait optimum at xopt = 0. We could have
initialized all values of ak and bk at zero. However, at steady
state, variance in

PK
1ak and

PK
1bk is far lower than would be

expected from variance in ak and bk—this emerges through a
process of compensatory evolution (Rajon and Masel 2013).
Allowing a realistic steady state to emerge in this way is
computationally slow under origin-fixation dynamics, espe-
cially when N is large. We instead sampled the initial values
of ak and bk from Normal[0, V(a, K, sm)], where V(a, K, sm)
is defined by Equation 7, and then subtracted a from ak, and
b from bk, where a and b are the means of a genotype across
each of its quantitative loci, k. This process initializes ak and
bk to have variances equal to those of the stationary distribu-
tions, while the overall trait value is initialized at the optimal
value, zero. This procedure greatly reduces the burn-in com-
putation time needed to achieve a somewhat subtle state of
negative within-genotype among-loci correlations. We con-
firmed that subsequent convergence of the variance of

PK
1ak

was fast, occurring in,1000 steps, where a “step” is defined
to be the fixation of one mutation. We expect log10r, D, and
variance in bk, to converge even faster than variance in ak.

For the low-r initial conditions, r was initialized at 1025,
and we initialized the benign vs. deleterious status of cryptic
sequences at the neutral mutational equilibrium, choosing
exactly L 3 mdel/(mdel + mben) (rounded to the nearest in-
teger) to be deleterious, independently of their different val-
ues of E. For the high-r initial conditions, we set r to 1021,
and made all cryptic sequences benign.

We ran simulations for 105 steps, recording information at
fixed times (measured in terms of waiting times), correspond-
ing to approximately every 1000 steps on average, and hence
yielding about 100 timepoints. To summarize the evolutionary
outcome, we calculated the arithmetic means of log10r, of Ldel,
and of D among the last 20 timepoints, i.e., approximating
steps 0.8 3 105 – 1 3 105.
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Evolvability

After adaptation to a trait optimum of xopt = 0 had run to
convergence (i.e., after 105 steps), we changed xopt to 2, forcing
the quantitative trait to evolve rapidly. This allows the co-option
of benign cryptic sequences an opportunity to increase evolv-
ability. We measured evolvability in two ways: as the inverse of
thewaiting time before trait x exceeded 1, and the inverse of the
waiting time before the population recovered half of the fitness
it lost after xopt changed. By default, we present results showing
evolvability as time to fitness recovery; evolvability as time to
trait recovery is shown only in Figure C in File S1.

We want our measures of evolvability to reflect a geno-
type’s potential to generate beneficial mutations, but this goal
was complicated by population size. A large population finds a
given beneficial mutation faster than does a small population,
inflating the total fixation flux

P
i2beneficial mutationmiNPfixðiÞ;

where miN is the influx of mutations of beneficial type i and
Pfix is their probability of fixation (the latter described by
Equation 9 in File S1), in direct proportion to population size.
We therefore divided our evolvability measures by the pop-
ulation size to correct for this effect. This normalization con-
verts the population-level evolvability measure into a measure
of the population-size-independent evolvability of a single in-
dividual that has the genotype of interest.

Data availability

Source code for the simulations is available at https://github.
com/MaselLab/.All simulationswere runwithMatlab (R2014a).

Results

Recall that, in the absence of variation in expression among
genes, there are two solutions to handle erroneous expression
due to stop codon readthrough: at high population sizeN, the
local solution purges all deleterious cryptic sequences, mak-
ing high rates of readthrough harmless, while, at low N, the
global solution reduces the rate of readthrough, allowing del-
eterious cryptic sequences to accumulate near-neutrally. At in-
termediate N, we see bistability, with either solution possible,
depending on starting conditions (Figure 1, sE = 0). It is
important to note that we use the word “bistability” loosely.
Strictly speaking, bistability means that the system has two
stable steady states (here a state is defined by readthrough
rate and the exact property of each cryptic sequence), i.e.,
two attractors. But, in a stochastic model, there are no attrac-
tors in the strict sense of the word, only a stationary distribu-
tion of states. We use the term bistability to refer to the case
where the stationary distributions of states have two modes.
Transitions between the two modes are rare, therefore the
two modes can be loosely interpreted as the two attractors
of the system.

