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Abstract

Children living in agricultural communities have a greater risk from pesticides due to para-
occupational pathways. The goal of this study was to assess the impact of exposure to
organophosphorus pesticides on the neurobehavioral performance of school-aged Latino children
over time. Two exposure measures were used to estimate children’s pesticide exposure: parent’s
occupation (agricultural or non-agricultural) and organophosphate residues in home carpet dust
samples. During 2008-2011, 206 school-aged children completed a battery of neurobehavioral
tests two times, approximately one year apart. The associations between both exposure measures
and neurobehavioral performance were examined. Pesticide residues were detected in dust
samples from both agricultural and non-agricultural homes, however, pesticides were detected
more frequently and in higher concentrations in agricultural homes compared to non-agricultural
homes. Although few differences were found between agricultural and non-agricultural children at
both visits, deficits in learning from the first visit to the second visit, or less improvement, was
found in agricultural children relative to non-agricultural children. These differences were
significant for the Divided Attention and Purdue Pegboard tests. These findings are consistent with
previous research showing deficits in motor function. A summary measure of organophosphate
residues was not associated with neurobehavioral performance. Results from this study indicate
that children in agricultural communities are at increased risk from pesticides as a result of a
parent working in agricultural. Our findings suggest that organophosphate exposure may be
associated with deficits in learning on neurobehavioral performance, particularly in tests of with
motor function. In spite of regulatory phasing out of organophosphates in the U.S., we still see
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elevated levels and higher detection rates of several organophosphates in agricultural households
than non-agricultural households, albeit lower levels than prior studies.
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1. Introduction

Organophosphorus insecticides (OPs) are commonly used to control pests in agricultural
settings, both in the United States and globally. OPs impact humans by interfering with the
transmission of nerve impulses by blocking the normal breakdown of the neurotransmitter,
acetylcholine, through cholinesterase inhibition. Through this mechanism of action, these
insecticides have known neurotoxic properties, particularly in children [1,2]. Children are
considered to be more vulnerable than adults to the toxic effects of OPs because of
physiological differences such as immature metabolism and elimination systems [3].

Although use of these pesticides has been reduced and restricted in the United States, they
are still applied to some agricultural crops [4]. Recent evidence suggests that low-level
exposure to OPs during childhood and adolescence may have adverse consequences on
neurologic development [5-9]. Also recent longitudinal birth cohort studies assessing
prenatal exposures have shown deficits in cognition [10-12]. However, there are still
questions about neurologic development deficits related to chronic exposures over time and
the timing of exposure during critical windows of development.

Research has indicated that families living in agricultural communities have a greater risk
from OPs due to chronic exposures than the general population [13-16], additionally
children have greater exposure due to their behaviors such as crawling on the floor and more
frequent hand-to-mouth activity [17]. Home carpet dust samples are commonly used to
assess OP levels in the home. Prior studies have shown that pesticide levels in home dust are
positively associated with the proximity of homes to pesticide-treated fields and with para-
occupational pathways, agricultural workers inadvertently bringing pesticide residues into
the home on their clothes, boots, skin and hair [13-15,18-20].

OPs have the potential to adversely affect the health and neurodevelopment of children
living in agricultural communities where they are applied in the orchards and fields. Thus,
the purpose of this study is to investigate associations between OP exposure and
neurobehavioral performance in school-aged Latino children living in an orchard
community. Furthermore, the possibility of potential learning deficits in children due to the
impact of pesticide exposure was investigated. In the study, we compared two
neurobehavioral evaluations performed approximately 12 months apart.
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2. Methods
2.1. Study participants and design

This longitudinal study was conducted in an orchard community in the Pacific Northwest
where OPs are commonly applied. Many families in this community work in the orchards or
fruit packing houses. Children between the ages of 5 and 12 were recruited during a three-
year period between 2008 and 2010. Recruitment occurred through word-of-mouth, at
school, and at community events where a booth was set up with information explaining the
study. Only one child per household was eligible to participate in the study. For each child,
data were collected at two time points approximately one year apart. At both time points,
children completed a neurobehavioral test battery, parents completed a series of
questionnaires, and dust samples were collected from the homes. All test materials were
administered to children and parents in their preferred language, either Spanish or English.
The study was approved by the Institutional Review Board at Oregon Health and Science
University.

