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Zika, a mosquito-borne viral disease that emerged in South America
in 2015, was declared a Public Health Emergency of International
Concern by the WHO in February of 2016. We developed a climate-
driven R, mathematical model for the transmission risk of Zika virus
(ZIKV) that explicitly includes two key mosquito vector species: Aedes
aegypti and Aedes albopictus. The model was parameterized and
calibrated using the most up to date information from the available
literature. It was then driven by observed gridded temperature and
rainfall datasets for the period 1950-2015. We find that the trans-
mission risk in South America in 2015 was the highest since 1950. This
maximum is related to favoring temperature conditions that caused
the simulated biting rates to be largest and mosquito mortality rates
and extrinsic incubation periods to be smallest in 2015. This event
followed the suspected introduction of ZIKV in Brazil in 2013.
The ZIKV outbreak in Latin America has very likely been fueled by
the 2015-2016 El Nifio climate phenomenon affecting the region. The
highest transmission risk globally is in South America and tropical
countries where Ae. aegypti is abundant. Transmission risk is strongly
seasonal in temperate regions where Ae. albopictus is present, with
significant risk of ZIKV transmission in the southeastern states of the
United States, in southern China, and to a lesser extent, over southern
Europe during the boreal summer season.
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Zika virus (ZIKV) is an emerging mosquito-borne virus that
infects and causes disease in humans. Approximately 80% of
infections are asymptomatic; the 20% of clinically affected people
mostly experience mild symptoms, such as fever, arthralgia, and
rash (1). A small proportion is believed, however, to develop a
paralytic autoimmune disease called Guillain—Barré syndrome (2, 3).
There is also evidence that the infection of women during a critical
part of pregnancy can lead to the development of microcephaly in
the unborn child (4, 5). The recent discovery of ZIKV in South
America and a surge in the number of reports of Guillain—Barré
syndrome and microcephaly cases in the region led the WHO to
announce a Public Health Emergency of International Concern on
February 1 of 2016.

ZIKV was first isolated in Uganda from monkeys in 1947 and
Aedes africanus mosquitoes in 1948 (6). Several other mosquito
species (mostly of the genus Aedes) have been implicated as ZIKV
vectors. Globally, the most important is the Yellow Fever mos-
quito, Aedes aegypti (7), which is widespread in tropical regions of
the world. A second vector is the Asian tiger mosquito, Aedes
albopictus (8), one of the world’s most invasive mosquito species. It
occurs in both tropical and temperate regions, often together with
Ae. aegypti, but also, extends farther north into temperate coun-
tries. Other Aedes species may be locally important, such as Aedes
hensilli, which is considered to have been the primary vector in the
Zika outbreak in French Polynesia in 2007 (1, 9).

The risk of spread of an infectious disease can be described by
its basic reproduction ratio (R,) defined as the average number of
secondary infections arising from a typical primary infection in an
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otherwise fully susceptible population. R, has an important
threshold value: a value above one indicates that the pathogen
could spread if it were introduced, resulting in a minor or major
outbreak depending on the size of R,, whereas a value below one
indicates that pathogen transmission would be insufficient to
produce a major outbreak. Mathematical formulations of Ry exist
for several vector-borne diseases (VBDs), including those with
one host and one vector [such as malaria (10)] and those with two
hosts and one vector [such as zoonotic sleeping sickness (11) and
African horse sickness (12)]. Relatively little attention has been
paid to developing mathematical formulations of R, where there
are two vector species and either one or multiple host species (13).
Consideration of two vector species in the R, formulation is es-
sential where two vectors have different epidemiological param-
eters. It also allows for the estimation of R, where the two species
co-occur and primary infections in one species can lead to sec-
ondary infections in the second.

Ae. aegypti and Ae. albopictus seem to have different suscepti-
bilities to ZIKV (7, 14-16), feeding rates, and feeding preferences
(17, 18). Ae. aegypti feeds more often and almost exclusively on
humans, and it is, therefore, an extremely efficient transmitter of
human viruses. Ae. albopictus feeds less frequently and on a
broader range of hosts, and it is, therefore, less likely to both ac-
quire and transmit a human virus. Given equal mosquito and
human densities, regions with Ae. aegypti are, therefore, theoretically
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expected to have a higher Ry for ZIKV than regions with
Ae. albopictus, but because Ae. albopictus extends beyond the range
of Ae. aegypti into more temperate regions, it is essential that both
are included in global models of ZIKV transmission risk.