Figure 1 Evolutionary dynamics are bistable in the absence of variation in
gene expression (sE = 0), but not with variation in gene expression
(sE = 2.25–3.5). We calculated the average values of r, D, and Ldel to-
ward the end of the simulations, and then measured the genotype evolv-
ability after changing the optimal trait value (see Methods for details). For
each value of N, 20 simulations were initialized at high-r conditions, and
15 at low-r conditions. For sE = 2.25–3.5, simulations from the two
initial conditions reached indistinguishable endpoints (Figure A in File S1),
so the results were pooled. The increment in N is 100.1 between 104.4 and
105.2 to increase resolution, and is 100.2 elsewhere. At sE = 0, D is in-
distinguishable from zero for N $ 105.2 under high-r conditions, and for
N $ 104.7 under low-r conditions, corresponding to Ldel being effectively
zero. In contrast, when sE = 2.25 or 3.5, because the weakness of selec-
tion on low-expression genes prevents Ldel from falling all the way to zero,
D never quite reaches zero either, despite appearing superimposable in B.
For (A–C), data are shown as mean 6SD: For evolvability (D), data are

shown as mean 6SE: For (A) and (D), these apply to log-transformed
values. Evolvability is based on time to fitness recovery; see Figure C in
File S1 for similar results based on time to trait recovery. L = 600.
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Our results qualitatively reproduce the bistability reported
by Rajon and Masel (2011) for the case where there is no
expression variation among genes, though the range of val-
ues of N leading to bistability is smaller than that found in
Rajon and Masel (2011), in which a full Wright-Fisher simu-
lation is used. The smaller range of bistability in our model
could be caused by the ease with which long-term evolution
is captured using an origin-fixation framework, or by other
subtle differences between the approaches, e.g., the greater
ease of compensatory evolution underWright-Fisher dynamics
than under origin-fixation. We chose origin-fixation mainly to
reduce the computational burden, which for our study was
increased by the need to track individual loci, in contrast to
previous work that needed only to track the number of loci
with deleterious cryptic sequence, without distinguishing their
identities (Rajon and Masel 2011, 2013).

However, bistability vanishes with variation in expression
among genes (Figure 1, sE = 2.25 and sE = 3.5). To un-
derstand why, consider a population initialized at low read-
through rate (r) and many deleterious cryptic sequences.
Because the strength of selection against a deleterious cryptic
sequence at locus i is proportional to rEi (the effect of a locus
i on D in Equation 3 is proportional to Ei), purging works at
the most highly expressed loci, even when r is low. This low-
ers the proportion D of readthrough events that are deleteri-
ous, which relaxes selection for high fidelity, leading to an
increase in r. As r increases, loci with lower Ei become subject
to effective purging, which further reduces D, which feeds
back to increase r further. Because Ei is log-normally distrib-
uted, but contributes linearly to selection via D, each round
of the feedback loop involves smaller changes than the last.
Eventually, the changes are too small for selection on them
to overcome mutation bias in favor of deleterious se-
quences. Similarly, when a population is initialized at high
r, mutational degradation begins at low Ei sites, and ar-
rests when selection is strong enough to kick in. The point
of balance between mutation bias and selection defines a
single intermediate attractor for sE $ 2.25, instead of the
bistable pair of attractors found for uniform Ei (sE = 0).
For sE , 2.25, bistability is still found, but for a narrower
range of population sizes than in the absence of variation
(Figure B in File S1).

Even thoughbistability is not found forsE = 2.25, there is
still a fairly sharp dichotomy, with solutions being either local
(high r and low Ldel) or global (low r and high Ldel), and
intermediate solutions found only for a very restrictive range
of N, following a sigmoidal curve (Figure 1, A and C). Increas-
ing variation in expression among genes blurs the boundary
between the local solution and the global solution. Intermedi-
ate solutions are found for broader ranges of N as expression
variance sE increases to 3.5. The trend, as expression variance
sE increases from 0, is to first replace bistability with a limited
range of intermediate solutions (sE = 2.25), and then for the
intermediate solutions to become more prevalent, with ex-
treme local and global solutions becoming less attainable as
sE . 2.25.

The breakdown of the local solution begins with interme-
diate values of Ldel, while the breakdown of the global solu-
tion beginswith intermediate values of r andD (Figure 1, A–C).
The breakdown of global solutions involves high-expression
loci (Figure 2), which affect Dmore than Ldel. In contrast, the
breakdown of local solutions involves low-expression loci
(Figure 2), which affect Ldel more than D. Because r is better
described as coevolving with D than with Ldel, as explained
earlier, intermediate values of r are seen more in the break-
down of global than local solutions.

