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ABSTRACT
Directed cell conversion (or transdifferentiation) of one somatic cell-type to another can be achieved by
ectopic expression of a set of transcription factors. Since the experimental identification of transcription
factors for transdifferentiation is extremely time-consuming and expensive, there are still relatively few
transdifferentiations achieved in comparison to the number of human cell-types. However, the growing
volume of transcriptional data available and the recent introduction of data-driven algorithmic
approaches that predict factors for transdifferentiation holds great promise for accelerating this field. Here
we review those computational methods whose in-silico predictions have been experimentally validated,
highlighting differences and similarities. Our analysis reveals that the factors predicted by each method
tend to be different due to varying source cells used, gene expression quantification and algorithmic
steps. We show these differences have an impact on the regulatory influences downstream, with some
methods favoring transcription factors regulating developmental progression and others favoring factors
regulating mature cell processes. These computational approaches offer a starting point to predict and
test novel factors for transdifferentiation. We argue that collecting high-quality gene expression data from
single-cells or pure cell-populations across a broader set of cell-types would be necessary to improve the
quality and consistency of the in-silico predictions.
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Introduction

Our understanding of cell phenotype and its state has been trans-
formed over the last decade as it has become increasingly clear
that cell-type is not necessarily fixed. The process of experimen-
tally inducing changes in cellular identity by ectopic factors such
as transcription factors (TFs), drugs, growth factors, chemicals,
etc. is known as direct cell conversion. Furthermore, transdiffer-
entiation is defined as the process of converting the cells from one
somatic lineage to another, and in this review the terms ‘cell con-
version’ and ‘transdifferentiation’ will be used interchangeably.
These phenomena were initially observed in a cell transition from
fibroblasts to myoblasts caused by the overexpression of tran-
scription factor MYOD in fibroblasts.1 More recently, Shinya
Yamanaka famously demonstrated that a small set of TFs, namely
OCT4, KLF4, SOX2 and MYC can be used to transform human
fibroblasts to induced pluripotent stem cell (iPS).2 Subsequently,
other groups demonstrated that it was possible to convert fibro-
blasts to hepatocytes,3,4,5 to cardiomyocyte6,7,8 and to several
other cell-types (for reviews see refs.9,10,11). Despite these break-
throughs, the rate at which new sets of TFs for transdifferentiation
has been discovered has been slow, likely owing to the difficulty of
identifying these factors by the “trial and error” approach taken
by experimental groups. To overcome the limitation of these
strategies, a number of computational techniques have recently
emerged with the aim of speeding up the discovery of TFs sets, for

instance Heinaniemi M et al.,12 Lang AH et al.,13 Crespo I et al.,14

Davis FP et al.,15 D’Alessio AC et al.,16 CellNet17 and Mogrify18

(reviewed by Bian Q and Cahan P19). Here, we will focus on the 3
computational methods whose TF predictions have been experi-
mentally validated via human cell conversions; CellNet17 which
uses microarray gene expression data and correlation-based net-
work score, D’Alessio et al.16 whose method uses microarray gene
expression data and an information theoretic approach (Jensen-
Shannon Divergence; from herein we will refer to this method as
JSD) and Mogrify18 which uses cap analysis of gene expression
(CAGE) data and a network based score. Each of these computa-
tionalmethods uses information on cell-type specific gene expres-
sion, and in some cases gene-regulatory network information, as
their input to calculate a score for each TF and output a set (or a
ranked list) of TFs for a given cell conversion. With so few known
cell conversions and the fact that the same conversion can be
achieved with slightly different sets of TFs, it is difficult to assess
which of these approaches makes the most reliable predictions
without undertaking an extensive experimental validation pro-
gram.However, here we compared and contrasted the predictions
made by each of the approaches across many cell conversions and
in doing so we highlight the differences and similarities between
the methods. Additionally, we also show that the predictions are
sensitive to both the input data and expression profiling tech-
nique. Further to this by investigating the molecular networks
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and functions that the predicted set of TFs regulate, we also inves-
tigate in detail the TF predictions from each method for 2 well-
characterized cell conversions: fibroblasts to cardiomyocytes-like
cells and fibroblasts to hepatocytes-like cells.

Computational methods for the prediction of
reprogramming factors

The available methods vary in a number of ways, for
instance the input data used, the algorithm and the breadth
of predictions available. A schematic summary of each

method is reported in Fig. 1A. In order to predict TFs for
transdifferentiation all methods broadly follow the same
computational stages: (1) They collate information about
the gene expression profiles of multiple cell-types, (2) For
each cell conversion they create a differential gene expres-
sion profile between the target cell-type and a background
cell-types, (3) Based on the gene expression they assess the
transcriptional and regulatory influence of each TF on the
target cell-type, (4) They rank TFs based on their relative
regulatory influence and (5) Provide an output including
the prioritized set of TFs for a given transdifferentiation.

