
| INVESTIGATION
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ABSTRACT Large-scale “omics” data have been increasingly used as an important resource for prognostic prediction of diseases and
detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the
large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new
Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated
genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coeffi-
cients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast
and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic
coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and
Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The
results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction.
We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and
expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our
analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes.
The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).
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THE growing recognition of precision medicine reflects the
emergence of a field that is accelerating rapidly and will

help shape new clinical practice in the future (Collins and
Varmus 2015; Jameson and Longo 2015). The important
basis of precision medicine is to generate knowledge of
disease that will enable better assessment of disease risk,
understanding of disease mechanisms, and prediction of
optimal therapy and prognostic outcome for diseases by
using a wide range of biomedical, clinical, and environmen-
tal information. Precision medicine needs accurate detec-
tion of biomarkers and prognostic prediction (Chin et al.
2011; Barillot et al. 2012). Traditional clinical prognostic

and predictive factors often provided poor prognosis and
prediction (Barillot et al. 2012). Modern “omics” technolo-
gies can generate robust large-scale molecular data, such as
large amounts of genomic, transcriptomic, proteomic, and
metabolomics data, which provides extraordinary opportu-
nities to detect new biomarkers, and to build more accurate
prognostic and predictive models. However, these large-
scale data sets also introduce computational and statistical
challenges.

Various approaches have been applied in analyzing
large-scale molecular profiling data to address the chal-
lenges (Bovelstad et al. 2007, 2009; Lee et al. 2010; Barillot
et al. 2012). The lasso, and its extensions, are the most
commonly used methods (Tibshirani 1996; Hastie et al.
2009, 2015). These methods put an L1-penalty on the co-
efficients, and can shrink many coefficients exactly to zero,
thus performing variable selection. With the L1-penalty, the
penalized likelihood can be solved by extremely fast optimiza-
tion algorithms, for example, the lars and the cyclic coordinate
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descent algorithms (Efron et al. 2004; Friedman et al. 2010),
making them very popular in high-dimensional data analysis.
Recently, these penalization approaches have been applied
widely for prediction and prognosis (Rapaport et al. 2007;
Barillot et al. 2012; Sohn and Sung 2013; Zhang et al.
2013; Yuan et al. 2014; Zhao et al. 2014).

However, the lasso uses a single penalty for all coefficients,
and thus can either include a number of irrelevant predictors,
or over-shrink large coefficients. An ideal method should
induce weak shrinkage on large effects, and strong shrinkage
on irrelevant effects (Fan and Li 2001; Zou 2006; Zhang
2010). Statisticians have introduced hierarchical models
with mixture spike-and-slab priors that can adaptively de-
termine the amount of shrinkage (George and McCulloch
1993, 1997). The spike-and-slab prior is the fundamen-
tal basis for most Bayesian variable selection approaches,
and has proved remarkably successful (George and
McCulloch 1993, 1997; Chipman 1996; Chipman et al. 2001;
Ročková and George 2014, and unpublished results). Re-
cently, Bayesian spike-and-slab priors have been applied
to predictive modeling and variable selection in large-
scale genomic studies (Yi et al. 2003; Ishwaran and Rao
2005; de los Campos et al. 2010; Zhou et al. 2013; Lu et al.
2015; Shankar et al. 2015; Shelton et al. 2015; Partovi Nia
and Ghannad-Rezaie 2016). However, most previous spike-
and-slab variable selection approaches use the mixture
normal priors on coefficients and employ Markov Chain
Monte Carlo (MCMC) algorithms (e.g., stochastic search
variable selection) to fit the model. Although statistically
sophisticated, these MCMC methods are computationally
intensive for analyzing large-scale molecular data. The mix-
ture normal priors cannot shrink coefficients exactly to zero,
and thus cannot automatically perform variable selection.
Ročková and George (2014) developed an expectation-
maximization (EM) algorithm to fit large-scale linear mod-
els with the mixture normal priors.

V. Ročková and E. I. George (unpublished results) recently
proposed a new framework, called the spike-and-slab lasso,
for high-dimensional normal linear models by using a new
prior on the coefficients, i.e., the spike-and-slab mixture
double-exponential distribution. They proved that the
spike-and-slab lasso has remarkable theoretical and practical
properties, and overcomes some drawbacks of the previous
approaches. However, the spike-and-slab lasso, and most of
the previous methods, were developed based on normal
linear models, and cannot be directly applied to other mod-
els. Therefore, extensions of high-dimensional methods us-
ing mixture priors to frameworks beyond normal linear
regression provide important new research directions for
both methodological and applied works (Ročková and
George 2014, and unpublished results).

Inthisarticle,weextendthespike-and-slablassoframeworkto
generalized linear models, called spike-and-slab lasso GLMs
(sslasso GLMs), to jointly analyze large-scalemolecular data
for building accurate predictive models and identifying im-
portant predictors. By using the mixture double-exponential

priors, sslasso GLMs can adaptively shrink coefficients (i.e.,
weakly shrink important predictors but strongly shrink ir-
relevant predictors), and thus can result in accurate estima-
tion and prediction. To fit the sslasso GLMs, we propose
an efficient algorithm by incorporating EM steps into the
extremely fast cyclic coordinate descent algorithm. The per-
formance of the proposed method is assessed via extensive
simulations, and compared with the commonly used lasso
GLMs. We apply the proposed procedure to two cancer data
sets with binary outcomes and thousands of molecular fea-
tures. Our results show that the proposed method can gen-
erate powerful prognostic models for predicting disease
outcome, and can also detect associated genes.