A primary motivation behind characterizing the two solu-
tions is that the local solution was found to have dramatically
higher evolvability than the global solution (Rajon andMasel
2011). We therefore check whether this conclusion still
broadly stands in the presence of variation in expression
levels. The local solution promotes evolvability by making
benign cryptic sequences available for co-option. Differences
in evolvability between genotypes should therefore be largely
determined by the fraction of quantitative trait loci that carry
benign, rather than deleterious, cryptic sequences. In agree-
ment with this, evolvability inverselymirrors Ldel, as a function
of population size, i.e., evolvability (Figure 1D) resembles Ldel
(Figure 1C) far more than it resembles r (Figure 1A) or D
(Figure 1B).

Thedistinctionbetweenglobal and local solutionsbecomes
more extreme when the mutation bias toward deleterious
rather than benign cryptic sequences is increased from a 4:1
ratio toa99:1 ratio,butpersists evenwhenthemutationbias is
eliminated in favor of a 1:1 ratio (Figure 3). In the absence of

Figure 2 The effectiveness of purging a cryptic sequence of deleterious
mutations depends on its expression level. We examined the states of the
cryptic sequences of the loci with the 10 highest, the 10 lowest, and the
10 median expression levels among the 600 loci in each of the simula-
tions shown in Figure 1 (sE = 2.25). We counted how often each locus
contained a deleterious cryptic sequence among the last 20 timepoints
we had collected from that simulation. Bars represent the proportion of
time that each of the 10 loci carried a deleterious cryptic sequence,
averaged over 20 replicates, and shown as mean 6SD: Simulations were
initialized at low-r conditions.
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mutation bias, there is less evolvability to be gained by the
local relative to the global solution, since half the quantitative
loci are available for co-option regardless (Figure 3C). Nev-
ertheless, a small evolvability advantage to the local solution
can still be observed (Figure 3D). In any case, assuming mu-
tation bias toward deleterious options is biologically reason-
able, and Figure 3 shows that results are not sensitive to the
quantitative strength of our assumption on this count.

When we also account for mutation bias that tends to
increase rather than decrease the error rate r, our model
can explain the previously puzzling observation that the rate
of transcriptional errors in small-Ne endosymbiont bacteria
Buchnera is somuch higher than that of C. elegans, and almost
as high as that of large-Ne E. coli (McCandlish and Plotkin
2016; Traverse and Ochman 2016b). In extremely small pop-
ulations, even the global solution is subject to a drift barrier,
making r higher than its optimal value. For N so small such
that most r-increasing mutations pass through the drift bar-
rier, r can be almost as large as that in large populations
(Figure 4A). Despite their high error rates, these extremely
small populations also carry heavy drift loads of deleterious
cryptic products (Figure 4, B and C), consistent with the fact
that in B. aphidicola, unlike E. coli, selection is unable to re-
duce the fraction of nonsynonymous transcriptional errors
that are nonsynonymous (Traverse and Ochman 2016a).
High r shows the absence of a global solution, while high D
and Ldel show the absence of a local solution; neither solution
is found for a sufficiently small population. Similar error rates
in large and small populations can also be found, given bias in
mutations to r, when there is no variation in expression levels
(Figure E in File S1).

The parameters in our model can be classified into three
groups, and the exploration of their values is summarized in
Table A in File S1. The first group controls selection coeffi-
cients relevant to the global vs. local solution outcome: the
variance in expression levels (sE

2), the number of loci (L,
Figure D in File S1), the cost of misfolded protein molecules
(c), and the cost of quality control (d, Figure F in File S1).
The second group controls mutation bias relevant to the
global vs. local solution outcome: the frequency with which
mutations turn deleterious cryptic sequences benign vs. the
reverse (mben:mdel), whether mutations to r tend to increase
or decrease it (P+r:P2r), and variance in the magnitude of
mutations to r (sr

2, Figure G in File S1). The third group
contains all the parameters that control the evolution of quan-
titative traits encoded by a minority of loci relevant to the
evolvability properties. Because our focus in this manuscript
is on the evolution of global vs. local solutions, not on the
precise details of the relationship between local solutions
and evolvability, these parameter values were explored less.