Figure 1. (A) Summary of methods. Each row represents the method for predicting TFs in transdifferentiation which are CellNet, JSD and Mogrify. Each column represents
the computational stages involved in the TFs set prediction which are input requirement, generation of differential expression profile, identifying the influence of each TF
in cell conversion, criteria to prioritize the TFs and finally the predictions. CellNet classifies the source cell-type based on the user experimental microarray data and pro-
vides a ranked list of TFs for conversion. It does this by creating GRN (gene regulatory network) from GEO (gene expression omnibus) data using CLR (context likelihood
of relatedness) algorithm and the target cell specific sub-network is obtained by GSA (gene set analysis). The TF influence score is calculated by the differential expression
of the TF and the number of genes it regulates. Finally, CellNet outputs classification of the source cell, a list of TFs ranked by their importance in conversion and the tar-
get cell-type GRN. As input JSD method requires only the target cell-type detail. The differential expression profile is detected by comparing the target cell profile with
the background data set (selected by low Pearson correlation between the expression profiles) using microarray data from GEO. Jensen-Shannon divergence (JSD) is used
to measure the deviance of the observed (TF expression profile observed in data from GEO) from the ideal (TF is highly expressed only in target cell compared to the back-
ground cells) distribution. Finally, it provides a ranked list of TFs based on the JSD score and specifies top 10 as core candidate TFs. As input Mogrify method requires both
source and target cell-type details. The differential expression profile between target cell-type and background dataset (all cell-types excluding the target cell-type) is
obtained using the CAGE data (cap analysis of gene expression) from FANTOM5 consortium. A gene interaction network is formed with data from STRING database and
MARA. Then the TFs are ranked based on differential expression of the TF, differential expression of the regulated genes and connectivity of the TF in the network. Finally,
TFs expressed in the source cell are removed and a non-redundant TFs set is provided. B) Comparison of TFs used for prediction by each method and TFClass which com-
prises of hierarchical classification of TFs. C) Comparison of target cell-types available for the conversion from fibroblast by each method.
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Out of the 3 algorithms, JSD is the only method that does
not take into account the source cell-type in its calculations. As
a result, the predicted TFs by JSD for transdifferentiation to a
particular target cell-type will always be the same regardless of
the source cell-type. Conversely, both CellNet and Mogrify take
into account the starting cell-type; Mogrify removes TFs if they
are already expressed in the source cell-type and CellNet
weights its predictions based on the change in expression from
the source to the target cell-type.

For transdifferentiation, each of the techniques provide pre-
dictions for a different number of cell/tissue-types; CellNet can
provide predictions for 16 cell-types, and the software is publi-
cally available to run predictions for new cell-types based on
user’s data. Neither JSD’s or Mogrify’s software is publically
available, but they provide TFs predictions for transdifferentia-
tions for 233 and 274 cell/tissue-types, respectively.

All approaches considered here use gene expression data as
the basis to make their predictions, and the data quality will
impact the accuracy of the predictions. Both CellNet and JSD
use microarray data from the gene expression omnibus (GEO)
database20, whereas Mogrify uses CAGE data from the FAN-
TOM5 (functional annotation of mammalian).21 Since CAGE
is a sequencing-based technology it provides a digital quantifi-
cation of expressed genes; however, microarrays have issues
with reliably distinguishing expression levels, particularly in
low abundance genes22 such as TFs.

An important step common to all methods is the calculation
of a differential gene expression statistics from gene expression
profiles for each of the available cell-types. In order to do this,
each method defines a background set of gene expression pro-
files against which the target gene expression profile is com-
pared. CellNet creates this background dataset by using all the
cell-types excluding the target cell-type. JSD creates a static
background data set comprising representative cell-types whose
Pearson correlations are less than 0.9 and this background is
the same irrespective of the target cell-type. Mogrify creates a
background dataset based on the FANTOM5 cell-type ontology
tree, for instance the background for a target tissue-type com-
prises of only other tissue-types and for a target cell-type it is
made of other cell-types excluding the target cell/tissue-type.

Once the background is selected each approach has a differ-
ent algorithm for predicting the sets of TFs that can induce a
cell conversion. CellNet finds subnetworks using the InfoMap
community-detection algorithm23 and then uses GSA24 to iden-
tify target cell-type specific subnetworks of genes (these genes
are highly expressed when compared to all other cell-types).
Following this, a TF influence score is computed by a weighted
sum of differential expression of the TF and the number of
genes it regulates. JSD calculates the Jensen-Shannon Diver-
gence, a deviance measure of observed TF expression with
respect to an idealised TF expression across all cell-types. The
idealised TF expression is defined as a case where the TF is
highly expressed in a target cell and not expressed in any of the
background cells. The resulting divergence score is used to
rank TFs, with those with the lowest divergence (most specific)
being the top predicted TFs. Mogrify creates a score for every
gene in each sample by combining the log fold change and
adjusted p-value when compared to the background using
DESeq.25 Subsequently, to compute a score for each TF a

weighted sum of its local network neighborhood defined gene/
protein interaction from STRING26 database and MARA.27

The sum is performed with a weight placed on the number of
genes connected to the TF to penalise highly connected TFs
and on the distance of regulated gene from the TF of interest,
to account for the fact that direct regulation is more effective
than indirect. Furthermore, Mogrify has a step that is not pres-
ent in either of the techniques whereby it calculates which TFs
are redundant to each other, and in doing so it calculates an
optimal set of transcription factors for each conversion. In con-
trast, JSD selects the top 10 TFs as candidates and CellNet
ranks all TFs for each conversion leaving the choice of how
many TFs to choose to the user.