Methods

Generalized linear models

We consider GLMs with a large number of correlated predic-
tors. The observed values of a continuous or discrete response
are denoted by y = (y1, ���, yn). The predictor variables in-
clude numerous molecular predictors (e.g., gene expression).
A GLM consists of three components: the linear predictor h,
the link function h, and the data distribution p (McCullagh
and Nelder 1989; Gelman et al. 2014). The linear predictor
for the i-th individual can be expressed as

hi ¼ b0 þ
XJ
j¼1

xijbj ¼ Xib (1)

where b0 is the intercept, xij represents the observed value of
the j-th variable, bj is the coefficient, Xi contains all variables,
and b is a vector of the intercept and all the coefficients. The
mean of the response variable is related to the linear predic-
tor via a link function h:

E
�
yijXi

� ¼ h21ðXibÞ (2)

The data distribution is expressed as

p
�
yjXb;f� ¼Yn

i¼1

p
�
yijXib;f

�
(3)

where f is a dispersion parameter, and the distribu-
tion pðyijXib;fÞ can take various forms, including normal,

Table 1 Simulated effect sizes of five nonzero coefficients under
different scenarios

Simulated Scenarios b5 b20 b40 bm-50 bm-5

Scenario 1 m = 1000 0.362 0.395 20.418 20.431 0.467
Scenario 2 m = 1000 20.457 20.491 0.521 0.550 0.585
Scenario 3 m = 1000 0.563 20.610 0.653 20.672 0.732
Scenario 4 m = 3000 0.357 20.388 0.414 20.429 0.462
Scenario 5 m = 3000 20.455 0.509 0.528 0.552 20.592
Scenario 6 m = 3000 0.560 20.618 0.654 20.673 0.716

m is the number of simulated predictors. For all scenarios, the number of individuals
(n) is 500.
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binomial, and Poisson distributions. Some GLMs (for example,
the binomial distribution) do not require a dispersion parame-
ter; that is, f is fixed at 1. Therefore, GLMs include normal
linear and logistic regressions, and various others as special
cases.

The classical analysis of generalized linear models is to
obtain maximum likelihood estimates (MLE) for the param-
eters ðb;fÞ by maximizing the logarithm of the likelihood
function: lðb;fÞ ¼ log pð yjXb;fÞ: However, the classical
GLMs cannot jointly analyze multiple correlated predictors,
due to the problems of nonidentifiability and overfitting. The
lasso is a widely used penalization approach to handling
high-dimensional models, adding an L1 penalty to the log-
likelihood function, and estimating the parameters by maxi-
mizing the penalized log-likelihood (Zou and Hastie 2005;
Hastie et al. 2009, 2015; Friedman et al. 2010):

plðb;fÞ ¼ lðb;fÞ2 l
XJ
j¼1

��bj
�� (4)

The overall penalty parameter, l, controls the overall strength
of penalty and the size of the coefficients; for a small l;many
coefficients can be large, and for a large l; many coefficients
will be shrunk toward zero. Lasso GLMs can be fit by the
extremely fast cyclic coordinate descent algorithm, which
successively optimizes the penalized log-likelihood over each
parameter, with others fixed, and cycles repeatedly until con-
vergence (Friedman et al. 2010; Hastie et al. 2015).

With a single penalty parameter, l; however, the lasso can
either overshrink large effects, or include a number of irrel-
evant predictors. Ideally, one should use small penalty values
for important predictors, and large penalties for irrelevant
predictors. However, if we have no prior knowledge about
the importance of the predictors, we cannot appropriately
preset penalties. Here, we propose a new approach, i.e., the

sslasso GLMs, which can induce different shrinkage scales for
different coefficients, and allow us to estimate the shrinkage
scales from the data.

sslasso GLMs

The sslasso GLMs are more easily interpreted and handled
from a Bayesian hierarchical modeling framework. It is well
known that the lasso can be expressed as a hierarchical model
with double-exponential prior on coefficients (Tibshirani 1996;
Park and Casella 2008; Yi and Xu 2008; Kyung et al. 2010):

bj
��s � DE

�
bjj0; s

� ¼ 1
2s

exp

 
2
jbjj
s

!
(5)

where the scale, s, controls the amount of shrinkage; smaller
scale induces stronger shrinkage and forces the estimates of
bj toward zero.

We develop sslasso GLMs by extending the double-expo-
nential prior to the spike-and-slab mixture double-exponen-
tial prior:

bj
��gj; s0; s1 � ð12 gjÞDE

�
bj
��0; s0�þ gjDE

�
bj
��0; s1�

or, equivalently

bj
��gj; s0; s1 � DE

�
bj
��0; Sj� ¼ 1

2Sj
exp

 
2

��bj
��

Sj

!
(6)

where gj is the indicator variable, gj = 1 or 0, and the scale
Sj equalsoneof twopresetpositivevalue s0and s1 (s1 . s0 . 0),
i.e., Sj ¼ ð12 gjÞs0 þ gjs1: The scale value s0 is chosen to be
small, and serves as a “spike scale” for modeling irrelevant
(zero) coefficients, and inducing strong shrinkage on estima-
tion; and s1 is set to be relatively large, and thus serves as a
“slab scale” for modeling large coefficients, and inducing

Figure 1 The profiles of deviance under scenarios 3 and 6 over 50 replicated testing datasets. (s0, s1) is the prior scale for sslasso GLMs.
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no or weak shrinkage on estimation. If we set s0 = s1, or
gj = 1 or 0, the spike-and-slab double-exponential prior
becomes the double-exponential prior. Therefore, the spike-
and-slab lasso includes the lasso as a special case.

The indicator variables gj play an essential role in linking
the scale parameters with the coefficients. The indicator
variables are assumed to follow the independent binomial
distribution:

gj
��u � Bin

�
gj
��1; u� ¼ ugj

�
12u

�12gj (7)

where u is the probability parameter. For the probability
parameter, u, we assume the uniform prior: u � Uð0; 1Þ:
The probability parameter u can be viewed as the overall
shrinkage parameter that equals the prior probability
p
�
gj¼ 1

��u�: The prior expectation of the scale Sj equals
EðSjÞ ¼ ð12 uÞs0þus1; which lies in the range [s0, s1]. As
will be seen, the scale Sj for each coefficient can be estimated,
leading to different shrinkage for different predictors.