The influence of sE
2 dominates our results. Its effect in

eliminating bistability holds, with the one exception that
very “cheap” quality control could partially restore bistability
(Figure F in File S1). Otherwise, we found that three
parameters—c, d, and mben:mdel—are the main determinants
of the population size at which the transition between global

Figure 3 Results become more extreme when the mutation bias in the state
of a cryptic sequence is increased from a 4:1 ratio to a 99:1 ratio, but do not
disappear completely when the mutation bias is eliminated in favor of a 1:1
ratio. The location of the drift barrier shifts as a function of mutation bias, but
the dichotomy between local and global solutions (as seen in values of r and
D) is not sensitive to relaxing the mutation bias. The advantage of the local
solution with respect to evolvability [as seen in (D) and mirrored in Ldel (C)] is
more sensitive to lack of mutation bias, but is still visible even with a 1:1 ratio.
To compare results across different mutation biases, we kept the sum of the
two mutation rates constant. For the low-r initial conditions, the number
of deleterious cryptic sequences was initialized at the neutral mutational
equilibrium of L 3 mdel/(mdel + mben) (rounded to the nearest integer).
For mdel:mben = 4:1, we reused the results shown in Figure 1. For the other
ratios, five replicates were run for each initial condition, and pooled. For (A–C),
data are shown as mean 6SD. For (D), data are shown as mean 6SE. For
(A) and (D), these apply to log-transformed values. L = 600 and sE = 2.25.
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and local solutions takes place, and of the exact error rate
that evolves for global and local solutions (Table A in File S1).
The other parameters in the first and second groups have

little or no influence on the evolutionary outcomes that we
study. In general, parameters in the first group, controlling
selection, have stronger effects than the second group, con-
trolling mutation bias.

Discussion

When genes vary in their expression levels, the dichotomy
between the local and global solutions is replaced by a con-
tinuous transition. Very large populations still resemble the
local solution, although mutations making cryptic sequences
deleterious still pass through the drift barrier in the occasional
low-expressiongene.Very small populations still resemble the
global solution, althoughmutationsmaking cryptic sequences
deleterious may still be effectively purged in a few high-
expression genes; because their high expression dispropor-
tionately affects the burden frommisexpression, this relaxes
expression for high fidelity, leading to less strict quality
control.

In agreement with drift barrier theory, large-Ne E. coli ex-
hibits a local solution—a tendency for transcription errors to
have synonymous effects—while small-Ne B. aphidicola
does not (Traverse and Ochman 2016a). While, as pre-
dicted, the global solution of low transcriptional error rates
does not obey the naïve drift barrier expectation of being
higher in B. aphidicola than in E. coli (Traverse and Ochman
2016a), nor are transcription error rates drastically lower in
B. aphidicola as predicted by previous theory on the interplay
between global and local solutions (Rajon and Masel 2011;
McCandlish and Plotkin 2016). This significantly lower
rate relative to E. coli is, however, found in intermediate-Ne

C. elegans. Where previous work (Rajon and Masel 2011)
explained only the relative rates for E. coli and C. elegans,
here we also explain the high error rate of B. aphidicola by
taking into account a drift barrier on the global solution of
low error rates. This drift barrier is significant because of
mutation bias toward higher error rates. Small B. aphidicola
populations have higher error rates than C. elegans because it
is the best that evolution at low Ne can manage, despite the
deleterious consequences; large E. coli populations have sim-
ilarly high error rates because, with the worst consequences
of error already purged, they do not need to incur the cost
that quality control entails.

With small amounts of variation in expression among genes,
the range of intermediate values of Ne for which bistability
is found shrinks. With more variation, bistability vanishes in
favor of a sigmoidal transition between global and local so-
lutions. With still more, the sigmoid is smoothed out, and
intermediate solutions are found for most values of Ne.

To interpret our results correctly, we must therefore esti-
mate the degree to which genes vary. The results presented
here focus on two estimates of the variance in log-expression
in yeast, namely sE of 2.25 and 3.5. However, variation
among genes in the deleterious consequences of misfolding,
in addition to variation in expression levels, mightmake larger
sE a better model of reality, further supporting a continuum of

Figure 4 Mutation bias tends to increase r, such that even the global
solution breaks down in sufficiently small populations. P+r is the probability
that a mutation increases r, and P2r is the probability of a decrease. Each
data point, (except those taken from Figure 1 with P+r:P2r = 1:1 and
N = 103.6–106.0), is pooled from five replicates of high-r initial conditions
and five replicates of low-r initial conditions. Because we assume multipli-
cative mutational effects to r, its value converges even for extremely small
N. i.e., as r increases, the additive effect size Dr of a typical mutation also
increases, preventing it from passing through the drift barrier. For (A–C),
data are shown as mean6SD. For (D), data are shown as mean6SE. For (A)
and (D), these apply to log-transformed values. L = 600 and sE = 2.25.
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intermediate solutions. In other words, the value of c in Equa-
tion 3 may vary among genes. Note that apart from the
second-order r2 term, the cost of a deleterious misfolded
protein i depends only on the product of ci and expression
level Ei. Given log-normal distributions of ci and expression
level Ei, the variance of the log-product is equal to the sum of
the two log-variances, so we can transform this scenario into
one where c is constant, and sE