For all 3 methods, the authors of the study provide
experimental validation to support the predicted TFs.
CellNet improved upon existing transdifferentiations from
b-cell to macrophage and also from fibroblast to hepato-
cyte, JSD performed a transdifferentiation of fibroblast to
retinal pigment epithelial cell, and Mogrify carried out 2
cell conversions between fibroblast and keratinocyte as
well as between keratinocyte and microvascular endothe-
lial cell. Here we aim to identify the characteristics of TFs
predicted by each method, suggest possible biological
implications of the TFs based on the genes that they regu-
late and highlight significant differences between the
methods and underlying data that can have an effect on
the predictions.

Comparison of methods

Comparing the definition of transcription factor between
methods

The breadth of TFs-predictions for each technique can be
measured in 2 ways. Firstly, the numbers of cell-types for
which predictions are available; which are 16, 233 and
274 cell/tissue-types for CellNet, JSD and Mogrify,
respectively. Secondly, the set of potential TFs that can
be predicted, which is based on the definition of tran-
scription factor used by each method. CellNet lists a pos-
sible 1,599 TFs by selecting genes that have a gene
ontology annotation as ‘nucleic acid binding’ and ‘tran-
scriptional regulation’. JSD lists 1,095 TFs and Mogrify
lists 1,749 however, neither of these methods provides
the selection criteria used to classify TFs. In order to
investigate the set of TFs utilized by each method, we
compared the TF lists used with a list of genes defined by
TFClass28 as transcription factors. TFClass provides a
hierarchical classification for 1,573 human TFs based on
DNA-binding domains. There are 809 common TFs
between the 3 methods, out of which 782 are also defined
as TF in TFClass (Fig. 1B). Furthermore, 24.7%, 11.6%
and 11% of the genes defined as TF by CellNet, JSD and
Mogrify respectively, do not appear in TFClass (Fig. 1B).
Moreover, there are 278 unique TFs that can only be pre-
dicted by Mogrify, 281 for CellNet and 56 for JSD. This
highlights how differences in the basic definition of TF
by each of the techniques can have a large effect on the
possible range of TFs being predicted.
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Comparing TF-predictions across methods using a tree of
cell-types

In order to compare the shared and unique TFs predicted for
common conversions by each method, the same/similar cell-
types from each technique were mapped onto a cell-type ontol-
ogy tree. This tree was derived from the UBERON29 anatomical
ontology network which describes the relationship between
body parts, organs, tissues and cells. The complete cell-type
ontology tree of 320 cell-types representing all 3 methods is
presented in Fig S1, and a subset of this tree is shown in Fig 2.
In the case of CellNet and Mogrify where gene expression data
from both the source and target cell-type is required, the source
cell-type was fixed to fibroblast for CellNet and dermal fibro-
blast for Mogrify. Following this, it is possible to extract the
predictions from each method for overlapping cell-types. Spe-
cifically, the sets of TF-predictions provided by each technique
(15 cell-types from CellNet, 226 from JSD and 245 from Mog-
rify) were placed onto the cell-type ontology tree using a com-
bination of text mining and manual curation (see Methods).
Fig. 1C summarizes this overlap of available cell conversions
between each of the 3 methods. There are only 10 common
cell-types between CellNet, Mogrify and JSD (skin epidermis,
colon, heart, lung, liver, neuron, embryonic stem cells, female
gonad, macrophage and skeletal muscle). CellNet and JSD have
an additional 4 common target cell-types (kidney, B-cell, endo-
thelial cell and haematopoietic stem cell), whereas JSD and
Mogrify have 70 cell-types in common (see Fig. S1 for details).
If the TF-predictions are provided by 2 or 3 methods, then the
percentage of commonly predicted TFs is calculated for each
cell-type and represented as a heatmap in Fig 2 and S1. For
example, predictions for ‘M1’ and ‘M2 macrophage’ from JSD,
‘Human macrophage’ from Mogrify and ‘macrophage’ from
CellNet are all annotated as ‘macrophage’ on the cell-type
ontology tree. The overlap of predicted TFs between CellNet
and JSD for this conversion is 33% whereas between Mogrify
and both CellNet and JSD is 18%.