Algorithm for fitting sslasso GLMs

For high-dimensional data, it is desirable to have an efficient
algorithm that can quickly identify important predictors and
build a predictivemodel. We develop a fast algorithm to fit the
sslassoGLMs.Our algorithm, called the EM coordinate descent
algorithm, incorporates EM steps into the cyclic coordinate
descent procedure for fitting the penalized lasso GLMs regres-
sion. We derive the EM coordinate descent algorithm based on
the log joint posterior density of the parameters ðb;f; g; uÞ:

log p
�
b;f; g; u

�� y� ¼ log pð yjb;fÞ þ
X J

j¼1
log pðbj

��SjÞ
þ
X J

j¼1
log pðgj

��uÞ þ log pðuÞ} lðb;fÞ

2
XJ
j¼1

1
Sj

��bj
��

þ
XJ
j¼1

�
gjlog uþ

�
12 gj

�
log
�
12 u

��
(8)

where lðb;fÞ ¼ log pð yjXb;fÞo and Sj ¼ ð12 gjÞs0 þ gjs1:
The EM coordinate decent algorithm treats the indicator

variables gj as “missing values,” and estimates the parameters
ðb;f; uÞ by averaging the missing values over their posterior
distributions. For the E-step, we calculate the expectation of
the log joint posterior density with respect to the conditional
posterior distributions of the missing data gj: The conditional
posterior expectation of the indicator variable gj can be de-
rived as

pj ¼ p
�
gj ¼ 1

��bj; u; y
�

¼ p
�
bj
��gj ¼ 1; s1

��
gj ¼ 1

��u�
p
�
bj
��gj¼0; s0

�
p
�
gj¼0

��u�þ p
�
bj
��gj¼1; s1

�
p
�
gj¼1

��u�
(9)

where p
�
gj¼ 1

��u�¼ u; p
�
gj¼ 0

��u� ¼ 12 u; p
�
bj

��gj¼ 1; s1
�¼

DE
�
bj

��0; s1Þ; and p
�
bj

��gj¼ 0; s0
�¼ DE

�
bj

��0; s0�: Therefore,

Figure 2 The solution path and deviance profiles of
sslasso GLMs (A, C) and the lasso model (B, D) for
scenario 3. The colored points on the solution path
represent the estimated values of assumed five non-
zero coefficients, and the circles represent the true
nonzero coefficients. The vertical lines correspond to
the optimal models.
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the conditional posterior expectation of S21
j can be

obtained by

E
�
S21
j
��bj
� ¼ E

 
1�

12 gj
�
s0 þ gjs1

�����bj

!
¼ 12 pj

s0
þ pj
s1

(10)

It canbeseen that theestimatesofpjandSjare larger for larger co-
efficientsbj; leading todifferent shrinkage fordifferent coefficients.

For the M-step, we update ðb;f; uÞ by maximizing the
posterior expectation of the log joint posterior density
with gj and S21

j replaced by their conditional posterior

Table 2 Estimates of four measures over 50 replicates under different simulated scenarios

Deviance MSE AUC Misclassification

Scenario 1 n = 500, m = 1000
Lasso 638.983(17.431) 0.224(0.008) 0.693(0.031) 0.359(0.029)
sslasso: s0 = 0.01 685.229(18.922) 0.246(0.009) 0.595(0.067) 0.442(0.051)
sslasso: s0 = 0.02 643.119(23.694) 0.226(0.011) 0.681(0.038) 0.371(0.031)
sslasso: s0 = 0.03 637.226(22.197) 0.223(0.010) 0.692(0.033) 0.362(0.029)
sslasso: s0 = 0.04 636.930(18.928)a 0.223(0.009) 0.692(0.029) 0.364(0.026)
sslasso: s0 = 0.05 639.385(16.732) 0.224(0.008) 0.694(0.029) 0.364(0.022)
sslasso: s0 = 0.06 639.784(17.359) 0.224(0.008) 0.684(0.029) 0.369(0.024)
sslasso: s0 = 0.07 645.151(19.752) 0.227(0.009) 0.674(0.028) 0.372(0.025)

Scenario 2 n = 500, m = 1000
Lasso 601.872(15.666) 0.207(0.007) 0.753(0.025) 0.320(0.022)
sslasso: s0 = 0.01 640.816(26.885) 0.224(0.012) 0.686(0.042) 0.367(0.031)
sslasso: s0 = 0.02 581.940(24.945) 0.199(0.012) 0.761(0.033) 0.308(0.028)
sslasso: s0 = 0.03 581.661(28.271)a 0.198(0.010) 0.765(0.028) 0.306(0.023)
sslasso: s0 = 0.04 583.037(21.964) 0.199(0.009) 0.764(0.026) 0.307(0.021)
sslasso: s0 = 0.05 590.185(19.343) 0.202(0.008) 0.755(0.023) 0.314(0.018)
sslasso: s0 = 0.06 595.879(19.388) 0.204(0.008) 0.751(0.024) 0.328(0.018)
sslasso: s0 = 0.07 603.756(20.020) 0.208(0.008) 0.738(0.024) 0.333(0.020)

Scenario 3 n = 500, m = 1000
Lasso 561.917(14.623) 0.190(0.006) 0.790(0.021) 0.289(0.020)
sslasso: s0 = 0.01 585.600(34.703) 0.201(0.014) 0.759(0.035) 0.318(0.030)
sslasso: s0 = 0.02 531.956(26.214) 0.180(0.010) 0.808(0.021) 0.269(0.022)
sslasso: s0 = 0.03 532.747(26.343) 0.179(0.010) 0.808(0.021) 0.271(0.022)
sslasso: s0 = 0.04 530.781(24.638)a 0.179(0.010) 0.809(0.020) 0.274(0.020)
sslasso: s0 = 0.05 541.192(24.496) 0.182(0.010) 0.802(0.020) 0.279(0.019)
sslasso: s0 = 0.06 550.971(25.065) 0.186(0.010) 0.794(0.020) 0.284(0.019)
sslasso: s0 = 0.07 559.430(24.311) 0.190(0.009) 0.785(0.020) 0.293(0.019)