The risk of transmission of a mosquito-borne virus and hence, its
Ry are also highly sensitive to climate (19). Temperature and
rainfall influence the abundance and seasonality of mosquitoes.
Furthermore, temperature has a major effect on the capacity of a
population of mosquitoes to transmit virus. This capacity is influ-
enced by the mean number of blood meals in a typical mosquito’s
remaining lifespan after the point at which it becomes infectious
(20), which is determined by the combined effects of the feeding
frequency (estimated by biting rates) and longevity of the mosqui-
toes (estimated from mortality rates) and the time required for
development of virus inside a mosquito [the extrinsic incubation
period (EIP)]. All three of these variables are highly sensitive to
environmental temperature conditions.

Here, we develop a global Ry model for ZIKV that explicitly
includes two vector species and one host and considers the influ-
ence of climate dynamically. First, we extend a recently devel-
oped two-vector mathematical framework for an animal VBD
(13) to ZIKV. Second, we parameterize the model using recently
published estimates of the global distribution of Ae. aegypti
and Ae. albopictus as well as the temperature-sensitive virus
transmission variables described above. Third, we drive the
model using global observation-based historical climate data
to derive global and seasonal estimates of the R, of ZIKV that
describe transmission risk by one, the other, and both vectors
where they co-occur.

Our model considers risk of transmission by vectors only. There
is strong evidence that ZIKV can also be transmitted sexually (21).
Although the number of confirmed cases to date is very small
relative to the number of cases believed to have been caused by
mosquito bites, it does allow the spread of ZIKV in regions where
mosquito vectors are absent. If the risk of sexual transmission
remains small, however, our model indicates where and when the
greatest risks of vector transmission occur, where vector control
measures may be most usefully implemented, and when and where
health professionals should communicate potential ZIKV threat
to infected travelers returning from ZIKV-endemic countries.

Results

Our R, model output (Fig. 1 A and B) captures well the observed
largely tropical distribution of ZIKV transmission (Fig. 1C). Since
the 1950s, ZIKV transmission or seropositivity has been reported in
several African countries, Pakistan, India, southeastern Asia, and
parts of Oceania (22), and it recently spread in 2015 and 2016 to
Latin American countries, Florida, Thailand, and the Philippines
(Fig. 1C), where importantly, large R, values are simulated. It has
been speculated that the epidemiologically naive population of
people in South America may account for the size of the outbreak
there. Although this statement is very likely true, our model also
finds the average R, of ZIKV to be greater in South America than
in any other region of the world. Other areas with high values of R,
are some African countries (Cote d’Ivoire, Central African Re-
public, Nigeria, Kenya, Tanzania, and Uganda) and Asian countries
(India, Vietnam, the Philippines, Singapore, parts of Malaysia
and Indonesia, and Thailand), where ZIKV circulation was also
previously reported (7, 8, 22-29). The model finds southern and
southeastern Asia to be suitable for ZIKV transmission. ZIKV was
first identified in Asia nearly 50 y ago (28), but there have not been
significant outbreaks recorded. The model seems to underpredict for
Egypt, because it does not find Egypt to be suitable for ZIKV
transmission, although seropositive people have been reported there.
Nevertheless, the prevalence in Egypt is believed to be very low (30).

The Ry model output is further validated against other published
estimates of R, for Rio de Janeiro, Brazil and Colombia as a whole
(Fig. 2). The minimum; 25th, 50th, and 75th percentiles; and
maximum R, values simulated for Rio de Janeiro (0, 3.4, 3.9, 4.3,
and 5, respectively) are very similar to estimates in ref. 31 (0, 3.2,
3.8, 4, and 4.6, respectively). The simulated R, values for Colombia
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Fig. 1. Observed and simulated ZIKV distribution. (A) Mean annual R,
(calculated over the period 1980-2015), (B) annual Ry peak that represents
the largest monthly value over the whole time period (1980-2015), and (C) past
and recent (2015-2016) countries with reported ZIKV circulation.