2 is equal to this sum. This can
be done because changing ci and Ei only affectswmisfolding, and
not other factors such as the magnitude of a locus’s influence
on the quantitative trait. In other words, adding variation to
c is almost equivalent to increasing the variance in expression
levels.

The values ofmdel andmbenmayalso vary among genes.Drift
barrier effects operate via the effect of population size on the
fate of deleterious not beneficial mutations—if purging is effi-
cient, then the beneficial mutation rate does not matter, be-
cause a single beneficial mutation is enough. We therefore
focus on mdel. The inclusion of a benign-to-deleterious muta-
tionMi at locus i depends on the product of mdel at locus i and
Mi’s probability offixation. It seems likely that variation among
genes in the probability that a deleterious cryptic sequence
becomes fixed will swamp variation in the deleterious muta-
tion rate—variation in expression levels causes the former to
vary over orders of magnitude. Note that, as for the case of
variation in c, it is possible to construct a manipulation of Ei
that has the same effect on the relevant product, via the prob-
ability of fixation, as would occur given a change inmdel. While
this case is less neat than for the product ciEi, it illustrates that a
model of variation in expression levels can reflect, to some
extent, the effect of variation in mdel.

Ourmodelmakes threecritical assumptions,whichmustbe
understood for the results to be interpreted appropriately.
First, a “locus” in our model consists of one regular and one
cryptic sequence. The primary example that we used to pa-
rameterize the simulations posits an entire protein-coding
gene as the regular sequence, and the extended polypeptide
resulting from stop codon readthrough as the cryptic alterna-
tive. In the example of transcriptional errors, a locus is a
single codon, with its corresponding amino acid being the
regular sequence, and the most common consequence of a
transcriptional error as the cryptic. The case of one regular
sequence and many alternative cryptic ones has not been
modeled. Similarly, proteins may each have a regular fold
or binding partner, and our model considers the contrast be-
tween this state and a single cryptic alternative.

Second,weassumethat the rateofgeneexpressionerrors is
set globally, across all loci. In reality, individual context may
also affect the error rate, giving error rates a local solution
aspect as well. A model of three rather than two interacting
solutions—global error rates, local error rates, and local ro-
bustness to the consequences of error—remains for future
work. Perhaps highly expressed genes will have both more
benign cryptic sequences and lower rates of error, or perhaps
the evolution of one kind of local solution will alleviate the
need for another. Testing this empirically requires data on

site-specific error rates, and on a credible marker for the
benign status of members of an identifiable class of cryptic
sequences. Such tools are now becoming available, and in-
deedwe recently found a positive correlation between a large
number of readthrough errors at a particular stop codon and
the benign status of the readthrough translation product
(L. J. Kosinski et al. unpublished results). We also reanalyzed
the data of Traverse and Ochman (2016a) to find that highly
expressed transcripts have lower transcriptional error rates
(K. Meer et al. unpublished results).

Finally, we assume that the consequences of errors have a
bimodal distribution: either highly deleterious or largely
benign, but rarely in between. In other words, we assume
that a basic phenomenon in biology is that changes tend to
either break something, or to tinker with it. There are a
variety of lines of evidence supporting this intuitively rea-
sonable assumption (Fudala and Korona 2009; Wylie and
Shakhnovich 2011).
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Implementation of origin‐fixation simulations 

Origin‐fixation models are often implemented via a crude rejection algorithm; large numbers of 

mutations are simulated, and each is accepted as a successful fixation event if and only if a 

random number sample from the uniform [0, 1] distribution falls below its (fairly low) fixation 

probability. For large N, this method is computationally slow when significant numbers of 

nearly neutral mutations must be sampled before one fixes with probability ~1/N. Given that 

our model posits only a relatively small range of possible mutations, we instead sampled only 

mutations that go on to become fixed, by sampling according to the relative values of “fixation 

flux”, proportional to mutation rate  fixation probability for each of our six categories of 

mutation. In other words, we used a form of the Gillespie (1977) algorithm. 