Scenario 4 n = 500, m = 3000
Lasso 655.349(11.253) 0.232(0.005) 0.665(0.028) 0.382(0.024)
sslasso: s0 = 0.01 680.988(16.432) 0.244(0.008) 0.601(0.058) 0.430(0.119)
sslasso: s0 = 0.02 655.714(23.241) 0.231(0.010) 0.663(0.034) 0.385(0.027)
sslasso: s0 = 0.03 646.877(20.963) 0.228(0.009) 0.673(0.030) 0.372(0.026)
sslasso: s0 = 0.04 645.278(16.039)a 0.227(0.007) 0.674(0.024) 0.377(0.022)
sslasso: s0 = 0.05 654.349(16.241) 0.231(0.007) 0.659(0.027) 0.390(0.023)
sslasso: s0 = 0.06 665.488(18.227) 0.236(0.008) 0.646(0.028) 0.400(0.026)
sslasso: s0 = 0.07 675.374(20.660) 0.241(0.009) 0.634(0.028) 0.404(0.026)

Scenario 5 n = 500, m = 3000
Lasso 620.034(16.209) 0.215(0.007) 0.726(0.030) 0.334(0.027)
sslasso: s0 = 0.01 642.083(30.947) 0.225(0.014) 0.683(0.056) 0.363(0.045)
sslasso: s0 = 0.02 597.547(34.288) 0.205(0.015) 0.745(0.039) 0.322(0.033)
sslasso: s0 = 0.03 593.701(32.304)a 0.205(0.013) 0.746(0.034) 0.318(0.030)
sslasso: s0 = 0.04 596.421(30.006) 0.205(0.012) 0.746(0.032) 0.324(0.029)
sslasso: s0 = 0.05 610.549(24.024) 0.211(0.010) 0.731(0.030) 0.333(0.025)
sslasso: s0 = 0.06 623.014(24.530) 0.217(0.011) 0.715(0.032) 0.347(0.028)
sslasso: s0 = 0.07 634.536(26.023) 0.222(0.011) 0.701(0.033) 0.355(0.026)

Scenario 6 n = 500, m = 3000
Lasso 570.138(17.989) 0.193(0.008) 0.791(0.026) 0.289(0.026)
sslasso: s0 = 0.01 568.332(35.346) 0.194(0.015) 0.777(0.036) 0.302(0.029)
sslasso: s0 = 0.02 537.665(28.103) 0.180(0.011) 0.806(0.025) 0.275(0.028)
sslasso: s0 = 0.03 530.081(29.097)a 0.178(0.012) 0.812(0.025) 0.271(0.027)
sslasso: s0 = 0.04 530.535(26.149) 0.178(0.011) 0.811(0.023) 0.266(0.025)
sslasso: s0 = 0.05 542.091(26.825) 0.184(0.011) 0.801(0.024) 0.275(0.024)
sslasso: s0 = 0.06 557.014(27.697) 0.189(0.011) 0.788(0.025) 0.288(0.022)
sslasso: s0 = 0.07 572.405(28.018) 0.195(0.011) 0.776(0.025) 0.299(0.024)

Values in parentheses are SE. The slab scales, s1, are 1 in all scenarios.
aThe smallest deviance values indicate the optimal model.

Spike-and-Slab Lasso GLMs 81



expectations. From the log joint posterior density, we
can see that ðb;fÞ and u can be updated separately,
because the parameters ðb;fÞ are only involved in

lðb;fÞ2
XJ
j¼1

S21
j

��bj

��, and the probability parameter u is

only in
XJ
j¼1

�
gjloguþ

�
12 gj

�
logð12 uÞ�: Therefore, the pa-

rameters ðb;fÞ are updated by maximizing the expression:

Q1ðb;fÞ ¼ lðb;fÞ2
XJ
j¼1

1
Sj
jbjj (11)

where S21
j is replaced by its conditional posterior expectation

derived above. Given the scale parameters Sj, the

term
XJ
j¼1

1
Sj
jbjj serves as the L1 lasso penalty, with S21

j as

the penalty factors, and thus the coefficients can be updated by
maximizingQ1ðb;fÞ using thecyclic coordinatedecentalgorithm.
Therefore, the coefficients can be estimated to be zero. The prob-
ability parameter u is updated by maximizing the expression:

Q2ðuÞ ¼
XJ
j¼1

½gjloguþ ð12 gjÞlogð12 uÞ� (12)

We can easily obtain: u ¼ 1
J

XJ
j¼1

pj:

In summary, the EM coordinate decent algorithm for
fitting the sslasso Cox models proceeds as follows:

1. Choose a starting value forb0;f0 and u0:. For example, we
can initialize b0 = 0, f0= 1 and u0 = 0.5.

2. For t = 1, 2, 3, . . .,

E-step: Update gj and S21
j by their conditional posterior

expectations.
M-step:

1. Update ðb;fÞ using the cyclic coordinate decent
algorithm;

2. Update u:

We assess convergence by the criterion:
���dðtÞ 2 dðt21Þ

���.�
0:1þ

���dðtÞ����, e; where dðtÞ ¼ 2 2log lðbðtÞ;fðtÞÞ is the esti-

mate of deviance at the tth iteration, and e is a small value
(say 1025).

Selecting optimal scale values

The performance of the sslasso approach can depend on the
scale parameters (s0, s1). Rather than restricting attention to
a single model, our fast algorithm allows us to quickly fit a
sequence of models, from which we can choose an optimal
one based on some criteria. Our strategy is to fix the slab
scale s1 (e.g., s1 = 1), and consider a sequence of L decreas-
ing values

	
sl0


: 0, s10 , s20 ,⋯, sL0 , s1; for the spike

Figure 3 The parameter estimation averaged over
50 replicates for sslasso GLMs and the lasso model
under scenarios 3 and 6. The blue circles are the as-
sumed true values. The black points and lines represent
the estimated values and the interval estimates of co-
efficients over 50 replicates.
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scale s0.We then fit Lmodels with scales
	�

sl0; s1
�
; l ¼ 1;⋯; L



Increasing the spike scale s0 tends to include more nonzero
coefficients in the model. This procedure is similar to the
lasso implemented in the widely used R package glmnet,
which quickly fits the lasso model over a grid of values of l
covering its entire range, giving a sequence of models for
users to choose from (Friedman et al. 2010; Hastie et al.
2015).