Analysis of the complete cell-type ontology tree shows that
the mean overlap of predicted TFs by the 3 methods across
common cell-types is relatively low; 18.5% of the predictions
matched between Mogrify and JSD, 27.3% between JSD and
CellNet and 16.7% between CellNet and Mogrify. The predic-
tions mapping to liver had the highest overlap (an average
overlap of 63.6% between methods) whereas those mapping to
neuron had the lowest overlap (an average overlap of 4.7%
between methods) (see Fig. S1). Since JSD and Mogrify cover
more cell-types than CellNet a more detailed comparison of
predicted TFs is possible. Among the 70 common cell-types
between JSD and Mogrify, the most frequently predicted TFs
by JSD are E2F7 and SNAI2, (predicted in 19% of cell-types)
and HES1, JUNB, SOX9 by Mogrify (predicted in 16% of cell-
types). In each case, the cell-types for which these TFs are being
predicted are very different, and in general the predicted sets of
TFs between the 2 techniques vary greatly. Furthermore, in JSD
the predicted TFs appear more often to be the same among
closely associated cell-types in the cell-type ontology tree when
compared to Mogrify (Fig. S2B and S2C). For instance, JSD
predicts IKZF1 in many of TF-sets for cell-types in the haema-
topoietic lineage and OLIG1 for the neural related cells,

however this trend is not observed in Mogrify for the same set
of cell-types. This result may be due to the fact that JSD aims to
find TFs that are highly expressed in the target cell with respect
of a fixed background data set. For instance, JSD’s background
dataset has no representation of haematopoietic related cells
and as a result, this allows for IKZF1 which is a lineage rather
than
cell-type specific transcription factor, to be predicted for all
cell-types in haematopoietic lineage. Conversely, CellNet and
Mogrify have representation from across the tree in each back-
ground with the exclusion of target cell-type and as a result,
TFs that are specific to cell-type rather than a lineage are
detected as differentially expressed and therefore predicted
(Fig. S3).

A conversion that is the subject of much investigation in the
field is from fibroblast to an embryonic stem cell (ESC) like
state or iPSc. This conversion was experimentally demonstrated
in 2 pioneer studies using 2 different sets of TFs: OCT4, SOX2,
KLF4, and MYC reported in30 and OCT4, SOX2, NANOG, and
LIN28A reported in31. A predicted set of TFs for this conver-
sion is provided by each of the computational techniques
(Fig. 2). TFs that overlap with the experimentally validated
studies mentioned above are listed as follows: CellNet predicts
both LIN28A and NANOG; JSD predicts NANOG and OCT4
while Mogrify predicts NANOG, SOX2 and OCT4. CellNet
predicts LIN28A, whereas both JSD and Mogrify do not define
LIN28A as a TF. Notably, MYC and KLF4 are not predicted by
any of the methods despite being classified as TFs by each of
them. However, conversions to iPS cells have been possible
with OCT4 and SOX2 alone.32

Influence of a cell’s gene expression profile on TF-
prediction

Since each of the methods uses different underlying gene
expression data, differences in TF-predictions can arise. JSD
uses gene expression profiles quantified by microarray and
Mogrify uses CAGE. To highlight the differences resulting
from these 2 approaches; gene expression data from the heart,
hepatocyte and embryonic stem cells are analyzed in detail
(Fig. S4). For each cell-type, the gene expression profile
detected by microarray and CAGE are correlated (Pearson cor-
relation of 0.68 in heart, 0.78 in hepatocyte and 0.76 in ESC)
but there are some discrepancies. For example, HIC2 in heart
(Fig. S4A) and CUX2 in hepatocyte (Fig. S4B) are predicted as
TFs required for cell conversion by JSD. However, Mogrify
does not similarly predict these factors for transdifferentiation
from fibroblast because neither TFs are expressed in the corre-
sponding CAGE data. In contrast, both SOX2 and ZIC2
(Fig. S4C) are similarly highly expressed in CAGE and microar-
ray, but the former is predicted only by Mogrify and the latter
by CellNet for transdifferentiation to ESC. Therefore, these dis-
crepancies can arise from the variation in underlying biological
samples, the gene expression platform and the data post-proc-
essing. With these differences in mind, it may be beneficial for
future methods to use a unified gene expression resource or to
provide more details about the underlying samples and data
collection.
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TF-predictions for two well-characterized
transdifferentiations

In order to further elucidate the differences between predictions
from each method, we consider 2 well-studied conversions;
fibroblast to cardiomyocyte-like cells and fibroblast to hepato-
cyte-like cells. In each case a target cell-type or tissue-type is
required in order to generate a prediction from each method.
In the case of cardiomyocyte-like cells heart tissue is used as
the target for each method since either no cardiomyocyte sam-
ple is available or a problem with the cardiomyocyte is identi-
fied in the original publication. In the case of hepatocyte-like
cells no problems are reported so we have chosen hepatocyte
where available (Mogrify and JSD) and liver tissue otherwise
(CellNet). The predicted TFs for each conversion for both JSD
and CellNet are the top 10 ranked TFs while Mogrify predicts a
set of 8 TFs for both heart tissue and hepatocyte.