 

In a haploid population of size N, the probability of fixation of a new mutant into a resident 

population is given by  

 

ܲ௫ ൌ
ଵିషೞ

ଵିషಿೞ
                       (9) 

 

where s = wmutant/wresident‐1. It is then straightforward to calculate fixation flux values for all 

possible switches between benign and deleterious states: 

 

ௗ݂_௧_ ൌ ߤܰ  ܲ௫ሺ݈݀݁_ݐܽ_ܾ݊݁_ݐ_݅ሻ
∈_௪௧_ௗ_௬௧_௦

																																										ሺ10ሻ 

݂_௧_ௗ ൌ ௗߤܰ  ܲ௫ሺܾ݁݊_ݐܽ_݈݁݀_ݐ_݅ሻ
∈_௪௧__௬௧_௦

																																										ሺ11ሻ 
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Matters are slightly more complicated for quantitative mutations to α, β and ρ, because we 

must integrate the fixation flux over all possible sizes (∆ߙ, ∆ߚ, and ∆logଵߩ) for a mutation at 

a given locus, prior to summing across loci to arrive at the fixation flux for an entire mutational 

category:  

 

ఈ݂ ൌ ఈනߤܰ ܲ௫ሺ∆ߙሻܲሺ∆ߙሻ݀∆ߙ





																																																																																													ሺ12ሻ 

ఉ݂ ൌ ఉනߤܰ ܲ௫ሺ∆ߚሻܲሺ∆ߚሻ݀∆ߚ





																																																																																														ሺ13ሻ 

ఘ݂ ൌ ఘߤܰ න ܲ௫ሺ∆logଵߩሻܲሺ∆logଵߩሻ݀∆݈ ଵ݃ߩ																																																																												ሺ14ሻ 

 

where P(Δαk), P(Δβk), and P(Δlog10ρ) are the probability densities for the magnitude of a given 

kind of mutation. 

 

We use the quadrature method to calculate the integral over these possibilities, using a grid of 

2000, limited for Δαk to the interval [–αk/a‐5σm/K, –αk/a+5σm/K], for Δβk to the interval [–βk/a‐

5σm/K, –βk/a+5σm/K], and for Δlog10ρ, to the interval [‐10σρ, min(10σρ , ‐log10ρ)]. In the latter 

case, the number of grid intervals is reduced proportional to any truncation of the interval at     

‐log10ρ.  
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For mutational co‐options of benign cryptic sequences, the effect of replacing the value of αk 

with that of αk+βk is fixed, but there is also a stochastic range of effects of initializing a new βk 

and a new Bk (Eq. 15). Let P(βk') be the probability density of a new βk given by Normal(0, V(a, K, 

σm)), and ܲሺܤ
ᇱ ൌ 1ሻ ൌ 1 െ ܲሺܤ

ᇱ ൌ 0ሻ be the probability that a new Bk equals to 1, and hence 

the new βk  affects the trait value. The fixation flux associated with cooption mutations we 

obtained numerically by integration over the range [‐5σm/K, 5σm/K]: 

 

݂௧ ൌ ௧ߤܰ  ቌ
ܲሺܤ

ᇱ ൌ 1ሻන ܲ௫ሺߚ
ᇱ , ܤ

ᇱ ൌ 1ሻܲሺߚ
ᇱ ሻ݀ߚ

ᇱ

ܲሺܤ
ᇱ ൌ 0ሻ ܲ௫ሺܤ

ᇱ ൌ 0ሻ
ቍ			



∈_௪௧__௬௧_௦

ሺ15ሻ 

 

The expected waiting time before the current genotype is replaced by another is 

 

waiting	time ൌ ଵ

୲୭୲ୟ୪	୧୶ୟ୲୧୭୬	୪୳୶	୭୴ୣ୰	ୟ୪୪	ୱ୧୶	ୡୟ୲ୣ୭୰୧ୣୱ
                                           (16) 

 

A  standard Gillespie  (1977)  algorithm would  calculate  the  realized waiting  time  as  a  random 

number drawn from an exponential distribution with this mean. Since we are only interested in 

the outcome of evolution, and not the variation in its timecourse, we used the expected waiting 

time instead, decreasing our computation time. The waiting time can be interpreted as the time 

it  takes  for  a mutation  destined  for  fixation  to  appear,  neglecting  the  time  taken during  the 

process of fixation itself. Using this interpretation, we specify waiting times in terms of numbers 

of generations, based on our assumptions about absolute mutation rates. 
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We assign the identity of the next fixation event among the six categories according to 

probabilities proportional to their relative fixation fluxes, then we assign the identity within the 

category. For switches between benign and deleterious states, allocating a fixation event within 

a category according to the relative values of fixation fluxes is straightforward. For mutations to 