Evaluation of predictive performance

There are several measures to evaluate the performance of a
fitted GLM (Steyerberg 2009), including: (1) deviance,
which is a generic way of measuring the quality of any
model, and is defined as: d ¼ 2 2

Pn
i¼1log pð yijXib̂; f̂Þ: De-

viance measures the overall quality of a fitted GLM, and thus
is usually used to choose an optimal model. (2) Mean squared
error (MSE), defined asMSE= 1

n

Pn
i¼1ð yi2ŷiÞ2; (3) For logistic

regression, we can use two additional measures: AUC (area
under the ROC curve) and misclassification, which is defined
as: 1

n

Pn
i¼1I
�j yi 2 ŷij. 0:5

�
; where I

�jyi 2 ŷi
��. 0:5

� ¼ 1 if�� yi 2 ŷi
��. 0:5; and I

���yi 2 ŷi
��. 0:5

� ¼ 0 if
��yi 2 ŷi

��# 0:5:
(4) Prevalidated linear predictor analysis (Tibshirani and
Efron 2002; Hastie et al. 2015); for all GLMs, we can use
the cross-validated linear predictor ĥi ¼ Xib̂ as a continuous
covariate in a univariate GLM to predict the outcome:
E
�
yi
��ĥi
� ¼ h21

�
mþ ĥib

�
: We then look at the P-value for

testing the hypothesis b = 0 or other statistics to evaluate
the predictive performance. We also can transform the con-
tinuous cross-validated linear predictor ĥi into a categorical
factor ci ¼ ðci1;⋯; ci6Þ based on the quantiles of ĥi; for ex-
ample, 5, 25, 50, 75, and 95% quantiles, and then fit the
model: E

�
yi
��ci� ¼ h21

�
mþP6

k¼2cikbk
�
: This allows us to

compare statistical significance and prediction between
different categories.

To evaluate the predictive performance of the proposed
model, a general way is to fit the model using a data set, and
then calculate the abovemeasureswith independent data.We
use the prevalidation method, a variant of cross-validation
(Tibshirani and Efron 2002; Hastie et al. 2015), by randomly
splitting the data to K subsets of roughly the same size, and
using (K – 1) subsets to fit a model. Denote the estimate of
coefficients from the data excluding the k-th subset by b̂

ð2kÞ
:

We calculate the linear predictor ĥðkÞ ¼ XðkÞb̂
ð2kÞ

for all
individuals in the k-th subset of the data, called the
cross-validated or prevalidated predicted index. Cycling
through K parts, we obtain the cross-validated linear pre-
dictor ĥi for all individuals. We then use ðyi; ĥiÞ to compute
the measures described above. The cross-validated linear
predictor for each patient is derived independently of the
observed response of the patient, and hence the “preva-
lidated” dataset

	
yi; ĥi



can essentially be treated as a

“new dataset.” Therefore, this procedure provides valid
assessment of the predictive performance of the model
(Tibshirani and Efron 2002; Hastie et al. 2015). To get stable
results, we run 103 10-fold cross-validation for real data
analysis.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Implementation

We created an R function, bmlasso, for setting up and
fitting sslasso GLMs, and several other R functions (e.g.,
summary.bh, plot.bh, predict.bh, cv.bh) for summarizing
the fitted models, and for evaluating the predictive per-
formance. We incorporated these functions into the freely
available R package BhGLM (http://www.ssg.uab.edu/
bhglm/).

Simulation study

Simulation design: We used simulations to validate the
proposed sslasso approach, and to compare with the lasso
in the R package glmnet. Although the proposed method can
be applied to any GLMs, we focused on sslasso logistic re-
gression, because we analyzed binary outcomes in our real
data sets [see Simulation results]. In each situation, we sim-
ulated two data sets, and used the first one as the training
data to fit the models, and the second one as the test data to
evaluate the predictive values. For each simulation setting,
we replicated the simulation 50 times, and summarized the
results over these replicates. We reported the results on the

Figure 4 The inclusion proportions of the nonzero and
zero coefficients in the model over 50 simulation rep-
licates under scenarios 3 and 6. The black points and
red circles represent the proportions of nonzero coef-
ficients for sslasso GLMs and the lasso model, respec-
tively. The blue points and gray circles represent the
proportions of zero coefficients for sslasso GLMs and
the lasso model, respectively.
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predictive values including deviance,MSE, AUC, andmisclas-
sification in the test data, and the accuracy of parameter
estimates, and the proportions of coefficients included in
the model.

For each dataset, we generated n (= 500) observations,
each with a binary response and a vector of m (= 1000,
3000) continuous predictors Xi ¼ ðxi1;⋯; ximÞ: The vector Xi
was generated with 50 elements at a time, i.e., the subvector
ðxið50kþ1Þ;⋯; xið50kþ50ÞÞ; k ¼ 0; 1;⋯; was sampled randomly
from multivariate normal distribution N50ð0;

PÞ; whereP ¼ ðsjj9Þ with sjj ¼ 1  and  sjj9 ¼ 0:6ðj 6¼ j9Þ: Thus, the pre-
dictors within a group were correlated, and between groups
were independent. To simulate a binary response, we first
generated Gaussian response zi from univariate normal dis-
tribution Nðhi; 1:6

2Þ; where hi¼ b0þ
Pm

j¼1xijbj; and then
transformed the continuous response to binary data by set-
ting individuals with the 30% largest continuous response
Z as “affected” ( yi = 1), and the other individuals as
“unaffected” ( yi = 0). We set five coefficients b5, b20, b40,
bm – 50, and bm – 5 to be nonzero, two of which are negative,
and all others to be zero. Table 1 shows the preset nonzero
coefficient values for six simulation scenarios.