2.2. OP exposures

Parent’s occupation and OP residues in carpet dust samples were used to characterize
exposure to pesticides in children. Children that had at least one parent currently working in
agriculture were classified as agricultural and children that had neither parent working in
agriculture during the previous five years were classified as non-agricultural.

2.2.1. Questionnaires—Parents completed a series of questionnaires to collect
demographic information, occupational history, pesticide use at work and at home [14,21],
In addition, the Home Observation for Measurement of the Environment (HOME) survey
[22] was administered through interviews with the mother in the home, established HOME
scores were calculated and higher HOME scores indicate a more enriched home
environment; the School-age Child Behavior Checklist (CBCL) [23] was also completed,
three established scores were generated from the CBCL (total behavior problems,
internalizing problems and externalizing problems), higher scores indicate more behavioral
and emotional problems. Children completed the Short Acculturation Scale for Hispanic
Youth (SASH-Y) survey [24], established acculturation scores were generated. Higher
scores indicate higher acculturation to the U.S. society.

2.2.2. Dust collection—Dust samples were collected at both time points from homes with
carpets and analyzed for four OPs: azinphos-methyl, phosmet, malathion, and chlorpyrifos.
These pesticides were selected because they were commonly applied to orchard crops at the
time of data collection [25]. Standard protocols were used to collect and analyze the samples
[13]. Briefly, samples were collected from carpet in the main entrance or living area of the
home using a high-volume small surface sampler (HVS4, CS3, Inc.). An area of 122 cm by
122 cm was divided longitudinally into three strips with masking tape for sampling. The
HVS4 was placed at the first strip and pushed from the beginning to the end of the strip.
Each strip was sampled back and forth four times [13]. Samples were analyzed by gas
chromatography analysis with a mass selective detector in selected ion monitoring mode for
the four targeted OPs [13,18]. Pesticide residues below the lower limits of detection (LOD)
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were assigned a value one-half the appropriate LOD [26]. To assess the health effects of all
four OP exposures cumulatively, the raw OP levels were converted to molar equivalents.
They were then multiplied by the specific relative potency factors, and summed to create OP
molar totals for Time 1 and Time 2. Relative potency factors for the oral exposure routes of
OPs were used. Azinphos-methyl was set at 1.0 and the other three OP potency factors were
relatively adjusted (phosmet, 0.2; malathion, 0.003; and chlorpyrifos, 0.6) in order to be able
to sum the OPs together [27]. This approach was selected because the OPs act through a
common mode of toxic action and can be predicted by an additive toxicity approach that can
be estimated from the sum of the individual toxic potencies of each individual compound
[28]. OP concentration results were reported as both nanograms of pesticide per gram dust
(ng/g) for each specific pesticide and nanomoles of pesticide per gram dust (nmol/g) for the
OP molar total.

2.3. Neurobehavioral tests

To assess the long-term health effects of OP exposure on these children, neurobehavioral
data were collected using a battery of six computer-based tests from the Behavioral
Assessment and Research System (BARS) and four individually administered tests (Table
1). The BARS has been used successfully in farmworker populations [29,30] and with
Hispanic children [31]. Neurobehavioral testing was administered individually to each child
in a private room at a community center or library.

2.4, Statistical analysis

We first summarized demographic characteristics between the non-agricultural and
agricultural groups using chi-square and the Wilcoxon—-Mann-Whitney tests to examine
differences between the groups. Descriptive statistics for each type of OP by group were
calculated using the Wilcoxon—Mann-Whitney test.