range from 0 to 6.9, with a median value of 4.1. These values are
also in good agreement with preliminary R, estimates for ZIKV in
Colombia (3, 3.9, and 6.6) (32). The climate data are unfortunately
too spatially coarse to obtain R, estimates for small islands in
Oceania, where Zika outbreaks were also reported in the last de-
cade. Furthermore, if one assumes that ZIKV transmission might
occur where dengue virus transmission was reported because of the
similarity of both viruses and their mosquito vectors, the ZIKV R,
model captures about 96% of dengue occurrence points as
reported in ref. 33 (ST Appendix, Fig. S1 and Table S1).

Next, we investigated the effect of seasonal change in climate on
the risk of ZIKV transmission. Our Ry model shows that boreal
summer temperature conditions lead to increased R, values over
temperate regions where both vectors (or only Ae. albopictus) are
present (SI Appendix, Fig. S2). Thus, the model outputs suggest
that the environmental conditions might be suitable for ZIKV
transmission to occur over a wider geographical range than has
currently been observed (Fig. 14), particularly when considering
the seasonal peak in R, (Fig. 1B). Over the South American con-
tinent, Ry values are large all year and peak during the boreal
winter and spring (S Appendix, Fig. S3). In Africa, the largest Ry
values are simulated over southern Africa during boreal winter and
the Sahelian region during boreal summer and fall (SI Appendix,
Fig. S4), which correspond to the peak of the rainy season over
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Fig. 2. Comparison of simulated R, with other published estimates. Box and
whisker plot of simulated R (red) vs. other published estimates (blue box
and whisker plot and black dots for single-point estimates) for Rio de Janeiro
(31) and Colombia (32). The box and whisker plot depicts the minimum;
25th, 50th, and 75th percentiles; and maximum across the ensemble of
values. Simulated distributions are based on closest grid point for Rio de
Janeiro and all country values for Colombia over the 1950-2015 period.

these regions. Over Asia, R, values are relatively large all year in
Oceania, whereas a clear peak in R is shown during boreal sum-
mer and fall over India, Vietnam, Laos, and Cambodia (SI Ap-
pendix, Fig. S5). During boreal summer, a large increase in Ry is
simulated over the southeastern states of the United States (SI
Appendix, Fig. S6), and smaller increases are simulated over
southern Europe (SI Appendix, Fig. S7) and southern China (S
Appendix, Fig. S5). The large R, summer values over the south-
eastern states of the United States are because of both very
conducive temperature conditions and the spatial overlap of
Ae. albopictus and Ae. aegypti (SI Appendix, Fig. S8). Therefore, our
model indicates that there is a large potential risk of ZIKV trans-
mission in the southeastern United States and to a lesser extent, over
southern China and southern Europe in boreal summer. This signal
mainly relates to the presence of the highly invasive Ae. albopictus in
temperate regions (SI Appendix, Fig. S8) as well as higher biting rates
(SI Appendix, Fig. S9), lower EIPs (SI Appendix, Fig. S10), and lower
mortality rates (S Appendix, Fig. S11) during the warm season.
The modeling framework also allows investigation of the re-
spective contributions of Ae. aegypti and Ae. albopictus to the total
R, burden (SI Appendix, Fig. S12). Given the selected parameter
settings, which are based on the published literature, Ae. aegypti is
responsible for >90% of ZIKV transmission risk in the tropics,
whereas Ae. albopictus seems to make a smaller contribution (less
than 10%). Ae. albopictus is, however, the main vector responsible
for ZIKV transmission risk in temperate areas, such as the northern
United States and southern Europe (SI Appendix, Fig. S12).
VBDs are not just affected by seasonal variations in climate;
extreme climatic anomalies can also favor epidemics. One of the
strongest El Nifo events ever recorded occurred in 2015-2016,
and there have been concerns about its possible impact on VBD
burden (34) and agricultural production worldwide. El Nifio
events are characterized by the movement of warmer than average
sea surface temperatures across the central Pacific basin and as-
sociated with warmer temperature conditions over the Tropics and
rainfall anomalies that vary greatly by region and season. To in-
vestigate the impact of El Nifio on potential ZIKV transmission
risk at a global scale, we derived the R, relative anomaly for 2015
(Fig. 34). Large positive anomalies in R, are simulated over the
Tropics, meaning that climate conditions were particularly con-
ducive for ZIKV transmission in 2015 relative to the long-term
average. This signal can be seen over South America (especially
Colombia and Brazil) but also, in Africa (with the largest anomaly
shown over Angola), southern India, Southeast Asia, and Oceania.
Although intense ZIKV transmission was only reported over
Central America and South America in 2015, the virus is believed
to have entered the region in 2013 (35). Standardized model
anomalies calculated for the South American continent further
reveal that 2015 was the year with the highest R, value (exceeding
2 SDs) over the whole 66-y time period (Fig. 3B). This R, maxi-
mum is mainly related to simulated maximum biting rates, mini-
mum EIPs, and mortality rates in 2015 (SI Appendix, Figs. S13 and
S14). A large positive anomaly is also shown for the 1997-1998
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El Nifio before ZIKV was introduced to the South American
continent. Therefore, our model indicates that the 2015 El Nino
event, superimposed on the long-term global warming trend, has
had an important amplification effect through its impacts on
mosquito vector and their overall ability to transmit virus.

