Table 2. Estimates of four measures over 50 replicates under different simulated scenarios.
Deviance | MSE | AUC | Misclassification | ||
---|---|---|---|---|---|
Scenario 1 | n = 500, m = 1000 | ||||
Lasso | 638.983(17.431) | 0.224(0.008) | 0.693(0.031) | 0.359(0.029) | |
sslasso: s0 = 0.01 | 685.229(18.922) | 0.246(0.009) | 0.595(0.067) | 0.442(0.051) | |
sslasso: s0 = 0.02 | 643.119(23.694) | 0.226(0.011) | 0.681(0.038) | 0.371(0.031) | |
sslasso: s0 = 0.03 | 637.226(22.197) | 0.223(0.010) | 0.692(0.033) | 0.362(0.029) | |
sslasso: s0 = 0.04 | 636.930(18.928)a | 0.223(0.009) | 0.692(0.029) | 0.364(0.026) | |
sslasso: s0 = 0.05 | 639.385(16.732) | 0.224(0.008) | 0.694(0.029) | 0.364(0.022) | |
sslasso: s0 = 0.06 | 639.784(17.359) | 0.224(0.008) | 0.684(0.029) | 0.369(0.024) | |
sslasso: s0 = 0.07 | 645.151(19.752) | 0.227(0.009) | 0.674(0.028) | 0.372(0.025) | |
Scenario 2 | n = 500, m = 1000 | ||||
Lasso | 601.872(15.666) | 0.207(0.007) | 0.753(0.025) | 0.320(0.022) | |
sslasso: s0 = 0.01 | 640.816(26.885) | 0.224(0.012) | 0.686(0.042) | 0.367(0.031) | |
sslasso: s0 = 0.02 | 581.940(24.945) | 0.199(0.012) | 0.761(0.033) | 0.308(0.028) | |
sslasso: s0 = 0.03 | 581.661(28.271)a | 0.198(0.010) | 0.765(0.028) | 0.306(0.023) | |
sslasso: s0 = 0.04 | 583.037(21.964) | 0.199(0.009) | 0.764(0.026) | 0.307(0.021) | |
sslasso: s0 = 0.05 | 590.185(19.343) | 0.202(0.008) | 0.755(0.023) | 0.314(0.018) | |
sslasso: s0 = 0.06 | 595.879(19.388) | 0.204(0.008) | 0.751(0.024) | 0.328(0.018) | |
sslasso: s0 = 0.07 | 603.756(20.020) | 0.208(0.008) | 0.738(0.024) | 0.333(0.020) | |
Scenario 3 | n = 500, m = 1000 | ||||
Lasso | 561.917(14.623) | 0.190(0.006) | 0.790(0.021) | 0.289(0.020) | |
sslasso: s0 = 0.01 | 585.600(34.703) | 0.201(0.014) | 0.759(0.035) | 0.318(0.030) | |
sslasso: s0 = 0.02 | 531.956(26.214) | 0.180(0.010) | 0.808(0.021) | 0.269(0.022) | |
sslasso: s0 = 0.03 | 532.747(26.343) | 0.179(0.010) | 0.808(0.021) | 0.271(0.022) | |
sslasso: s0 = 0.04 | 530.781(24.638)a | 0.179(0.010) | 0.809(0.020) | 0.274(0.020) | |
sslasso: s0 = 0.05 | 541.192(24.496) | 0.182(0.010) | 0.802(0.020) | 0.279(0.019) | |
sslasso: s0 = 0.06 | 550.971(25.065) | 0.186(0.010) | 0.794(0.020) | 0.284(0.019) | |
sslasso: s0 = 0.07 | 559.430(24.311) | 0.190(0.009) | 0.785(0.020) | 0.293(0.019) | |
Scenario 4 | n = 500, m = 3000 | ||||
Lasso | 655.349(11.253) | 0.232(0.005) | 0.665(0.028) | 0.382(0.024) | |
sslasso: s0 = 0.01 | 680.988(16.432) | 0.244(0.008) | 0.601(0.058) | 0.430(0.119) | |
sslasso: s0 = 0.02 | 655.714(23.241) | 0.231(0.010) | 0.663(0.034) | 0.385(0.027) | |
sslasso: s0 = 0.03 | 646.877(20.963) | 0.228(0.009) | 0.673(0.030) | 0.372(0.026) | |
sslasso: s0 = 0.04 | 645.278(16.039)a | 0.227(0.007) | 0.674(0.024) | 0.377(0.022) | |
sslasso: s0 = 0.05 | 654.349(16.241) | 0.231(0.007) | 0.659(0.027) | 0.390(0.023) | |
sslasso: s0 = 0.06 | 665.488(18.227) | 0.236(0.008) | 0.646(0.028) | 0.400(0.026) | |
sslasso: s0 = 0.07 | 675.374(20.660) | 0.241(0.009) | 0.634(0.028) | 0.404(0.026) | |
Scenario 5 | n = 500, m = 3000 | ||||
Lasso | 620.034(16.209) | 0.215(0.007) | 0.726(0.030) | 0.334(0.027) | |
sslasso: s0 = 0.01 | 642.083(30.947) | 0.225(0.014) | 0.683(0.056) | 0.363(0.045) | |
sslasso: s0 = 0.02 | 597.547(34.288) | 0.205(0.015) | 0.745(0.039) | 0.322(0.033) | |
sslasso: s0 = 0.03 | 593.701(32.304)a | 0.205(0.013) | 0.746(0.034) | 0.318(0.030) | |
sslasso: s0 = 0.04 | 596.421(30.006) | 0.205(0.012) | 0.746(0.032) | 0.324(0.029) | |
sslasso: s0 = 0.05 | 610.549(24.024) | 0.211(0.010) | 0.731(0.030) | 0.333(0.025) | |
sslasso: s0 = 0.06 | 623.014(24.530) | 0.217(0.011) | 0.715(0.032) | 0.347(0.028) | |
sslasso: s0 = 0.07 | 634.536(26.023) | 0.222(0.011) | 0.701(0.033) | 0.355(0.026) | |
Scenario 6 | n = 500, m = 3000 | ||||
Lasso | 570.138(17.989) | 0.193(0.008) | 0.791(0.026) | 0.289(0.026) | |
sslasso: s0 = 0.01 | 568.332(35.346) | 0.194(0.015) | 0.777(0.036) | 0.302(0.029) | |
sslasso: s0 = 0.02 | 537.665(28.103) | 0.180(0.011) | 0.806(0.025) | 0.275(0.028) | |
sslasso: s0 = 0.03 | 530.081(29.097)a | 0.178(0.012) | 0.812(0.025) | 0.271(0.027) | |
sslasso: s0 = 0.04 | 530.535(26.149) | 0.178(0.011) | 0.811(0.023) | 0.266(0.025) | |
sslasso: s0 = 0.05 | 542.091(26.825) | 0.184(0.011) | 0.801(0.024) | 0.275(0.024) | |
sslasso: s0 = 0.06 | 557.014(27.697) | 0.189(0.011) | 0.788(0.025) | 0.288(0.022) | |
sslasso: s0 = 0.07 | 572.405(28.018) | 0.195(0.011) | 0.776(0.025) | 0.299(0.024) |
Values in parentheses are SE. The slab scales, s1, are 1 in all scenarios.
aThe smallest deviance values indicate the optimal model.