Potential confounders were selected for these analyses based on results from the literature
[36-38] and are listed in Table 2. Separate multivariate linear regression models were built
using the two exposure measures (parent’s occupation and OP residues in carpet dust
samples) and identified confounders in a predictive model for each neurobehavioral
outcome. These models were run both for cross-sectional analyses of neurobehavioral
outcomes at the first visit, the second visit, and the difference in outcome between the
second visit and first visit to examine the change in test performance over time. Covariates
were retained in the final models if the level of significance for the association with the
neurobehavioral outcomes was <0.10 in the bivariate analyses and if the beta coefficient for
the independent exposure measures was changed by more than 10% with the addition of the
covariate in the model. A priori, we decided to retain child’s age and gender in the cross-
sectional models. Child’s age, gender and CBCL external score were included in all the
cross-sectional models for parent’s occupation. Child’s age, gender and acculturation score
were included in all the cross-sectional models for OP molar total. HOME scores were
included in the longitudinal models. Other confounders were included in the models
depending on the specific test, which included acculturation score, mother’s education, and
child’s home computer use. Confounders were checked for collinearity in the adjusted
regression models using variance inflation factors.
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The results of the longitudinal associations are presented as the adjusted change in
neurobehavioral performance (B) associated with increased exposure: (1) agricultural
children compared to non-agricultural children and (2) increase in change in OP molar total
from Time 1 to Time 2. To standardize the direction of the multivariate associations (so that
higher values always indicated better performance), values for Match-to-Sample (latency),
Symbol Digit (latency), Object Memory (utilization) and Name Writing (latency) tests were
inverted. All beta coefficients of 8 < 0 indicate a negative association. In other words,
increased exposure is associated with poorer neurobehavioral performance. For longitudinal
associations, B < 0 indicates a negative association between increased exposure and less
improvement in performance from Time 1 to Time 2. P-values <0.05 were considered
statistically significant and all statistical analyses were performed using SAS 9.3 (SAS
Institute, Cary NC).

3.1. Demographic results

A total of 328 children participated in the study. Due to the low number of non-Latino
agricultural families participating (7%), and large differences in demographics between
Latino and non-Latino children, (e.g., parent’s education levels), only data from children of
Latino families were included in this analysis (V= 215). There was no difference between
non-agricultural and agricultural children in age, gender, years of education of child, mother,
and father, and CBCL scores (Table 2). A greater percentage of agricultural children lived
next to or within an agricultural field or orchard and in small homes or cabins provided by
the grower/owner operator than non-agricultural children. Non-agricultural children had
significantly higher acculturation and HOME scores and more non-agricultural children
reported using computers at their home. There were no differences between the groups on
language spoken at home, number of moves the family had made in the past 12 months, and
number of pesticides used in the home, with a mean of one product used for both groups
(not shown).

3.2. OP dust measures

A total of 311 dust samples from 183 homes were collected at Time 1 and Time 2 between
2008 and 2011 and analyzed for the four OPs. The LOD and detection frequencies are
provided in Table 3. Dust samples were only collected from homes with carpeting (84%).
Detectable levels of OP residues were found in 100% of all homes from either Time 1 or
Time 2 samples (96% and 99%, respectively). However, a greater number of OP residues
were detected in agricultural homes compared to non-agricultural homes (Table 3).
Malathion was most frequently detected and azinphos-methyl was detected the least
frequently. Higher median levels of OP residues were found in agricultural homes at both
time points with the exception of phosmet at Time 2 (Table 3). When assessing within-
household residue levels between Time 1 and Time 2, malathion levels increased
significantly and phosmet levels significantly decreased for agricultural households from
Time 1 to Time 2. Chlorpyrifos levels increased significantly for non-agricultural households
from Time 1 to Time 2.
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3.3. Neurobehavioral performance among non-agricultural and agricultural children

The proportion of children completing all of the neurobehavioral tests was greater for non-
agricultural children compared to agricultural children at both Time 1 (67% vs. 56%, y< =
1.8, p=0.18) and Time 2 (71% vs. 57%, )(2 = 2.3, p=0.13), although these differences
were not significant. The Digit Span test (reverse) was the test the children had the most
difficulty with at both time points, Table 4. Both groups showed improvement in
performance on all outcome measures at Time 2 compared to Time 1, except for the latency
scores on the Match-to-Sample test for the non-agricultural group (Table 4).