Chen O, et al.33 provide a detailed review on experimentally
validated TFs for conversion between cardiac fibroblast and
cardiac myocyte. The key transcription factors for this conver-
sion are GATA4, MEF2C, TBX5, HAND2, MYOCB, SRF and
NKX2-5. Of these, CellNet predicts one factor (TBX5), JSD 3
factors (TBX5, GATA4, NKX2-5) and Mogrify 4 factors
(TBX5, GATA4, NKX2-5, MEF2C) (see Table 1 for details). In
order to understand the functional consequences of the TF sets
chosen by each method, a gene ontology (GO) enrichment
analysis was performed. This analysis looked for functional
enrichment among the predicted TFs and those genes which
they are known to interact with, i.e. the local network of the
predicted TF set according to GeneMania34 (see Methods for
details). Fig. 3 shows the top 20 enriched biological processes
(BPs) terms for each method along with their corresponding p-
values. The common and unique BPs for each method are indi-
cated along with, where possible, the identity of which TF is
likely to be responsible for regulating each BP. The predictions
from all 3 methods for heart tissue are enriched for genes
involved in ventricular cardiac muscle tissue morphogenesis,
septum morphogenesis, positive regulation of cardiac muscle
cell proliferation and cardioblast differentiation. Furthermore,
both JSD and Mogrify TF sets are enriched for terms involved
in early development (e.g. in utero embryonic development,
mesoderm formation and heart looping), which are not
detected within the CellNet network. The genes that are
responsible for these early developmental processes are regu-
lated by the transcription factors HAND1, NKX2-5, GATA4

and GATA6, which are not predicted by CellNet. It has been
shown that cardiac differentiation in vivo is induced by 2 mas-
ter TFs, TBX5 and NKX2-535. Moreover, GATA4 and GATA6
are known to be highly important in heart formation, with the
loss of both factors leading to acardia in mice36 and overexpres-
sion of either resulting cardiomyocyte hypertrophy.37 Likewise,
HAND1 is an important regulatory protein that controls the
proliferation and differentiation balance in the developing
heart.38 These enrichments seem to suggest that those TFs pre-
dicted by JSD and Mogrify are also involved in the coordination
of heart development. In contrast, both CellNet and JSD predict
a common transcription factor, ANKRD1 which is a transcrip-
tional regulatory protein that recruits and localizes GATA4 and
ERK1/2 in a sarcomeric macro-molecular complex, inducing
hypertrophy.39 As a result, the inclusion of this TF suggests
that genes enriched for sarcomere organization and cardiac
muscle contraction function are under direct regulation.
Another TF predicted only by CellNet and JSD is HEY2. This
TF regulates genes that are enriched for the function ‘regulation
of cardiac conduction’ and it is known that the deletion of
HEY2 alters myocyte action potential dynamics but does not
change the function of the conduction system.40 ANKRD1 and
HEY2 appear to be involved in ensuring the correct function of
mature heart tissue rather than having a role in development.

Several experimental studies3,4,5,41,42 have used different
cocktails of TFs consisting of GATA4, HNF1A, HNF4A,
CEBPA, NR1I2, FOXA2, FOXA3, CEBPB, ONECUT1, ATF5
and PROX1 to induce a conversion to hepatocyte-like cells.
Table 2 shows the TFs predicted by each method, and there are
4 common TFs (NR1H4, HNF4A, ATF5 and TBX5) predicted
by all the methods. Furthermore, as presented in Fig. 4 all 3
predicted TF sets regulate genes participating in steroid hor-
mone mediated signaling, endocrine pancreas development
and Notch and intracellular receptor signaling pathways. Since
all 3 methods to some extent rely on the specificity of transcrip-
tion factors it is not surprising that the functional enrichments
are related to hepatocyte-specific processes. However, by look-
ing at the enriched functional terms that are specific to a single
method and their regulatory TF, it is possible to gain insights
into the functional consequences of different transcription fac-
tor sets. The FOXA family of TFs, which are pioneer transcrip-
tion factors, regulates genes enriched for functional terms
related to the early embryonic development of liver, pancreas,
and lungs. It has also been shown that when FOXA2/A1 is
deleted, liver-specific genes were downregulated and FOXA3
could not compensate for the loss of nucleosome accessibility.
In CellNet both FOXA2 and FOXA3 are predicted, however in
JSD and Mogrify only FOXA2 is predicted. It has been demon-
strated that only one of these factors is required for a successful
conversion and as such they are redundant to each other.4 A
similar phenomenon can be seen elsewhere, for instance Cell-
Net and JSD predict both NR1I2 and NR1I3 and additionally
CellNet predicts both ONECUT1 and ONECUT2, but the
same is not observed in Mogrify where only a single TF is pre-
dicted in each case. This is an example of Mogrify, where in the
final stage it identifies and removes redundancy and provides a
minimal set of TFs without affecting the predicted conversion
(theoretically). The conversion of fibroblast to hepatocyte has
been most robustly shown using hepatic fate conversion factors

Table 1. Fibroblast to cardiomyocyte-like cells. Predicted TF sets to initiate conver-
sion from fibroblast to heart. Those TFs shown in Bold are predicted by more than
one technique and those underlined are predicted by all 3 methods.

