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Abstract

Automated pancreas segmentation in medical images is a prerequisite for many clinical 

applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this 

paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph 

based decision fusion process combined with deep convolutional neural networks (CNN). Our 

approach conducts pancreatic detection and boundary segmentation with two types of CNN 

models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue 

with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of 

pancreas. Both detection results of the two networks are fused together as the initialization of a 

conditional random field (CRF) framework to obtain the final segmentation output. Our approach 

achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in 

a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results 

compared with other state of the arts.

1 Introduction

Automated organ localization and segmentation in medical images, e.g., computed 

tomography (CT) and magnetic resonance imaging (MRI), is a prerequisite step for many 

clinical applications. Although good performance in heart, liver, kidney and spleen 

segmentation has been reported in the literature, automated segmentation of pancreas 

remains a challenging problem due to the following: 1) there exist large appearance 

variations in both shape and size of pancreas; 2) the pancreas is a highly deformable because 

it is relatively soft and can be pushed by its surrounding organs; and 3) the boundaries of 

pancreas often collapse with intestine, vessels, abdomen fat and other neighboring soft 

tissues, which causes a significant amount of ambiguities along the boundaries of pancreatic 
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and non-pancreatic tissues. Given all the difficulties listed the accurate measurement of 

pancreatic volume is still an urgent need in clinical practice.

One of the most popular organ segmentation frameworks is multi-atlas and label fusion 

(MALF) that segments the target image by transferring combined labels from atlas images. 

Wolz et al. [8] propose an atlas selection process to improve MALF. They apply a weighted 

combination of atlas labels as the initial segmentation and refine the segmentation results 

with markov random field (MRF). Wang et al. [7] utilize image patches instead of pixels for 

context similar matching and adopt geodesic distance metric for searching the K-nearest 

atlas patches of the target image patch. Finally the target patch is labeled by the majority 

voting of the K-nearest atlas. All these methods achieve ∼ 90% dice coefficients on liver, 

kidney and spleen, but only ∼ 70% on pancreas, using the leave-one-patient-out (LOO) 

protocol. For MALF, pancreas shape and position in the target image are often not 

completely covered by the atlas images, which might lead to the low performance of its 

following intensity context based pixel/patch matching.

Recent work have used convolutional neural networks (CNN) for pixel-wise predictions [1] 

that gain superior performance in computer vision tasks because of the highly representative 

learned deep image features using CNN. Roth et al. [4] apply multi-level deep CNN models 

for dense image pixel labeling, conducting pancreas segmentation gradually from coarse to 

fine representation. However, pixel or superpixel-wise prediction of deep networks is very 

inefficient since it requires thousands of inferences for a testing image.

In this paper, we propose to segment pancreas by performing decision fusion within a 

conditional random field (CRF) framework where we assign the CNN predicted semantic 

object and boundary probabilistic outputs as its energy terms. Due to the complex nature of 

pancreas MRI images, we would argue that conducting pancreas segmentation by integrating 

and fusing separate tissue allocation and boundary detection CNN models is a promising 

approach. An overview of our segmentation framework is illustrated in Fig. 1.

2 Methods

Different from CT, MRI imaging modality presents more details in soft tissues, while 

preventing patients from exposing to harmful radiations. However, slow imaging speed and 

low resolution of MRI often introduce more boundary artifacts than CT for pancreas. As we 

show in Fig. 2, some parts of the pancreas collapse with abdomen fat exhibit weak 

boundaries, which bring a lot of difficulties for automated segmentation. Within the weak 

boundary area, texture context features would perform better and complement the edge 

gradient information. On the other hand, other regions of the pancreas present strong 

boundaries that can be accurately delineated by semantic edge detection methods. Since both 

weak and strong pancreas boundaries are generally co-existing in MRI, results of the tissue 

classification and the boundary detection would be complementary to each other. The 

intrinsic idea of our method is to combine pancreas tissue classification and boundary 

detection to lead to a better overall segmentation performance. Two separate CNN models 

are trained for the two tasks, respectively. The CNN results are then combined with a graph 

based data fustion model to obtain the refined segmentation outputs.
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2.1 The Design of Convolutional Neural Networks

Instead of designing and training a new CNN architecture from scratch [1,4], we prefer to 

fine-tune two currently existing CNN models due to the following reasons: 1) a very deep 

CNN architecture needs a large amount of labeled training data to converge, which is often 

unavailable or difficult to obtain; 2) many CNN architectures have been proved to be highly 

discriminative with a stable training convergence; 3) a recent work [2] indicates the learned 

kernels in the bottom layers of the CNN can be successfully transferred from one application 

domain to the others. Therefore we propose to fine-tune our CNNs from the VGG-16 

network [5], which is already pre-trained using a huge amount of natural images.