3.4. Associations between exposure measures and neurobehavioral performance

In the cross-sectional analysis of neurobehavioral test outcomes at Time 1, agricultural
children had poorer performance on two outcome measures of attention, Digit Span
(forward), and Divided Attention (times sang song while tapping with preferred hand) while
controlling for confounders [ =—0.34 and S = —0.24, respectively] and performed better on
Object Memory (utilization), g = 0.65], Table 5. At Time 2, agricultural children had poorer
performance on the Divided Attention test (times sang song while tapping with preferred
and non-preferred hands) [8=-0.37 and 8= -0.48, respectively]. In the longitudinal
analysis, agricultural children had less improvement from Time 1 to Time 2 on 14 out the 24
outcome measures, however only four outcome measures were significant, Divided
Attention test (taps, preferred hand; taps with song, preferred hand; and times sang song
while tapping with non-preferred hand), and Purdue Pegboard test (non-preferred hand),
Table 5.

OP molar total was only significantly associated with one outcome measure at Time 2,
Continuous Performance (correct hits) (data not shown).

4. Discussion

The relationship between neurobehavioral performance and measures of potential exposure
to OPs among school-aged Latino children in an orchard community in the Pacific
Northwest was examined. Two measures were used to assess potential exposures to OPs
among children: parent’s occupation and OP residues in carpet dust samples.

4.1. Comparing OP measures in dust samples

Children whose parent(s) worked in agriculture had significantly more detectable OPs in the
home and higher OP residues than children whose parent(s) did not work in agriculture
indicating greater opportunities for exposure to pesticides. These results support the findings
from prior studies which indicate that agricultural workers bring pesticide residues home
from their workplace, increasing the risk from pesticides to children in that household.
Although measures were higher in agricultural homes, prior data collected in this
community found OP residues in home dust samples at tenfold to hundredfold times higher
than levels reported in the current study. In 1999, Rothlein et al. found median levels of 4400
ng/g of phosmet, 5300 ng/g of azinphos-methyl, 180 ng/g of malathion and 130 ng/g of
chlorpyrifos [39]. In 2001, McCauley et al. found median levels of azinphos-methyl at 1450
ng/g in farmworkers homes [14]. The lower levels reported in the current study are likely
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due to regulation changes during this time period by the U.S. Environmental Protection
Agency (EPA). During 2000-2001, the residential use of chlorpyrifos was banned [40] and
new restrictions were placed on the agricultural use of phosmet and azinphos-methyl
[41,42]. Interestingly, a large increase in malathion residues was observed in the homes of
agricultural families in 2011. It is hypothesized that this was likely due to a spotted wing
drosophila infestation in the orchards in the study region during this time [2010-2011] and
malathion was recommended as a choice of protective sprays during this period [43].

4.2. Associations between exposure measures and neurobehavioral performance

It has been hypothesized that practice effects, which reflect learning potential, could help
detect mild cognitive impairment [44,45]. A study conducted by Nguyen et al. (2015)
examined cognitive function and learning capacity between adult Latino farmworkers and
Latino non-farmworkers at baseline and a 3-month follow-up [46]. Although the
performance of both groups improved from baseline to testing at 3-months, non-
farmworkers showed improved performance on more of the outcome measures than the
farmworker populations. The authors observed that these improvements or practice effects
indicate the learning potential of the participants. Although performance was similar at
baseline, the farmworkers demonstrated deficits in learning potential.