CellNet JSD Mogrify

ANKRD1 NKX2-5 NKX2-5
SMYD1 ANKRD1 HAND1
EBF2 TBX5 GATA4
CSDE1 KLF2 TBX5
MEOX1 GATA4 GATA6
CSDA IRX4 ESRRA
HEY2 GATA6 IRX5
CUX1 HAND1 MEF2C
MITF HEY2
TBX5 HIC2
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HNF1A, HNF4A, and HNF6A along with the maturation fac-
tors ATF5, PROX1, and CEBPA.42 From these HNF4A and
ATF5 are predicted by all of the approaches. A number of other
members of the hepatic receptor family are also predicted, for
instance ONECUT1 (HNF6A) is predicted by CellNet and
Mogrify, but CellNet additionally predicts ONECUT2 (HNF-6-
BETA). HNF4A (NR2A1) is well known master regulator of

liver-specific genes and also known to have an important role
in drug metabolism.43 NR1H4 (FXR) is predicted by all 3 meth-
ods and is important in liver metabolism functions such as reg-
ulating bile salt synthesis and transport, and cholesterol
synthesis and conversion.44 Moreover, when NR1H4 interacts
with PPARA (predicted by Mogrify) it is involved in fatty acid
Beta-oxidation and when it interacts with NR0B2 (predicted by

Figure 3. Fibroblast to heart conversion. Top 20 gene ontology biological processes (BPs) enriched in the predicted TFs network for each method (A) CellNet, (B) JSD and
(C) Mogrify are given with the corresponding p-values. The method Mogrify is denoted as M, CellNet is denoted as C, and JSD is denoted as J. The common BP enriched
between the methods for example CellNet, JSD and Mogrify is represented as C:J:M; and between Mogrify and CellNet is represented as M:C. The last column provides
the TFs that enriches the same BP when individual TF along with the first neighbors in the network were used. The unique TFs predicted by each method are highlighted.
BP terms related to regulation of transcription are written in gray and italics.
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JSD), it decreases the bile salt synthesis by repressing CYP8B1/
CYP7A1. Both CellNet and JSD predict NR1I2 and NR1I3,
which have been shown to regulate CYP3A4 and this enzyme is
commonly used to assess the response to xenobiotics,45 a proxy
for mature hepatocyte function. Experimental validation would
be required to understand the effect of using these different
nuclear receptor genes in this transdifferentiation, but it seems
likely given the diversity of liver function that different popula-
tions of cells might require different sets of TFs in order to
facilitate specific functions within the liver.

Discussion

The development of data-driven approaches to identify TFs
cocktail for transdifferentiation is a major step forward in
the field. The transition from trial-and-error experimental
approaches to systematically identified TF sets not only
increases the rate at which new transdifferentiation can be
discovered but will allow a clearer understanding of how this
process is controlled biologically. However, there are a many
issues that still remain and which affect each of the existing pre-
diction algorithm. These issues along with possible enhance-
ments that can be made are as follows.

i. First and foremost is that any data-driven approach is
limited in both depth and quality by the availability of
the data. Predictions for many scientifically and clini-
cally interesting cell- and tissue-types are not available
in any of the existing techniques owing to the fact of
limited availability of expression data in the required
format. Even though JSD and Mogrify try to provide
predictions for a broader set of cell-types (i.e., 233 and
272 cell-types respectively) when compared to CellNet
(16 cell-types), they still do not provide many addi-
tional clinically relevant cell-types. In this sense, it is
important that as the techniques are now available the
focus can shift to a more extensive acquisition of high-
quality data for more cell-types.

ii. Currently very little is known about the effect of vari-
ability between cellular sources of data. The effect of the
data being collected from different individuals or at dif-
ferent development stages could result in very different
predicted transcription factors. Likewise, as tissues are
made of heterogeneous cell-types, the predictions for tis-
sues like liver or heart is less informative when com-
pared to pure cell-populations like cardiomyocyte,

cardiac fibroblast or hepatocyte cardiomyocytes, cardiac
fibroblasts or hepatocytes. Recently, single-cell RNA-Seq
expression profile of transcriptome states during the
lineage differentiation (such as fibroblast to neuron46)
are being used to gain deeper insights in the transdiffer-
entiation process and this information can be utilised to
improve the precision of prediction.