Discussion

The model provided interesting insights into the spatiotemporal
distribution of potential disease transmission risk, permitted the
relative contributions of the two main disease vectors to be quan-
tified, and implicates the current El Nifo in playing an important
amplification role. Importantly, we show that warm temperature
conditions associated with the current El Nifio climate phenome-
non superimposed on the warming trend were exceptionally con-
ducive for mosquito-borne transmission of ZIKV in 2015 over the
South American continent. The conducive temperature conditions
in 2015 over South America can be related to the superposition of
climate change and decadal and year to year variability (36).
Similarly, Ry modeling work for the risk of bluetongue, an animal
VBD that emerged in northern Europe in 2006, highlighted that
temperature conditions in northern Europe in that particular year
were also exceptionally conducive for disease transmission (37).
Other notable impacts of El Nifio 2015-2016 are historical droughts
impacting food security in Ethiopia and southern Africa and forest
fires in California, Canada, Malaysia, and Indonesia. The number of
dengue cases in India in 2015 was the largest recorded (38). In-
terestingly, our model finds one of the largest 2015 R, anomalies for
ZIKV in Africa to be centered on Angola. Although ZIKV has not
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Fig. 3. ZIKV transmission risk anomalies. (A) Annual R, 2015 anomaly (percent-
age) with respect to the 1950-2015 period. (B) Standardized R, anomalies with
respect to the 1950-2015 period. The indices have been calculated for the South
American continent; A shows the spatial domain definition. The solid line and the
colored bars depict raw and linearly detrended anomalies, respectively.
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been recently reported, Angola is currently experiencing a large
outbreak of Yellow Fever transmitted by Ae. aegypti, and we
speculate, therefore, that this outbreak might also have been favored
by El Nifio conditions. This finding raises additional concerns about
the impact of large El Nifio events on VBD risk in a future warmer,
more connected world with increasing levels of drug and insecti-
cide resistance. Flaviviruses, in general, should have a promising
future (39).

Our results corroborate that Ae. aegypti, likely because of its
anthropophilic behavior and its aggressiveness, is a larger threat
than Ae. albopictus for ZIKV transmission worldwide. However,
the threat posed by Ae. albopictus is not negligible, especially during
the warm season in temperate regions, and the overlap of both
vector species produces the largest R values. Similarly, in Europe
in recent years, Ae. albopictus was responsible for a small number of
autochthonous cases of chikungunya and dengue in Italy, southern
France, and Croatia, whereas Ae. aegypti was responsible for more
than 2,000 cases of dengue on the island of Madeira in 2012 (40,
41). Consequently, there is a need to focus disease preparedness
measures or vector control interventions primarily in regions infested
by Ae. aegypti or where both vectors co-occur.