In this study, practice effects were also observed among both the agricultural and non-
agricultural children, both groups improved on all the neurobehavioral tests at Time 2
compared to Time 1, with the exception of the latency scores on the Match-to-Sample test
for the non-agricultural group. These learning effects are expected since children between
the ages of 5-12 are experiencing rapid development. However, the two groups appeared to
have differences in practice effects, i.e., learning potential. An examination of the overall
data revealed a pattern of deficits in learning among children whose parents work in
agriculture; these children showed less improvement on outcome measures compared to
children from non-agricultural families. Agricultural children showed less improvement on
tests assessing motor function (i.e., Finger Tapping, Divided Attention (including tapping
with and without distraction), Purdue Pegboard, and Visual Motor Integration) and memory
(i.e., Object Memory).

Motor function and memory deficits have been reported in other studies examining pesticide
exposure in children. Preschool children from agricultural families performed worse on
Finger Tapping and Match-to-Sample tests compared to non-agricultural children from a
similar community [8]. Preschool children in Mexico had deficits in eye-hand coordination
and memory [47]. Adolescent pesticide applicators performed significantly worse than the
controls on neurobehavioral tests measuring memory and attention [6].

Although, we see deficits in learning from Time 1 to Time 2, there were few significant
differences between the two groups at Time 1 and Time 2 and only one association was
significant after applying Bonferroni corrections. Several factors may account for the lack of
associations. Even though we controlled for age, the range of the ages of the children is quite
broad and cognitive abilities of a 5-year-old are very different than a 12-year-old. Perhaps
we did not follow the children long enough to identify neurobehavioral deficits in
performance, deficits can be subtle and may be difficult to detect, especially if the exposure
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is at a low level, and some cognitive processes may not be affected until a threshold
concentration within the nervous system is exceeded. Following the children for a longer
period of time would provide more information about the developmental changes over time.
Also there may be less exposure for this age group since school-age children have less hand-
to-mouth activity and are usually on the floor less than younger children. Finally, both
agricultural and non-agricultural homes had detectable pesticide residues in which we would
infer that non-agricultural children had some OP exposures.

No clear patterns between the two exposure measures emerged and this might be due to the
timing of exposures. The time of exposure to OP pesticides is important to assess since there
are critical stages in the development of a child’s nervous system, current studies indicate
that prenatal exposure may have a negative effect on a child’s neurodevelopment [11,12].
The OP residues in the house dust measures potential current exposures and parent’s
occupation is potentially measuring accumulated exposures (current and past exposures,
even exposures prior to the child’s birth, while the mother was pregnant). Questionnaire data
showed that 117 agricultural children (75%) had either their mother and/or father working in
agricultural throughout their whole lives, including during pregnancy. This might explain
why more effects are observed with parent’s occupation compared to OP dust measures. The
effects of past pesticide exposures may be lasting and may differ from the effects of current
exposures.

Additional limitations include the convenience sample of the participants which may not be
representative of the population and potential misclassification with parent’s occupation. To
check for any misclassifications, we examined other agricultural-related questions to verify
parent’ occupations. Furthermore parent’s occupation and pesticide dust residues provide
only a measure of potential exposure and there is no information on actual exposures.
Another limitation is the large number of models analyzed, caution should be taken on the
few significant results observed in the models. When the p-value level was adjusted
according to the respective number of comparisons (Bonferroni correction) to p = <0.002,
this resulted in only one significant association, parent’s occupation at Time 2 with the
Divided Attention test (times sang song while tapping with non-preferred hand). There may
be other cultural factors unaccounted for between the groups that may impact performance.
With the dust samples, there was a large proportion of imputed values for azinphos-methyl
which has the potential to create a bias. The use of OP molar total assumes a common
receptor pathway and a similar metabolic profile for these four OPs. Carbaryl, a carbamate
insecticide, had also been used in the orchards during the study period, and exerts a similar
mechanism of action by inhibiting the acetylcholinesterase enzyme. There is a possibility
that carbamate exposures contributed to the neurobehavioral effects presented in this study.