Weanalyzedeachsimulateddata setusing the lasso logistic
model implemented in the R package glmnet, and the pro-
posed sslasso logistic regression in our R package BhGLM. For
the lasso approach, we used 10-fold cross-validation to select
an optimal value of l, which determines an optimal lasso
model, and reported the results based on the optimal lasso
model. For the proposed sslasso GLM approach, we fixed slab
scale as s1 = 1, and run a grid value of spike scales:
s0 = 0.01, 0.02, . . ., 0.07.

To fully investigate the impact of the scales (s0, s1) on the
results, we also fitted the simulated data sets under scenar-
ios 3 and 6 (see Table 1) with 100 combinations when s0
changed from 0.01 to 0.10, and s1 from 0.7 to 2.5. We ana-
lyzed each scale (s0, s1) combination over 50 replicates. We
also presented the solution path under simulation scenar-
ios 3 and 6, averaged over 50 replicates, to show the special
characteristic of sslasso GLMs.

Simulation results: Impact of scales (s0, s1) and solution
path: We analyzed the data with a grid of values of (s0, s1)
covering their entire range to fully investigate the impact of
the prior scales. Figure 1 show the profiles of the deviance

under scenarios 3 and 6. It can be seen that the slab scale s1
within the range [0.7, 2.5] had little influence on the devi-
ance, while the spike scale s0 strongly affected model perfor-
mance. These results show that our approach with a fixed
slab scale s1 (e.g., s1 = 1) is reasonable.

Figure 2A and Figure 2B present the solution path for
scenario 3 by the proposed model and the lasso model, re-
spectively. Figure 2, C and D show the profiles of deviance by
103 10-fold cross-validation for the proposed model and the
lasso model, respectively. For the proposed sslasso GLMs,
the minimum of deviance was achieved by including 10.7
nonzero coefficients (averaged over 50 replicates), when
the s0 scale was 0.04. For the lasso model, the optimal model
included 29.8 nonzero coefficients when the l value was
0.035. Similar to the lasso, the sslasso GLM is a path-following
strategy for fast dynamic posterior exploration. However,
its solution path is essentially different from that of the lasso
model. For the lasso solution, as shown in Figure 2B, the
number of nonzero coefficients could be a few, even zero if
a strong penalty was adopted. However, a spike-and-slab
mixture prior can help larger coefficients escape the gravita-
tional pull of the spike. Larger coefficients will be always
included in the model with none or weak shrinkage. Supple-
mental Material, Figure S1 shows the solution path of the
proposed model and the lasso model under scenario 6.
Figure S2 shows the adaptive shrinkage amount, along with
the different effect size. The same conclusion could be
reached, that the spike-and slab prior shows self-adaptive
and flexible characteristics.

Predictive performance: Table 2 shows the deviance, MSE,
AUC, and misclassification in the test data under different
simulated scenarios. The smallest deviance is highlighted in
Table 2. As described earlier, the deviance measures the over-
all quality of a model, and thus is usually used to choose an
optimalmodel. From these results, we can see that the sslasso
GLMs with an appropriate value of s0 performed better than
the lasso. Table 2 also shows that the optimal spike-and-slab
GLMs usually had higher AUC value than the lasso. The AUC
measures the discriminative ability of a logistic model
(Steyerberg 2009). Thus, the sslasso GLMs generated better
discrimination.

Accuracy of parameter estimates: Figure 3, Figure S3, and
Figure S4 show the estimates of coefficients from the best
sslasso GLMs, and the lasso model over 50 replicates of

Table 3 Average number of nonzero coefficients and MAE of coefficient estimates over 50 simulation replicates

Simulation Scenarios

sslasso (s1 = 1) Lasso

Average Number MAE Average Number MAE

Scenario 1, s0 = 0.04 15.800 1.431(0.420) 30.800 2.150(0.726)
Scenario 2, s0 = 0.03 5.780 0.750(0.452) 30.540 2.255(0.667)
Scenario 3, s0 = 0.04 10.420 0.669(0.286) 39.540 2.680(0.729)
Scenario 4, s0 = 0.04 32.900 1.984(0.352) 32.960 2.316(0.770)
Scenario 5, s0 = 0.03 6.460 0.906(0.498) 42.260 2.783(0.908)
Scenario 6, s0 = 0.03 5.920 0.629(0.362) 43.060 2.865(0.842)

Values in parentheses are SE.

84 Z. Tang et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192195/-/DC1/FigureS1.tiff
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192195/-/DC1/FigureS2.tiff
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192195/-/DC1/FigureS3.jpg
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.192195/-/DC1/FigureS4.jpg


testing data. It can be seen that the sslasso GLMs provided
more accurate estimation in most situations, especially for
larger coefficients. This result is expected, because the
spike-and-slab prior can induce weak shrinkage on larger
coefficients. In contrast, the lasso employs a single penalty
on all the coefficients, and thus can overshrink large coeffi-
cients. As a result, five nonzero coefficients were shrunk and
underestimated compared to true values in our simulation.

Proportions of coefficients included in the model: We calcu-
lated the proportions of the coefficients included in themodel
over the simulation replicates. Like the lasso model, the pro-
posed sslasso GLMs can estimate coefficients to be zero, and
thus can easily return these proportions. Figure 4 and Figure
S5 show the inclusion proportions of the nonzero coefficients
and the zero coefficients for the best sslasso GLMs and the
lasso model. It can be seen that the inclusion proportions of
the nonzero coefficients were similar for the two approaches
in most situations. However, the lasso included zero coeffi-
cients in the model more frequently than the sslasso GLMs.
This indicates that the sslasso approach can reduce noisy
signals.

We summarized the average numbers of nonzero coeffi-
cients and theMAEof coefficient estimates, defined asMAE=P���b̂j 2bj

���.m; in Table 3. In most simulated scenarios, the
average numbers of nonzero coefficients in the sslasso GLMs
were much lower than those in the lasso model. We also
found that the average numbers of nonzero coefficients de-
tected by the proposed models were close to the number of
the simulated nonzero coefficients in most scenarios. How-
ever, the lasso usually included many zero coefficients in the
model. This suggests that the noises can be controlled by the
spike-and-slab prior.