The simulated spatial distribution of ZIKV is similar to other
published estimates, which used environmental covariates and the
boosted regression tree method to estimate environmental suit-
ability for ZIKV at global scale (42) or a one-host, one-vector Ry
modeling approach to derive attack rates for Latin America (43).
Our model framework further allowed for exploring of spatial and
temporal changes in potential disease risk. We showed the potential
of ZIKV transmission during boreal summer over the southeastern
states of the United States as previously considered by others (44).
Autochthonous transmission of ZIKV was observed in Florida
in the summer of 2016. However, only a few cases were reported
so far; because there is large proportion (80%) of asymptomatic
infections with ZIKV, more people might be infected without
showing any clinical signs.

There are several caveats in our modeling framework that need
to be mentioned. First, we did not consider sexual transmission of
ZIKV, because it likely plays a very minor role in the overall
amount of transmission. Second, we only considered the risk posed
by Ae. aegypti and Ae. albopictus, believed to be the main competent
vectors of ZIKV (and certain other arboviruses, such as dengue
and chikungunya viruses). However, other Aedes species can
transmit ZIKV locally (such as Ae. hensilli in Pacific islands and
Ae. africanus in parts of Africa). There is also a debate about the
capacity of the geographically widespread Culex quinquefasciatus
vector to transmit ZIKV (45-47). However, most recent studies are
showing poor or no competence of this species to transmit ZIKV.
Our model might, therefore, underestimate R, in some localities
where vectors other than Ae. aegypti or Ae. albopictus are present.
Our mathematical framework can be readily extended to include
additional vectors, but limitations arise from the lack of detailed
distribution and epidemiological data for these species. There is an
urgent need for additional studies on vectors of ZIKV and their
distribution, abundance, and transmission parameters. Third, esti-
mates of vector to host ratios for Ae. aegypti and Ae. albopictus were
approximated from probability of occurrences, because they were
limited by the large spatial and temporal differences in published
field studies. Additional estimates of mosquito densities in different
demographic and geographic settings, preferably with standardized
methods (48), will be highly useful to improve and upscale mech-
anistic spatiotemporal risk models. ZIKV EIPs were approximated
by dengue virus estimates in our study, because they were similar in
high-temperature settings (7). Better estimates of the dependency
of the EIP of ZIKV to temperature, especially in the lower and
higher temperature tails of the distribution, will be highly valuable
for additional model refinement.

Our Ry model presents the risk of transmission given the in-
troduction of virus in a fully susceptibility population. It does not
address the potential of the pathogen and the vectors to spread via
tourism and trade or the risk of transmission in populations that
have already been exposed to ZIKV. Recent modeling work
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suggests that the ZIKV epidemic in Latin America should be over
in 3 y maximum and that acquired herd immunity will likely cause a
delay of more than a decade until large epidemics reemerge (49).
India, China, Indonesia, the Philippines, and Thailand have been
estimated at risk for mosquito-borne ZIKV infection because of
the large volume of travelers arriving from affected areas in Latin
America (50). Furthermore, socioeconomic factors (such as health
service per capita, urbanization, and vulnerability indices) should
be included in assessments of the full impact of Zika in future
studies. Our model uses recently published studies by the medical,
biological, and entomological communities; it benefits from sta-
tistical (51) and mathematical (13) modeling techniques and recent
environmental datasets produced by the National Oceanic and
Atmospheric Administration (52, 53). This fact underlines the
importance of taking multidisciplinary approaches to address and
anticipate the health and food security challenges to come.

Materials and Methods

Ro Model Design. To calculate R, for ZIKV transmission, we adapted the two
hosts-two vectors expression derived from ref. 13. This expression is suitable
for pathogens, including bluetongue virus, that have two main hosts and two
main vectors with different feeding preferences. In the case of ZIKV, there is
one main host (i.e., humans) capable of transmitting the virus. Therefore, we
prevented the second host from contracting and transmitting the infection.
However, because Ae. aegypti and Ae. albopictus feed to different extents on
humans, we retained the measures of feeding preference. In addition, because
infection with ZIKV is not associated with mortality, the standard pathogen-
induced mortality rate (d) was set to zero. The resulting expression is

Ro=1/Ri +Rz, (]