In traditional CNN, the pixel or superpixel-wise classification strategy [4,2] significantly 

slows its inference procedure. To address this problem, fully convolutional network (FCN) 

[3] replaces the pixel-wise prediction with an end-to-end scheme, which is implemented by 

adding upsampling layers to a regular CNN architecture. The upsampling layers increase the 

output activation map resolution to the same level of the input image. Since the end-to-end 

training process calculates loss and updates the network in an image-wise manner, FCN is 

very computationally efficient. When running on GPU, FCN with VGG-16 network operates 

at the speed of 5 frames (256 × 256) per second.

The within-class variations of the pancreas shape and size require robust object-level 

boundary detection. Instead of detecting generic image edges, the boundary detection 

method should aim at precisely delineating the pancreatic boundaries. Holistically-nested 

edge detection (HED) [9] improves a regular FCN by adding deep supervision at all 

convolutional layers against down-sampled maps of the final desirable labeling output. In 

this way, the training losses are calculated and propagated back per layer. HED is also an 

end-to-end CNN and it can process 2.5 frames per second.

2.2 Data Fusion

FCN [3] localizes the pancreas position robustly, but it is not effective on precisely 

delineating pancreatic boundaries due to its upsampling convolutional operations. 

Nevertheless HED [9] can be fine-tuned to detect strong semantic pancreatic boundaries 

accurately, but it might fail to capture all weak boundaries. We treat both FCN and HED 

outputs as priors and conduct decision fusion using a principled CRF model. By minimizing 

the CRF energy function, our decision fusion method can remove most false positive 

segments from the original pancreas segmentation areas (initialized by the FCN and HED 

maps).

Graphical Model—we propose an undirected graphical model with weighted edges for 

decision fusion. The graphical model node represents its corresponding candidate image 

region. There are two groups of candidate regions, which are delineated inside the FCN and 

HED maps in Fig. 3. The first group is generated from watershed transformation of the 

semantic pancreas gradient maps through HED outputs. These regions align well to the HED 

detected pancreas boundaries. The second group is produced by superpixel segmentation on 

the detected FCN regions. As shown in Fig. 3, the node feature extraction will begin with the 

HED map so as to preserve as many the detected boundaries as possible. Features from the 
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FCN map and MRI image will then be extracted correspondently. The adjacent nodes are 

linked with weighted edges, which will reflect the likelihood that the two nodes are 

belonging to the same category (pancreas or non-pancreas). In other words, edges with low 

similarity will encourage the connected two nodes to take different categories, which is 

illustrated in Fig. 3.

Conditional Random Field—in the graphical model, nodes contain both FCN and HED 

features should be assigned with higher likelihood of being the pancreas region than those 

contain only one of them. Furthermore, the intensity context difference between any 

connected nodes should be taken into consideration. Hence, the node feature vector contains 

three parts: the learned FCN and HED features, and hand-crafted image features. Typically, 

for a CRF node, its corresponding FCN (HED) features would be set to all zeros if it has no 

detected regions in the FCN (HED) map. We then assign edges between adjacent nodes with 

weights that reflect the similarity of the corresponding node feature vectors. For a graph 

with N nodes, we define the CRF model objective function as

(1)

where υ = [υ1, …, υn] is the vector containing the labels of all nodes in , and υi ∈ {0, 1} 

presenting the states of nodes (pancreas or non-pancreas).  contains index of all the 

connected node pairs. We apply the stochastic gradient decent algorithm [6] to conduct the 

CRF learning. The unary and pairwise potentials are defined as

(2a)

(2b)

where uij = 1[υi = υj], and (α0, …, αK, β0, …, βk) are the parameters of the CRF model we 

learned. As the node vector fi can be flexibly represented by learned and hand-crafted 

features, we define the feature vector of i-th node as

(3)

where S[FCN,HED,i] denotes to the area of the FCN map, the HED map and the i-th node, 

respectively. Ii and hi are the mean intensity value and the histogram (4 bins) computed from 
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the pixels inside the region. From what our results indicate, this simple node feature setting 

is sufficient to obtain satisfying performance. Finally in the testing stage, we follow the 

iterated conditional modes (ICM) algorithm to perform the graph inference [6].