Application to real data

Dutch breast cancer data: We applied our sslasso GLMs to
analyze a well-known Dutch breast cancer data set, and
compared the results with that of the lasso in the R package
glmnet. This data were described in van de Vijver et al.
(2002), and is publicly available in the R package “breast-
CancerNKI” (https://cran.r-project.org). This data set con-
tains the microarray mRNA expression measurements of
4919 genes, and the event of metastasis after adjuvant sys-
temic therapy from 295 women with breast cancer (van’t
Veer et al. 2002; van de Vijver et al. 2002). The 4919 genes
were selected from 24,885 genes, for which reliable expres-
sion is available (van’t Veer et al. 2002). Among 295 tumors,

88 had distant metastases. Our analysis was to build a logis-
tic model for predicting the metastasis event using the
4919 gene-expression predictors. Prior to fitting the models,
we standardized all the predictors. For hierarchical (and also
penalized) models, it is important to use a roughly common
scale for all predictors.

We fixed the slab scale s1 to 1, and varied the spike scale s0
over the grid of values: 0.005 + k 3 0.005; k = 0, 1, ���,
39, leading to 40 models. We performed 103 10-fold cross-
validation to select an optimal model based on the deviance.
Figure 5A shows the profile of the prevalidated deviance for
the Dutch breast cancer dataset. The minimum value of de-
viance appears to be 336.880(4.668), when the spike scale s0
is 0.09. Therefore, the sslasso GLMwith the prior scale (0.09,
1) was chosen for model fitting and prediction. We further
used 10-fold cross-validation over 10 replicates to evaluate
the predictive values of the chosen model with the prior scale
(0.09, 1). As a comparison, we fitted the model by the lasso
approach, and also performed 10-fold cross-validation over
10 replicates. Table 4 summarizes the measures of perfor-
mance. The result of the proposed sslasso GLMs was better
than the result of the lasso. The cross-validated AUC by the
proposedmethodwas estimated to be 0.684(0.011), which is
significantly larger than 0.5, showing the discriminative
ability of the prognostic model. Totally, 51 genes were de-
tected, and the effect sizes for most of these genes were
small (Figure S6).

We further estimated the prevalidated linear predictor,
hi ¼ Xib̂; for each patient, and then grouped the patients
on the basis of the prevalidated linear predictor into categor-
ical factor according to 5, 25, 50, 75, and 95th percentiles,
denoted by ci ¼ ðci1;⋯; ci6Þ: We fitted the univariate
model E

�
yi
��ĥi
� ¼ h21

�
mþ ĥib

�
and multivariate model

E
�
yi
��ci� ¼ h21

�
mþP6

k¼2cikbk
�
by using the prevalidated lin-

ear predictor and the categorical factors, respectively. The
results are summarized in Table 5. As expected, the two
models were significant, indicating that the proposed predic-
tion model was very informative.

TCGA ovarian cancer (OV) dataset: The seconddata set that
we analyzed was microarray mRNA expression data for ovar-
ian cancer (OV) downloaded from The Cancer Genome
Atlas (TCGA, http://cancergenome.nih.gov/) (updateMarch
2016). The outcome of interest is a tumor eventwithin 2 years
(started the date of initial pathologic diagnosis), including pro-
gression, recurrence, and new primary malignancies. Clinical

Table 4 Measures of optimal sslasso and lasso models for Dutch breast cancer dataset and TCGA ovarian cancer dataset by 103 10-fold
cross validation

Deviance MSE AUC Misclassification

Dutch breast cancer sslasso 336.880(4.668) 0.192(0.003) 0.684(0.011) 0.284(0.014)
lasso 342.134(3.383) 0.197(0.003) 0.656(0.018) 0.297(0.007)

TCGA ovarian cancer sslasso 394.796(7.684) 0.179(0.004) 0.647(0.017) 0.258(0.010)
lasso 393.152(5.392) 0.179(0.003) 0.636(0.017) 0.254(0.005)

Values in parentheses are SE.
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data are available for 513OV patients, where 110 tumors have
no interested outcome records. Microarray mRNA expression
data (Agilent Technologies platform) includes 551 tumors that
have 17,785 feature profiles after removing duplications. Even
though we can analyze all these features, considering that the
genes with small variance might contribute little to the out-
come, we selected the top 30% genes filtered by variance for
predictive modeling. We merged the expression data and the
tumor with new tumor event. After removing individuals with
missing response, totally, 362 tumors with 5336 genes were
included in our analysis.

Similar to the above analysis of the Dutch breast cancer
dataset, we fixed the slab scale s1 to 1 and considered the
spike scale s0 over the grid of values: 0.005 + k 3 0.005;
k = 0, 1, ���, 39. We performed 10-fold cross-validation with
10 replicates to select an optimal model based on the preva-
lidated deviance. Figure 5B shows the profile of the prevali-
dated deviance. The minimum value of deviance appears to
be 394.796(7.684) when the prior s0 = 0.095. Therefore,
the scale (0.095, 1) was chosen for the model fitting and
prediction. We also fitted the optimal lasso model using
10-fold cross-validation over 10 replicates. Table 4 summa-
rizes the measures of performance of the proposed sslasso
GLMs and the lasso model. We can see that the sslasso was
slightly better than the lasso model. The cross-validated AUC
was estimated to be 0.647(0.017), which is significantly
larger than 0.5, showing the discriminative ability of the
prognostic model. Totally, 85 genes were detected, and the
effect sizes for most of these genes were small (Figure S7).

We further estimated the cross-validated linear predictor,
and performed similar analysis as above Dutch breast cancer
dataset. The results are summarized in Table 5. The univar-
iate and multivariate analyses suggested that the proposed
prediction model was very informative for predicting new
tumor events in ovarian tumors.