() 42
H1 vt r
(22 25) 42
n=(—""||—7||—")
H2 v+ r

Rjjis the average number of infectious vectors of type i produced by an infectious
vector of type j; one stands for Ae. aegypti, and two stands for Ae. albopictus. As
a result of the second host being noninfectious, the between-species terms R,
and Ry, are eliminated from R, (additional details are given in S/ Appendix). In
fact, this expression for Ry is true for any number of hosts, providing that only
one of them is a true host (i.e., capable of transmitting the infection). Biting rates
(a), mortality rates (u), and EIPs (eijp = 1/v) for both vector species are the only
parameters dynamically relying on temperature data. These dependencies to
temperature were calculated based on published evidence from the literature
(Table 1 and SI Appendix, Fig. S15). Vector preferences (¢), transmission proba-
bilities (from vector to host b and host to vector j), and ZIKV recovery rate (r)
were assumed to be constant, and they were derived from recently published
estimates for ZIKV or dengue virus if they were not available (Table 1).

Vector to host ratios (m, and m,) were derived from published probability of
occurrence (prob, and prob,) at global scale (51). Given the large differences in
mosquito density estimates published in the literature for different regions and
seasons (48), these probabilities of occurrences (0-1) have been arbitrarily lin-
early rescaled to range between zero and a maximum estimate of vector to
host ratio following the work in ref. 37. This maximum was estimated as an
order of magnitude (S/ Appendix, Fig. S16) using the maximum ZIKV R, value to
calibrate it. A maximum R, value of 6.6 was reported in ref. 32 for Colombia
during the outbreak. This maximum R, value is reached when the vector to
host ratio value reaches about 1,000 in the model between 30 °C and 37 °C
(SI Appendlix, Fig. S16C). This constraint is on the maximum solely; however, the
model reproduces well the distribution of Ry values with respect to other
published estimates (Fig. 2). Lower values for m are generally reported by en-
tomologists [10 is a commonly reported value (48)]. However, this value de-
pends on the selected field method to estimate m. Values of 52 Aedes
mosquitoes per person per hour have been reported in Macao using human
baits, 1.8 mosquitoes per hour have been reported using Centers for Disease
Control and Prevention (CDC) traps, and 110 mosquitoes per hour have been
reported using aspirators (54). Because both Aedes species are active from dawn
to dusk (e.g., over 12 h maximum, with a peak of activity in the early morning
and late afternoon), this is equivalent to 624, 21.6, and 1,320 mosquitoes per
day, respectively, thus including the selected maximum if we assume that a trap

where
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Table 1. R, model parameter settings—an index of 1 denotes Ae. aegypti and an index of 2 denotes Ae. albopictus
Symbol Description Constant/formula Comments Refs.
*a, Biting rates (per day) a, = 0.0043T + 0.0943 The linear dependency to temperature was 58, 59
*a, a,=0.5x a, based on estimates for Ae. aegypti in
Thailand; biting rates for Ae. albopictus
were halved based on observed feeding
interval data (18)
4 Vector preferences (0-1) o, = 1[0.88-1] Most studies show that Ae. aegypti mainly 17, 54, 60-65
(0% ¢, = 0.5[0.24-1] feeds on humans; Ae. albopictus can feed
on other wild hosts (cats, dogs, swine...),
and large differences are shown for
feeding preference between urban and
rural settings for this species
b Transmission probability— by = 0.5[0.1-0.75] Based on dengue parameters—estimates from 66
b, vector to host (0-1) b, = 0.5[0.1-0.75] a mathematical review study
P Transmission probability— p1=0.1 Recent laboratory experiment studies 14-16
P host to vector (0-1) $> =0.033 generally show low transmission efficiency
(in saliva) for various vector/ZIKV strain
combinations (South America and Africa);
estimates from ref. 15 were used in the
final model version
Uy Mortality rates (0-1 ur = 1(1.22 + exp(-3.05 + 0.727)) + 0.196 Mortality rates were derived for both 67
per day) if T<22°C mosquito vectors from published estimates
*Uus uq = 1/(1.14 + exp(5.14-1.3T)) + 0.192 based on both laboratory and field data
if T>22°C
2 = /(1.1 + exp(—4.04 + 0.576T)) + 0.12
if T<15°C
Ha = 0.00033972 — 0.0189T + 0.336
if 15°C<T<263°C
uz = 1/(1.065 + exp(32.2-0.927)) + 0.0747
if T>26.3°C
*eip, EIP (days) eip1 = 1/v1 = 4 + exp(5.15-0.1237) EIPs for dengue were used because estimates 68
*eip, eip; = 1/v; = 1.03(4 + exp(5.15-0.1237)) for ZIKV were only available at a single
temperature; 50% (100%) of Ae. aegypti
mosquitoes were infected by ZIKV after 5 d
(10 d) at 29 °C (7). An EIP longer than 7 d
was reported in ref. 15 at similar
temperature. Model estimates for dengue
suggest eip, ~ 8-9 d at 29 °C. The 1.03
multiplying factor for Ae. albopictus was
derived from ref. 67
m, Vector to host ratios my = 1,000 x prob;, m was derived as the product of a constant 51
m; my = 1,000 x prob, with probability of occurrences published
at global scale for both mosquito vectors;
Materials and Methods has additional
details
r Recovery rate (per day) r=1/7 69