3 Experimental Results & Discussion

We evaluate our approach with abdominal MRI scans captured from 78 subjects using a 

1.5T Semens Avanto scanner. These MRI scans have an in-plane resolution of [152, 232] × 

256 voxels with voxel size ranging [1.09, 1.68mm] and contain between 23 to 35 slices with 

spacing ranging [6.90, 7.20mm] depending on the field of view and the slice thickness. For 

each scan, manual annotation of the pancreas is given by a board-certified radiologist. The 

dice similarity coefficient (DSC) is used to evaluate the proposed method. We use L1 and L2 

to represent the manual annotation and the automated segmentation results, respectively, and 

define DSC = 2|L1 ∩ L2|/(|L1| + |L2|).

We fine-tune CNN models from pre-trained VGG-16 [5]. For the FCN model, the initial 

learning rate is set to 1.0 × 10−2 and scaled by 0.1 with every 5.0 × 104 iterations. The 

maximum iteration is 1.5 × 105. The HED model is trained similarly, with the learning rate 

as 1.0 × 10−6 and the weight decay equivalents to 0.1 for every 1.0 × 104 iterations. The 

maximum iteration number is 4.0 × 104. For FCN or HED, we define the output as a 

probability likelihood map where each location belongs to pancreas. Fig. 4(a) shows the 

DSC of CNN models as a function of thresholds on the output probability. The plateau in the 

range of [0.2, 0.6] reveals that segmentation performance is stable within this range.

To set up a segmentation baseline on our MRI dataset, we extract HoG features from 64 × 64 

pixel sized image patches, and conduct superpixel-wise prediction with support vector 

machine (SVM). To compare with CNN model that trained from scratch, we train a 11-layer 

neuronal membranes segmentation network (NMSN) model in [1]. The NMSN makes pixel-

wise prediction on 95×95 pixel sized image patches. Also to compare with very deep CNN 

models, we train a FCN model (FCNM) with three classes of pancreatic tissue, pancreatic 

boundary and the background. To generate the graphical model for decision fusion, we 

assign graph nodes that have more than 50% overlaps with human annotation as positive, 

and the rest as negative. All the 78 MRI scans have been randomly separated to 52 for 

training and 26 for validation. Fig. 4(b) shows the results of all the segmentation methods 

mentioned above. Our approach achieves the highest accuracy with respect to the mean DSC 

while remains to be the method with the second minimal standard deviation. It is also worth 

noting that NMSN, which has been trained from scratch, has the smallest standard variance. 

However, its overall performance is largely limited by its shallow architecture.

To validate the segmentation stability, we implement three-fold cross validation (CV-3) as 

our evaluation protocol. Three-fold cross validation (rather than the leave-one-out (LOO) 

metric [8,7]) is adopted because patient cases from a single clinical site are hardly 

independent and identically distributed. In this scenario, N-fold CV (where N is small, e.g., 

2 4) is a statistically more reliable segmentation criterion as discussed in [4]. The optimal 

performance of training and testing is upper bounded by the detected FCN and HED regions. 

We show those optimal values and actual training, testing segmentation accuracy results in 
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Table 1 where we obtain around 4% loss in training and roughly 9% loss in testing. For the 

total dataset, our maximum test performance is 87.1% DSC with 10%, 30%, 50%, 70%, 

80% and 90% of the cases being above 84.8%, 81.1%, 78.4%, 74.7%, 71.5%, and 66.6%, 

respectively. Finally, we report our overall mean DSC in Table 2, comparing to other recent 

work reported in the literature. To the best of our knowledge, our approach has reported the 

best quantitative pancreas segmentation performance with a mean DSC 76.1% (although the 

results are not strictly comparable due to the lack of common evaluation datasets). In Fig. 5, 

we present some qualitative pancreas segmentation results.

4 Conclusion

In this paper, we propose to segment pancreas leveraging both appearance and boundary 

detection via CNN models that are supplement with each other. A graph based CRF model is 

used to fuse the deep CNN outputs in a principled manner. With decision fusion, the overall 

mean DSC boosts from 73.8% to 76.1% while lowering the standard deviation from 12.0% 

to 8.7%. Our decision fusion model is straightforward to be extended to handle other 

segmentation tasks.