However, in spite of these limitations this present study has several strengths. The
longitudinal design allowed us to observe changes in exposure and neurobehavioral
performance over time, many cross sectional studies typically only measure exposure and
performance at a single time point. We also were able to observe practice effects, i.e.,
learning potential, of the children with repeated tests. Identifying differences in learning
potential could help detect mild cognitive impairment [46]. We thoroughly assessed
potential confounders, adjusting for several demographic and behavioral indicators. Age,
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gender, and mother’s education have been known to impact neurobehavioral performance.
We also controlled for CBCL external scores, acculturation, home environment, mother’s
education, and home computer use, which could impact performance on the neurobehavioral
test battery. Another strength is that the children included in this analysis had similar socio-
economic backgrounds.

4.3. Conclusions

This study demonstrates that children living in in an agricultural community are exposed to
OPs. In spite of the EPA phase-out of OPs, both agricultural and non-agricultural homes
contained OP residues. Higher pesticide residues were found in homes of children with
parents were working in agriculture. Furthermore, higher levels of malathion, five times
higher than the previous years, were found in 2011. Integrated pest management protocols
specify that this pesticide was the recommend method for controlling the spotted wing
drosophila infestation [43]. This indicates that agricultural pesticide use may contribute to
exposures in agricultural and non-agricultural children and historical residential use may
also to contribute to these exposures.

Despite these lower OP levels, there is still concern about the impact on the development of
children. Agricultural children had more OPs in their homes, at higher amounts, and showed
deficits in learning on neurobehavioral performance compared to non-agricultural children.
These findings suggest that OP exposures may cause deficits in learning over time in
agricultural communities where children are at an increased risk from pesticides. This study
provides additional support that low level OP exposures might be associated with
neurobehavioral performance in children. More research is needed to further define the
nature of these deficits in agricultural communities.

More broadly, our findings imply that there is a need to educate agricultural communities on
the potential health impacts of agricultural pesticide use and efforts should be made to
promote effective strategies to reduce exposures in the household.
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Table 1

Neurobehavioral test, function measured, and outcome examined.

Page 13

Neurobehavioral tests and descriptions

Function

Outcome (measured unit)

1. Digit span
Recall of number sequences

2. Finger tapping

Tapping with preferred and non-preferred hand for 20
s

3. Match-to-sample

15 stimuli are shown for 3 s (10 x 10 matrix of
blocks)

Identify correct stimuli from 3 choices
4. Symbol-digit

Digits are paired with symbols in matrix Match
numbers to the symbols from the key

5. Continuous performance

Different shapes and targets shown rapidly for 4 min,

subjects are instructed to press a key when a target is
presented

6. Divided attention

Tapping with preferred and non-preferred hand
(control)

Tapping while reciting the birthday song with
preferred and non-preferred hand (distraction)

7. Object Memory @

Show 16 objects and asked to recall name

8. Purdue Pegboard %b

Place small pegs in holes during two 30 s trials with
each hand and both hands

9. Visual motor integration b
Total score for correct line segments

10. Name writing ¢

Time it takes to write name

Memory & attention

Response speed &
coordination

Visual Memory

Processing Speed

Attention

Divided attention

Recall & recognition memory

Dexterity

Hand-eye coordination

Visuomotor & fine-motor
agility

Forward score (maximum digits)
Reverse score (maximum digits)

Preferred and non-preferred hand (number of taps)

Average latency for correct choice (ms)

Number correct

Average latency of response for correct match (ms)

Percent correct hits (%)
D-prime, measures how well the participant
discriminates non-targets from target

Control, tapping with no song

Preferred and non-preferred hand (number of taps)
Distraction, reciting birthday song

Preferred and non-preferred hand (number of taps)

Preferred and non-preferred hand (number of times
sang song) *

Utilization

Immediate recall of objects Recognition of target and
non-target items

Preferred hand (average number of pegs)
Non-preferred hand (average number of pegs)
Both hands (average number of pegs)

Figure copying score

Preferred hand, latency (s)

Non-preferred hand, latency (s)

Abbreviations: ms, milliseconds; s, seconds.

8,32).

b . . .
Pediatric environmental neurobehavioral test battery [33].

“134,35].

*
Individually administered tests were selected from previous studies.
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