ρ, α, and β, and mutational co‐option, we relax the granularity and cutoff assumptions of the 

grid‐integration method when choosing a mutation within the category. Instead, we sample a 

mutational value of Δlog10ρ from Normal(ρbias, σρ
2). We reject and resample Δlog10ρ if 

Δlogଵߩ  െlogଵߩ. Otherwise, we accept vs. reject‐resample according to the fixation 

probability of that exact mutation, by comparing this probability to a random number uniformly 

distributed at [0, 1.1the maximum fixation probability across the grid points previously 

calculated for Δlog10ρ during our grid calculation]. For Δα (or Δβ), the procedure is conceptually 

similar but has a more complicated implementation. We first sample from Normal(0, (σm /K)2). 

We then add the random number to each of the values of –αk/a, and calculate the sum of 

corresponding fixation probabilities across all loci k. We accept vs. reject‐resample the 

mutation by comparing this sum to a random sample from a uniform distribution at [0, 1.1the 

maximum corresponding fixation probability sum calculated during our grid calculation]. If the 

mutation is accepted, we allocate it to a locus k with probability proportional to their relative 

fixation probabilities. For mutational co‐option of a benign cryptic sequence, the main effect is 

to replace αk with αk+βk, but there are also subtler effects arising from the reinitialization of the 

new cryptic sequence. Any of the k loci for which B = 1 are eligible for co‐option, the new value 

of B may be either 0 to 1, and the new βk may take a range of values. Each combination of k and 

new B has its own fitness flux, and the first choice is among these {k, B} pairs. Next we sample 
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βk from Normal(0, (σm/K)2); for a new B equal to 0 we always accept the result, and for new B 

equal to 1, we accept vs. reject‐resample βk by comparing its probability of fixation to a random 

sample from a uniform distribution at [0, 1.1the maximum corresponding fixation probability 

sum calculated during our grid calculation]. 

 

   



7 

 

Figure A: At σE = 2.25, the final state of 

the evolutionary simulation does not 

depend on the initial conditions. The 

data shown here is the same as that 

shown pooled in Fig. 1. 
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Figure B: The range of population sizes that exhibit significant bistability drops dramatically 

even for σE < 2.25. We used average values of ρ towards the end of the simulations as a 

measure of the solution found by each replicate. For each initial condition, we averaged over 

five replicates (except for σE = 0, 2.25, and 3.5, where we reused the 20 replicates of Fig. 1), and 

over each of the values of N between 103.6 to 106, with an increment of 100.2. The extent of 

bistability was assessed as ∑ ሺlogଵ̅ߩ௧_௪	 െ logଵ̅ߩ௧_ሻଶே . L = 600. 
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Figure C: The time taken for the trait to approach the new value of xopt behaves similarly to the 

recovery time of fitness shown in Fig. 1D. The same simulations were used as in Fig. 1. At σE = 

2.25 and σE = 3.5, we pooled the results from high‐ρ and low‐ρ conditions. Evolvability is shown 

as meanേSE of the log‐transformed values. L = 600. 
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Figure D: Changing the number of loci does 

not qualitatively change our results. 

Quantitatively, fewer loci favor more local 

solutions. Changing L alters the average 

contribution of each locus to D. This alters the 

average strength of selection on each locus, 

independent of population size. Therefore, 

the same solutions, characterized by the 

values of ρ and D, are “shifted” to small 

values of N as L decreases. While L changed, 

we held the number of quantitative trait loci 

constant at 50. For L = 600, we reused the 

results shown in Fig. 1. For other values of L, 

five replicates were run for each of the two 

initial conditions. We pooled results from 

both initial conditions across all values of L. 