References

1. Ciresan, D.; Giusti, A.; Gambardella, LM.; Schmidhuber, J. Deep neural networks segment neuronal 
membranes in electron microscopy images. In: Pereira, F.; Burges, CJC.; Bottou, L.; Weinberger, 
KQ., editors. Advances in Neural Information Processing Systems. Vol. 25. Curran Associates, Inc; 
2012. p. 2843-2851.

2. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and 
semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Jun.
2014 :580–587.

3. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. 2015 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Jun.2015 :3431–3440.

4. Roth, HR.; Lu, L.; Farag, A.; Shin, HC.; Liu, J.; Turkbey, EB.; Summers, RM. DeepOrgan: Multi-
level Deep Convolutional Networks for Automated Pancreas Segmentation. Springer International 
Publishing; Cham: 2015. p. 556-564.

5. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 
CoRR abs/1409.1556. 2014

6. Vishwanathan, SVN.; Schraudolph, NN.; Schmidt, MW.; Murphy, KP. Proceedings of the 23rd 
International Conference on Machine Learning. ACM; New York, NY, USA: 2006. Accelerated 
training of conditional random fields with stochastic gradient methods; p. 969-976.ICML '06,

7. Wang, Z.; Bhatia, KK.; Glocker, B.; Marvao, A.; Dawes, T.; Misawa, K.; Mori, K.; Rueckert, D. 
Geodesic Patch-Based Segmentation. Springer International Publishing; Cham: 2014. p. 666-673.

8. Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D. Automated abdominal multi-organ 
segmentation with subject-specific atlas generation. IEEE Transactions on Medical Imaging. Sep; 
2013 32(9):1723–1730. [PubMed: 23744670] 

9. Xie, S.; Tu, Z. Holistically-nested edge detection; 2015 IEEE International Conference on Computer 
Vision (ICCV); Dec. 2015 p. 1395-1403.

Cai et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.1. 
The framework of our approach. CNN Training: CNN models are trained for pancreatic 

tissue allocation (the FCN model) and boundary detection (the HED model); CRF 
Training: A CRF model is learned based on the candidate regions that detected by CNN 

models. Testing: The segmentation begins with CNN models, and then will be further 

refined by the CRF model. The result of testing and the corresponding human annotation are 

displayed with the green and red dashed curves, respectively.
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Fig. 2. 
Sub-regions with weak and strong boundaries displayed in the first and third column, 

respectively. The corresponding manual annotations are displayed with red dashed curves.
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Fig. 3. 
The overview of our graphical model for decision fusion. The feature vector of each node is 

extracted from its corresponding candidate region of the HED map, the FCN map, and the 

MRI image. The null feature is defined to refer to the non-detected region in the FCN/HED 

maps. The graph nodes are then partitioned by graph inference. The result of decision fusion 

is displayed with the same color notation in Fig. 1.
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Fig. 4. 
(a) mean DSC with respect to probability threshold, which is applied to the output of CNN 

models; (b) comparison of segmentation accuracy between different approaches. The red 

lines and crosses are represent to the means and outliers, respectively. (the thresholds are set 

to the optimal in (a), DF is the acronym for decision fusion)
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Fig.5. 
From left to right and top to bottom: Segmentation results with DSC from 95% to 51% using 

the same color notation in Fig. 1.
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Table 1

Results of decision fusion on 3-fold CV: Opt. is the optimally achievable DSC and Acc. is the actual DSC that 

training and testing achieve.

Validation Train Opt. Train Acc. Test Opt. Test Acc.

1st fold 92.8% 89.6% 83.5% 75.0%

2nd fold 91.7% 87.6% 85.2% 75.7%

3rd fold 92.2% 88.6% 86.1% 77.4%
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Table 2

Overall DSC shown as mean ± standard dev. [worst, best].

Method DSC(%) Data (size) Protocol

Wolz et al. [8] 69.6 ± 16.7 [6.9, 90.9] CT (150) LOO

Wang et al. [7] 65.5 ± 18.6 [2.4, 90.2] CT (100) LOO

Deep Organ [4] 71.8 ± 10.7 [25.0, 86.9] CT (82) CV-4

Our approach 76.1 ± 8.7 [47.4, 87.1] MRI (78) CV-3
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