Discussion

Omics technologies allow researchers to produce tons of
molecular data about cancer and other diseases. These mul-
tilevel molecular, and also environmental, data provide an
extraordinary opportunity to predict the likelihood of clinical
benefit for treatment options, and to promote more accurate
and individualized health predictions (Chin et al. 2011;
Collins and Varmus 2015). However, there are huge chal-
lenges in making predictions and detecting associated
biomarkers from large-scale molecular datasets. In this arti-
cle, we have developed a new hierarchical model approach,
i.e., sslasso GLMs, for detecting important variables and prog-
nostic prediction (e.g., events such as tumor recurrence or
death). Although focusing on molecular profiling data and
binary outcome in our simulations and real data analysis, the
proposed approach can also be used for analyzing general
large-scale data, and other generalized linear models.

The key to our sslasso GLMs is proposing the new prior
distribution, i.e., themixture spike-and-slab double-exponential
prior, on the coefficients. The mixture spike-and-slab prior can
induce different amounts of shrinkage for different predictors
depending on their effect sizes, and thus have the effect of
removing irrelevant predictors, while supporting the larger
coefficients, thus improving the accuracy of coefficient estima-
tion, and prognostic prediction. The theoretical property
of the spike-and-slab prior is characterized by the solution
path. Without the slab component, the output would be
equivalent or similar to the lasso solution path. Instead,
the solution path of the model with the spike-and-slab prior
is different from the lasso. Large coefficients are usually in-
cluded in the model, while irrelevant coefficients are shrunk
to zero.

Table 5 Univariate and multivariate analyses using the prevalidated
linear predictors and their categorical factors

Model Coefficients Estimates SE P Values

Dutch breast
cancer

univariate b 0.816 0.162 4.76e207
multivariate b2 20.619 0.761 0.416

b3 0.251 0.700 0.720
b4 0.412 0.697 0.555
b5 1.556 0.696 0.025
b6 1.520 0.827 0.066

TCGA ovarian
cancer

univariate b 0.683 0.162 2.47e205
multivariate b2 0.347 0.519 0.504

b3 0.906 0.518 0.080
b4 1.426 0.536 0.008
b5 1.719 0.572 0.003
b6 2.035 0.877 0.020

Figure 5 The profiles of prevalidated deviance under varied prior scales
s0 and fixed s1 = 1 for Dutch breast cancer dataset (A) and TCGA ovarian
cancer dataset (B).
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The large-scale sslassoGLMs can be effectivelyfitted by the
proposed EM coordinate descent algorithm, which incorpo-
rates EM steps into the cyclic coordinate descent algorithm.
The E-steps involve calculating the posterior expectations of
the indicator variable gj and the scale Sj for each coefficient,
and the M-steps employ the existing fast algorithm, i.e., the
cyclic coordinate descent algorithm (Friedman et al. 2010;
Simon et al. 2011; Hastie et al. 2015), to update the coeffi-
cients. As shown in our extensive simulation and real data
analyses, the EM coordinate descent algorithm converges
rapidly, and is capable of identifying important predictors,
and building promising predictive models from numerous
candidates.

The sslasso retains the advantages of two popularmethods
for high-dimensional data analysis (V. Ročková and E. I.
George, unpublished results), i.e., Bayesian variable selection
(George and McCulloch 1993, 1997; Chipman 1996;
Chipman et al. 2001; Ročková and George 2014), and the
penalized lasso (Tibshirani 1996, 1997; Hastie et al. 2015),
and bridges these two methods into one unifying framework.
Similar to the lasso, the proposed method can shrink many
coefficients exactly to zero, thus automatically achieving vari-
able selection and yielding easily interpretable results. More
importantly, due to using the spike-and-slab mixture prior,
the shrinkage scale for each predictor can be estimated from
the data, yielding weak shrinkage on important predictors,
but strong shrinkage on irrelevant predictors, and thus di-
minishing the well-known estimation bias of the lasso. This
self-adaptive strategy is very much in contrast to the lasso
model, which shrinks all estimates equally with a constant
penalty. These remarkable properties of the mixture spike-
and-slab priors have been theoretically proved previously
for normal linear models (V. Ročková and E. I. George, un-
published results), and have also been observed in our meth-
odological derivation and empirical studies.

Theperformance of the sslassoGLMsdependson the scale
parameter of the double-exponential prior. Optimally pre-
setting two scale values (s0, s1) can be difficult. A compre-
hensive approach is to perform a two-dimensional search on
all plausible combinations of (s0, s1), and then to select an
optimal model based on cross-validation. However, this ap-
proach can be time-consuming and inconvenient to use. We
performed simulations by a two-dimensional search, and
observed that the slab scale s1 within the range [0.75,
2.5] has little influence on the fitted model, while the spike
scale s0 can strongly affect model performance. Therefore,
we suggest a path-following strategy for fast dynamic pos-
terior exploration, which is similar to the approach of
Ročková and George (2014, and unpublished results). We
fixed the slab scale s1 (e.g., s1 = 1), and run grid values of
spike scale s0 from a reasonable range, e.g., (0, 0.1), and
then selected an optimal according to cross-validation.
Therefore, rather than restricting analysis based on a single
value for the scale s0, the speed of the proposed algorithm
makes it feasible to consider several, or tens of, reasonable
values for the scale s0.

The proposed framework is highly extensible. The benefits
of hierarchical modeling are flexible, and it is easy to in-
corporate structural information about the predictors into
predictive modeling. With the spike-and-slab priors, the
biological information (for example, biological pathways,
molecular interactions of genes, genomic annotation, etc.)
and multi-level molecular profiling data (e.g., clinical, gene
expression, DNA methylation, somatic mutation, etc.) could
be effectively integrated. This prior biological knowledge will
help improve prognosis and prediction (Barillot et al. 2012).
Another important extension is to incorporate a polygenic
random component for modeling small-effect predictors, or
relationships among individuals, into the sslasso GLMs. Zhou
et al. (2013) proposed a Bayesian sparse linear mixed model
that includes numerous predictors with mixture normal pri-
ors and a polygenic random effect and developed a MCMC
algorithm to fit the model. We will incorporate the idea of
Zhou et al. (2013) into the framework of our sslasso GLMs to
develop faster model-fitting algorithms.
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