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Abstract

The ribosomally synthesized and post-translationally modified peptide (RiPP), pyrroloquinoline 

quinone (PQQ), is a dehydrogenase cofactor synthesized by, but not exclusively used by, certain 

prokaryotes. RiPPs represent a rapidly expanding and diverse class of natural products—many of 

which have therapeutic potential—and the biosynthetic pathways for these are gaining attention. 

Five gene products from the pqq operon (PqqA, PqqB, PqqC, PqqD, and PqqE) are essential for 

PQQ biosynthesis. The substrate is the peptide PqqA, which is presented to the radical SAM 

enzyme PqqE by the small protein PqqD. PqqA is unstructured in solution, and only binds to PqqE 

when in complex with PqqD. PqqD is a member of a growing family of RiPP chaperone proteins 

(or domains in some cases) that present their associated peptide substrates to the initial RiPP 

biosynthesis enzymes. An X-ray crystal dimer structure exists for Xanthomonas campestris PqqD 

(PDB ID: 3G2B), but PqqD is now known to act as a monomer under physiological conditions. In 

this study, the PqqD truncation from naturally fused Methylobacterium extorquens (Mex) PqqCD 

was overexpressed in Escherichia coli and MexPqqA was chemically synthesized. Solution 

NMR 1H-,15N-HSQC chemical shift studies have identified the PqqD residues involved in binding 

PqqA, and 1H, 13C, and 15N peak assignments for PqqD alone and for PqqD bound to PqqA are 

reported herein.
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Biological context

4,5-Dihydro-4,5-dioxo-1H-pyrrolo[2,3-f] quinolone-2,7,9-tricarboxylic acid 

(pyrroloquinoline quinone or PQQ), is a ribosomally synthesized and post-translationally 

modified peptide (RiPP) that acts as a dehydrogenase cofactor for certain alcohol and aldose 

sugar dehydrogenases in prokaryotes (Duine 1999; Anthony 2004). Five gene products from 

the pqq operon are required for PQQ biosynthesis (Shen et al. 2012). Two of these five 

products, PqqA, a 20 to 30 residue peptide with an absolutely conserved EXXXY sequence 

near its C-terminal end (Goosen et al. 1989; Houck et al. 1989; Unkefer et al. 1995; van 

Kleef and Duine 1988), and PqqD, which tightly binds PqqA and forms a ternary complex 

with PqqA and PqqE (Latham et al. 2015), are the focus of the NMR studies described in 

this paper.

PQQ is of interest for several reasons. It is a tricyclic, redox active o-quinone that is not 

formed by direct post-translational modification of active site residues, but instead is 

synthesized by way of a RiPP pathway (Goodwin 1998; Anthony 2001; Latham et al. 2015). 

PQQ is a significant antioxidant, and when present supports mitochondrial biogenesis and 

function in a wide range of organisms (Bauerly et al. 2011; Bauerly et al. 2006; 

Chowanadisai et al. 2010; Harris et al. 2013; Stites et al. 2006; Singh et al. 2015; Zhang et 

al. 2015). Additionally, PQQ demonstrates probiotic properties in mammals; studies with 

rats and mice have demonstrated decreased growth, reduced immune response, and declining 

reproductive success when subjects were deprived of PQQ in their diets (Kasahara and Kato 

2003; Killgore et al. 1989; Steinberg et al. 2003; Steinberg et al. 1994). While initially 

considered a cofactor for prokaryotes only, a recent publication identified a fungal enzyme 

for which PQQ serves as cofactor (Matsumura et al. 2014). Finally, plant studies indicate 

that the presence of PQQ promotes growth (Okhee et al. 2008).

Only one structural model of PqqD has been published, and this is a dimeric crystal structure 

of Xanthomonas campestris (Xc) PqqD (PDB ID: 3G2B). However, the physiological state 

of PqqD is monomeric (Latham et al., 2015), so the biological relevance of the XcPqqD 

structure is uncertain. In this study, the PqqD portion of the natural Methylobacterium 
extorquens (Mex) fusion PqqCD was expressed in Escherichia coli to give 13C and 15N 

isotopically labeled protein, which was purified and subjected to NMR spectroscopic 

analysis. The interaction of the isotopically labeled MexPqqD with unlabeled and 

chemically synthesized MexPqqA, which binds with a Kd of ∼ 200 nM (Latham et al. 2015), 

was also probed by NMR spectroscopy. Here we present the MexPqqD resonance and 

secondary structure assignments in the absence and presence of MexPqqA in the pursuit of 

the physiological structure of PqqD and the mapping of the interaction surface of PqqA on 

PqqD.