We normalized Ldel to the neutral mutational 

equilibrium of Lൈµdel/(µdel+µben). For panels A 

to C, data is shown as meanേSD. For D, data 

is shown as meanേSE. For A and D, these 

apply to log‐transformed values. σE = 2.25.
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Figure E: Fig. 4 results (that the global 

solution breaks down in sufficiently small 

populations) remain true in the absence 

of variation of expression levels. Data 

points between N = 103.6 to N = 106.0 and 

P+ρ:P‐ρ = 1:1, are reused from Fig. 1; for 

the others, we performed 5 replicates for 

each condition. For panels A to C, data is 

shown as meanേSD. For D, data is shown 

as meanേSE. For A and D, these apply to 

log‐transformed values. L = 600. 
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Figure F: Increasing the cost of quality 

control δ expands global solutions to 

smaller populations and reduces the 

differences in error rates as a function of 

population size. For δ = 10‐2.5, we reused 

the data from Fig. 1; for each of the other 

values of δ, we ran 5 replicates from the 

high‐ρ initial condition and 5 from the 

low‐ρ initial condition. Each data point 

represents the pooled results from the 

two initial conditions. For panels A to C, 

data is shown as meanേSD. For D, data is 

based on time to fitness recovery and is 

shown as meanേSE. For A and D, the 

mean, SD and SE are calculated on log‐

transformed values. The large error bars 

at N = 105.8 under δ = 10‐3.5 across all 

panels are due to different initial 

conditions, which is a sign of bistability. L 

= 600, σE = 2.25. 
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Figure G: The variance in the magnitude of 

mutations to ρ does not affect a 

population’s solution to error or 

evolvability. For σρ = 0.2, we reused the 

data from Fig. 1; for each of the other 

values of σρ, we ran 5 replicates from each 

of the two initial conditions. We pooled 

results from the two initial conditions for 

each data point. For panels A to C, data is 

shown as meanേSD. For D, data is based 

on time to fitness recovery and is shown 

as meanേSE. For A and D, these apply to 

log‐transformed values. L = 600, σE = 2.25.
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Table A: Summary of model parameters 

[1] The numbers outside parentheses are the default values and the numbers inside indicate the parameter range explored.  
[2] Rajon and Masel (2011)

Group  Parameter  Biological meaning  Exploration 
Parameter 
values in 
model[1] 

Influence on global v. local solutions 

Selection for 
local vs. global 

solution 

σE
2  Variance of log2 expression among loci  Fig. 1, Fig. S2  5.1 (0‐12.3)  Central finding: lower σE

2 promotes dichotomy 

c  Cost of misfolding  Fig. S3[2]  20 (7‐28[2]) 
Large c makes ρ smaller, with a slightly larger impact on 
global solutions, and expands the bistable region to 

smaller populations. 

δ  Scaling of quality control costs  Fig. S6 
10‐2.5 (10‐0.5‐10‐

3.5) 

Higher cost makes ρ larger, with a larger impact on global 
solutions, and expands global solutions to smaller 

populations   

L  Total number of loci  Fig. S4, Fig. S2[2]  600 (200‐1000) 
Lower L shift the transition between local and global 

solutions to smaller populations, but maintain the shape 
of the transition    

Mutation bias 
for local vs. 

global 
solution 

μdel 
Rate of benign‐to‐deleterious 

mutations 
Fig. 3 

μdel:μben = 4:1 
 (1:1‐99:1) 

Stronger mutation bias lowers ρ and shifts the transition 
between local and global solutions to larger populations 

μben 
Rate of deleterious‐to‐benign 

mutations 

P+ρൈμρ  Rate of mutations that increase ρ 
Fig. 4, Fig. S5 

P+ρ:P‐ρ = 1:1 
(1:1‐99:1) 

 

Mutation bias prevents extremely small populations from 
reducing ρ P‐ρൈμρ

  Rate of mutations that decrease ρ 

σρ
2  var(mutations to ρ)  Fig. S7 

0.04 (2.5ൈ10‐3‐ 
0.64) 

No apparent influence 

Relevant only 
for 

quantitative 
effects and 
evolvability 
(of peripheral 
interest to our 

central 
findings) 

K  Number of quantitative trait loci  Fig. S7[2]  50 (5‐50[2]) 

‐ 

a  Speed that α and β revert to mean  Fig. S10[2] 
750 (250‐
2000[2]) 

μcoopt  Rate of co‐option mutations  ‐  2.56ൈ10‐9 
μα  Rate of mutations to α    ‐  3ൈ10‐7 
μβ  Rate of mutations to β  ‐  3ൈ10‐8 
σm

2
  σm

2/K = var(mutations to α and β)  Fig. S8[2]  0.25 (0.04‐1[2]) 

σf  Strength of selection on trait 
No loss of generality 
when σm

2 only is 
explored 

0.2 
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