iii. For transdifferentiation the starting cell-type is essen-
tial to determine the factors required for conversion as
cells from a different lineage may require a different
set of TFs to result in the same target cell. For example,
Wei R, et al.47 provide a detailed review of pancreatic ß
cell generation by ectopic expression of TFs from dif-
ferent starting cell-types such as keratinocytes (PDX1,
NGN3 and NEUROD), neural cells (GLUT2, GK,
NGN3 and NEUROD) and biliary cells (PDX1, NGN3
and MAFA). CellNet and Mogrify appropriately take
into account the starting cell-type for predictions while
JSD fails to attempt to account for this variation.

iv. We showed that the underlying differences in the TFs-
predictions from each method can arise due to the cell
samples used, gene expression quantification methods
as well as the algorithm. JSD tends to predict the same
TFs for closely associated cell-types but the extent to
which this is due to the background selection or the
algorithm is unclear. The problem of how to select the
best background with which to compare the expression
profile of a target cell-type is not trivial, and the
approaches taken by each of the 3 methods have both
advantages and disadvantages.

v. In the case of fibroblast to cardiomyocyte-like and
hepatocyte-like cell, JSD and Mogrify tend to predict
TFs that are more involved in the developmental pro-
cess in contrast to CellNet. Additionally, JSD and Cell-
Net tend to predict functionally redundant genes while
this is not observed in Mogrify and might be due to its
exclusion of TFs with overlapping regulatory influence.

vi. The availability of cell-type specific data on TF interac-
tions means that the networks used by these
approaches are created either by correlation of expres-
sion (CellNet) or via incorporating existing resources
(Mogrify). These approaches are likely to introduce
many false positive (FP) connections which will
undoubtedly have a knock-on effect to the quality of
the predicted TF set. With approaches such as ChiP-
seq and ATAC-seq now facilitating high-throughput
profiling of TF binding events, it should be possible to
reduce the number of FPs by identifying and removing
the predicted edges for which there is no experimental
support.

vii. Finally, for the purpose of cell conversion there is no
unified definition of a TF and different methods use
different definitions to make their predictions. For
instance, an important factor like LIN28A (used for
transdifferentiation of fibroblast to iPSc) is considered
as TF in CellNet but not in either Mogrify or JSD. A
unified definition of TF or a ‘gold-standard’ repository
would allow future techniques to be more consistent in
the breadth of factors that can be predicted.

Table 2. Fibroblast to hepatocytes-like cells. Predicted TF sets to initiate conver-
sion from fibroblast to hepatocyte. Those TFs shown in Bold are predicted by more
than one technique and those underlined are predicted by all 3 methods.

CellNet JSD Mogrify

NR1H4 NR1H4 ONECUT1
ZGPAT NR1I2 HNF4A
NR1I3 HNF4A NR1H4
ONECUT2 NR0B2 MLXIPL
NR1I2 FOXA2 PPARA
ONECUT1 CUX2 FOXA2
HNF4A HHEX RORA
ATF5 ZGPAT ATF5
FOXA3 NR1I3
FOXA2 ATF5
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Beyond using TFs, Cao N, et al.48 recently achieved a
chemically induced transdifferentiation from human fibro-
blast to cardiomyocytes using a combination of 9 com-
pounds consisting of small molecules and growth factors.
These chemically induced cardiomyocytes (ciCMs) were sim-
ilar to human cardiomyocytes based on transcriptome, epige-
netic and electrophysiological properties. This discovery
indicates that the future of transdifferentiations may not rely
on TF over-expression alone, and other ectopic factors such
as growth factors, chemicals48,49,50 and epigenetic

remodellers51 should be considered as candidates for
enhanced cell conversion. As a result of this diversification
in reprogramming stimuli, it will be important that compu-
tational methods focus on integrating these factors in their
predictions. Finally and above all, it is still the case that the
number of successful conversions is still relatively low.
Hence it is important that as a field that more conversions
are attempted, and details of both successful and unsuccess-
ful conversions are reported so that the approach of identify-
ing the correct factors for reprogramming can be refined.

Figure 4. Fibroblast to hepatocyte conversion. Top 20 gene ontology biological processes (BPs) enriched in the predicted TFs network for each method (A) CellNet, (B)
JSD and (C) Mogrify are given with the corresponding p-values. The method Mogrify is denoted as M, CellNet is denoted as C, and JSD is denoted as J. The common BP
enriched between the methods for example CellNet, JSD and Mogrify is represented as C:J:M; and between Mogrify and CellNet is represented as M:C. The last column
provides the TFs that enriches the same BP when individual TF along with the first neighbors in the network were used. The unique TFs predicted by each method are
highlighted. BP terms related to regulation of transcription are written in gray and italics.
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Methods

Cell-types ontology tree construction

In order to compare the TFs predicted for a given conversion
by each method, the cell-types have been mapped to a common
ontology tree representing all the cell-types available in the 3
methods.