T, temperature.

*Parameters that are dynamically simulated in space and time over the whole time period.

is a potential host. Biting rate estimates for Ae. aegypti of about 150 bites per
person per day were reported for Thailand over a 7-mo period (55). In Macao,
biting rates were reported to range between 94 and 314 bites per person per
day (54). Our estimates of (m x a) range between 100 and 250 bites per person
per day for Ae. aegypti and between 25 and 125 bites per person per day for
Ae. albopictus if we assume m = 1,000 (S/ Appendix, Fig. S17).

The percentages of R, attributed to Ae. aegypti (Ry1/Ro?) and Ae. albopictus
(R22/R0?) were derived from Eqg. 1, which can be rewritten as 1 = 100% = R¢¢/
Ro® + Roy/Ro?. An explicit mathematical derivation of the Ry model is provided
in S/ Appendix; parameter setting details and the publication references used
to estimate them are shown and discussed in Table 1.

Ro Model Integration and Driving Datasets. The Zika Ry model is dynamic,
meaning that some epidemiological parameters are varying in both space and
time from 1948 to 2015. The model runs on a monthly time step. To in-
corporate rainfall seasonality effects, we used a criterion derived for malaria
in Africa within the Mapping Malaria Risk in Africa project framework [e.g.,
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“80 mm per month for at least five months for stable transmission” (56)]. If the
criterion was not met, we assumed that R, = 0 for a particular location and month.
All spatially varying parameters were interpolated to the temperature data grid.

For temperature, we used gridded data, which combine station data
from the Global Historical Climatology Network version 2 with the Climate
Anomaly Monitoring System (52). This monthly temperature dataset is
available at 0.5° x 0.5°-square resolution at global scale for the period
1948-2015. For rainfall, we used the Global Precipitation Climatology
Centre global rainfall data available at similar spatial and time resolution
for the same time period (53).

R, Model Validation. Countries with active transmission of ZIKV (Fig. 1C) were
obtained from the CDC at www.cdc.gov/zika/geo/active-countries.html and
the European Center for Disease Prevention and Control at ecdc.europa.
eu/en/healthtopics/zika_virus_infection/zika-outbreak/pages/zika-countries-with-
transmission.aspx. Historical circulation of ZIKV at country scale (including
seroprevalence estimates) was derived from refs. 22 and 57. Baseline Rg

PNAS | January 3,2017 | vol.114 | no.1 | 123

ENVIRONMENTAL

SCIENCES


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614303114/-/DCSupplemental/pnas.1614303114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614303114/-/DCSupplemental/pnas.1614303114.sapp.pdf
http://www.cdc.gov/zika/geo/active-countries.html
http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/pages/zika-countries-with-transmission.aspx
http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/pages/zika-countries-with-transmission.aspx
http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/pages/zika-countries-with-transmission.aspx

estimates for Rio de Janeiro (Fig. 2) were mathematically derived from
reported cases provided by the Brazilian Notifiable Information System (31). Ro
estimates for Colombia (Fig. 2) were mathematically derived from reported
cases provided by the Instituto Nacional de Salud de Bogota (32).

Supplementary Information. Additional details about the model design, the
model validation, and additional analysis are provided in S/ Appendix.
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