Methods and experiments

Recombinant protein expression and purification

Materials—The T4 DNA ligase and restriction enzymes were obtained from New England 

BioLabs (Ipswich, MA). Polymerase was obtained from Agilent Technologies (Santa Clara, 
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CA). Oligonucleotides were obtained from Eurofins (Huntsville, AL). All DNA sequencing 

was performed by the University of California's DNA Sequencing Facility (Berkeley, CA).

Preparation of PqqA—The unlabeled peptide, MexPqqA ΔM1, C12S (derived from the 

wild type, UniProt # Q49148), was synthesized and purified to >80% purity by CPC 

Scientific (Emeryville, CA) and then used at that purity. The peptide sequence, 

KWAAPIVSEISVGMEVTSYESAEIDTFN, incorporated a serine in place of the cysteine at 

residue position 11 to eliminate spurious dimer formation.

Preparation of 15N- and 13C-labeled, recombinant PqqD—The MexpqqD gene 

(corresponding to amino acids 280-372 from the natural MexPqqCD fusion) was cloned into 

the pET28a vector (EMD Millipore) using the NdeI and XhoI restriction sites. The cloned 

gene, incorporating an N-terminal His6-tag, was sequence verified and used to transform E. 
coli BL21 (DE3) for gene expression. Transformed E. coli BL21 (DE3) cells were grown 

aerobically at 37°C in M9 minimal media supplemented with 1 g/L NH4Cl (99% 15N, 

Cambridge Isotopes, Tewksbury, MA), 4 g/L D-glucose (U-13C, Cambridge Isotope 

Laboratories, Tewksbury, MA) and 50 μg/mL kanamycin. Cells were induced with 1 mM 

IPTG when the OD600 reached 0.6. Following a 12 h induction at 20°C, the cells were 

harvested by centrifugation at 6,500 rpm for 10 min. The cells were suspended in five times 

the mass of cell paste of 50 mM PBS (pH 7.5) and 50 mM imidazole. The cells were lysed 

by sonication, and the lysate was centrifuged at 20,000 rpm for 15 min. The supernatant was 

loaded onto a 5 mL HisTrap FF column (GE Healthcare) and the column was washed at 4°C 

with lysis buffer to remove non-tagged protein, and then with 50 mM PBS (pH 6.5) and 300 

mM imidazole to elute the tagged protein. The desired fractions were combined, 

concentrated, and buffer exchanged over PD-10 columns (GE Healthcare) equilibrated with 

25 mM phosphate buffer (pH 6.5). Yield for His6-tagged 13C-,15N-labeled MexPqqD: 27 

mg/L culture.

Experimental quantities—NMR experiments were performed using D2O matched 

Shigemi microtubes, 5 mm O.D. (Shigemi, Inc.). The experimental solution for PqqD alone 

contained 285 μL of 5.0 mg/ml (0.40 mM) 13C-,15N-labeled MexPqqD in 25 mM potassium 

phosphate, pH 6.5, 7 μL of 50 mM sodium azide, and 15 μL HPLC grade D2O (final 

concentrations: 4.6 mg/ml (0.37 mM) MexPqqD, 1.1 mM sodium azide, 4.9% D2O).

The experimental solution for PqqD bound to PqqA (in approximately 4-fold molar excess) 

was identical to the PqqD alone with the inclusion of 1.35 mg lyophilized, unlabeled 

MexPqqA (final concentrations: 4.6 mg/ml (0.37 mM) MexPqqD, 4.4 mg/ml MexPqqA (1.4 

mM), 1.1 mM sodium azide, 4.9% D2O).