In the case of CellNet and Mogrify, the software makes pre-
dictions based on both source and target cell-type information.
Therefore, for these two methods a commonly used source cell-
type was selected, fibroblast for CellNet and dermal fibroblast
for Mogrify. CellNet required an external microarray data of
the source cell-type, hence we used fibroblast expression data
(GSM372142, GSM372144 and GSM372146) in GSE1489752

experiment obtained from GEO. Given the selected source cell-
type, the available target cell-types for conversion consist of 15
cell-types for CellNet and 272 cell-types for Mogrify. As the
TFs predictions provided by JSD are generated irrespective of
the source cell, all 233 cell-types from their published atlas
including fibroblast are used for comparison.

The predicted TF sets for JSD and CellNet are considered to
be the top 10 ranked TFs. Mogrify predicts a non-redundant
TF set for each conversion varying from 1 to 8 TFs. To make
the predictions between methods comparable, firstly all the pre-
dicted TF-gene symbols were converted to their corresponding
HUGO53 approved gene symbol. Secondly, to reduce the multi-
ple mapping we used only cell-types from adult samples and
also removed intermediate transdifferentiation stage cell-types
which further led to 226 cell-types in JSD and 245 cell-types in
Mogrify.

As the cell-type names from each method were different and
did not follow any standard ontology, we tried to unify the cell-
types from the three methods in terms UBERON extended
ontology29 which comprises of the Uber anatomy Ontology
(UBERON), Cell Type (CL) and Gene Ontology (GO). From
the UBERON extended ontology, all the cell-type nodes with
relationship (edges) of type ‘is a’, ‘part of’ and ‘derived from’
were selected to form a directed ontology network made of
17,822 nodes and 41,051 edges. Each node in this network is
represented by an ontology ID and its respective approved
name, synonymous names and any obsolete terms. To find the
best-matched ontology ID on the network for a given cell-type,
we text matched the cell-type name given by the method with
every ontology network node’s attribute names (approved, syn-
onymous and obsolete terms). The ontology ID was then
assigned to each cell-type based on the highest common words
in the names. Following this, a manual curation of the ID asso-
ciation for some of the cell-types was performed to ensure that
the match was correct. The result of this was a specific ontology
ID on the cell-type ontology network associated to every cell-
type from each of the methods. Next to reduce the complexity
of the network the 320 nodes that contained at least one cell-
type and their connecting nodes were selected from the cell-
type ontology network. Finally, the intermediate nodes with an
in-degree of one and an out-degree of one were removed. This
led to a final minimal ontology network with 1,428 nodes and
3,777 edges containing all the 320 unique target cell-types.

With the aim to calculate the phylogenetic distances and
cluster the cell-types, we converted this network into a

neighbour-joining tree based on the shortest undirected path
between every pair of target cell-type available in the methods.
NetworkX54, which is a python module, was used to manipulate
the ontology network and APE, which is an R package55, was
used to generate the phylogenetic ontology tree of cell-types.
Table S1 provides the cell-type name given by the methods,
their associated ontology ID on the tree and TFs predicted for
all conversions from fibroblast. The cell-type tree along with
TFs predicted shown in Fig. 2, S2, S3 were visualised in iToL56

Functional enrichment analysis

For the transdifferentiation case studies (fibroblast to cardio-
myocyte-like and hepatocyte-like cell-type), in order to anno-
tate the biological functions of the genes that the TFs predicted
by each method regulate, GeneMania34 was used to generate a
network around each set of TFs as this technique had a mini-
mal bias towards any of the methods. This software provides
genes that interact with a set of TFs based on the interaction
information obtained from gene co-expression from GEOdb20,
physical and genetic interaction from BioGrid57, pathway inter-
action from Reactome58 and BioCyc, shared protein domains
and co-localization. The set of TFs predicted is extended to a
network by adding 100 genes based on (1) known gene-gene
interactions or co-expression (etc., see above) and (2) to favour
a common biological function. This resulted in an undirected
network with 110 genes for CellNet and JSD, and 108 genes for
Mogrify in both the cardiomyocyte-like and hepatocyte-like
case studies.

In order to identify which biological functions each TFs
set is involved in, gene ontology enrichment analysis was
performed. For each method, the gene ontology biological
processes (BPs) enriched by the TFs and genes network
were identified using topGO59 package in R. The top 20
most significant BPs based on Fisher exact test p-value and
the eliminated option to reduce redundancy in GO terms
were used for further analysis. To determine whether a spe-
cific TF is responsible for the network’s BP enrichment, a
subnetwork consisting of the TF and its first gene neighbors
is extracted from the larger network and analysed for func-
tional enrichment. The TF is considered associated with the
network’s BP enrichment if the larger network’s BP is found
in the top 100 BPs enriched by the TF-neighbors subnet-
work. Fig. 3 and 4 show the top 20 network enriched bio-
logical process with a set of TFs associated.
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