NMR spectroscopy

All NMR data were recorded at 25°C on Bruker AVANCE™ III 850 or 900 MHz NMR 

spectrometers, each with 5 mm TCI CryoProbes including shielded z-gradient. Two sets of 

NMR data were acquired with the two samples, 13C-,15N-labeled PqqD and 13C-,15N-

labeled PqqD + unlabeled PqqA. The tight binding of PqqD and PqqA precluded a titration 

approach. Data were processed with nmrPipe (Delaglio, et al. 1995). Proton chemical shifts 
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were calibrated with respect to the water signal relative to DSS 

((CH3)3Si(CH2)3SO3Na); 15N and 13C chemical shifts were indirectly referenced to DSS 

(Live, et al. 1984). Linear predictions were applied to the 15N and 13C dimensions to double 

the data size and improve digital resolution. A cosine square window function and “auto” 

zero filling were applied to all 1H, 15N and 13C dimensions. Data were analyzed with Sparky 

(Goddard and Kneller).

Experiments—Sequence-specific backbone assignments were completed using 

AutoAssign with two 3D spectra: HNCACB and CBCA(CO)NH (Zimmerman, et al. 1997; 

Muhandiram, et al. 1994). The HNCACB creates both intra- and inter-residue correlations, 

whereas the CBCA(CO)NH creates only inter-residue correlations. Combining these two 

spectra, backbone chemical shifts, including 1HN, 15N, 13CA, 13CB, were assigned. 13C′ 
chemical shifts were assigned using a 3D HNCO and the first 2D 1H-13C plane of 3D 

HNCACO (Kay, et al. 1994). 1H and 13C side chain assignments were performed with 

HCCH-TOCSY, H(CCCO)NH and C(CCO)NH (mixing time: 16 ms) (Montelione, et al. 

1992; Kay, et al. 1993). HA assignments and scalar J coupling 3JHNHA were obtained from 

3D HNHA spectrum (Vuister and Bax, 1994). The 1Hδ and 1Hε resonances of aromatic 

residues were assigned using 2D (HB)CB(CGCD)HD and (HB)CB(CGCDCE)HE 

(Yamazaki, et al. 1993).

Results

Backbone and sidechain 1H, 15N, and 13C chemical shifts were assigned at 100% with the 

exception of 14 of 27 aromatic 13C's (52%) and 4 of 21aromatic 1H's (19%), which were not 

assigned. A superposition of the 2D 1H-15N HSQC spectra for PqqD (blue peaks) and PqqD 

+ PqqA (red peaks) is shown in Figure 1. From this plot, changes in the chemical shifts 

of 1H and 15N can clearly be identified.

Secondary structure information

The chemical shifts of 1Hα, 13Cα, 13Cβ and 13CO resonances were used as an input to 

TALOS+ and CSI2.0 to predict the secondary structures of the two samples (Shen, et al. 

2009; Wishart and Sykes, 1994). As shown in Figure 2, the secondary structures predicted 

from the two methods for PqqD in each sample are very similar. The main difference 

observed between the two samples, PqqD and PqqD + PqqA, is that one β-strand from the 

sequence fragment RTFDL of PqqD is significantly longer in the presence of PqqA. In 

addition, the order parameters predicted by TALOS+ and the flexibility predicted by CSI2.0 

are consistent between each sample. Besides the N-terminus of PqqD (residues 1 and 8), the 

region between residues 51 and 56 in both samples indicates high mobility and disorder.

Assignments and data deposition

The complete backbone and side chain chemical shift assignments have been deposited in 

the BioMagResBank database (www.bmrb.wisc.edu) with accession numbers 26634 and 

26690 for samples PqqD and PqqD + PqqA, respectively.
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Figure 1. 
Overlay of 2D 1H-15N HSQC spectra for 13C-,15N-labeled MexPqqD (blue) and 13C-,15N-

labeled MexPqqD + unlabeled MexPqqA (red) showing peak shifts.
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Figure 2. 
Secondary structures predicted by TALOS+ and CSI2.0 for MexPqqD (the first two rows) 

and MexPqqD + MexPqqA (the last two rows). The MexPqqD sequence is shown above the 

secondary structure predictions with sequence decades indicated. Arrows and helices 

represent β-strand and α-helix, respectively.
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