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Abstract: Recently, independent components analysis (ICA) of resting state magnetoencephalography
(MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited
power envelopes. Most of the work in this area has concentrated on networks derived from the power
envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show
maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ
across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial pat-
terns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To
validate our method, we focused on the sensorimotor network, which is well-characterized and robust in
both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture mag-
netometry (SAM) was used to project signals into anatomical source space separately in each band before
a group temporal ICA was performed over all subjects and bands. This method preserved the inherent
correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed
identification of spatial spectral modes that are consistent across subjects. The implications of these results
on our understanding of sensorimotor function are discussed, as are the potential applications of this
technique. Hum Brain Mapp 38:779–791, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

The human brain accounts for roughly 2% of the body’s
mass, but 20% of its energy utilization [Raichle and Gus-
nard, 2002]. Electrophysiology studies have revealed that
ongoing task-independent brain activity generally follows
a 1/frequency (1/f) relationship, superimposed with peaks
of coherent oscillations in certain frequency bands, and
localized to certain regions of the brain (i.e., occipital
alpha). In addition, the electrophysiology of the brain is
also replete with crossfrequency interactions whereby the
phase of lower frequency bands is coupled to the ampli-
tude of high frequency oscillations [Jensen and Colgin,
2007]. How these phenomena integrate with our knowl-
edge of resting state connectivity is poorly understood.

Building on the work of Biswal et al. [1995] and Raichle
et al. [2001], functional magnetic resonance imaging (fMRI)
has been used extensively to reveal the spatial patterns of
brain activation in the task-independent state [Biswal
et al., 1995; Raichle et al., 2001]. In particular, studies using
independent components analysis (ICA) [Damoiseaux
et al., 2006] have demonstrated the existence of multiple,
robust networks with correlated blood oxygen level depen-
dent (BOLD) signals. Due to the inherently slow time scale
of the hemodynamic response function, fMRI cannot be
used to identify the electrophysiological oscillations under-
lying these networks. Although concurrent fMRI and elec-
troencephalography (EEG) [Yuan et al., 2012] have been
used to obtain an electrophysiological signature of various
resting state networks (RSNs), spatial localization of the
EEG signal is limited by volume conduction in the skull
and surrounding tissue. Thus, the interplay between
spatial networks and spectral activity is not yet fully
understood.

Recently, the presence of RSNs in MEG data has also been
demonstrated in MEG data using both ICA [Brookes et al.,
2011b] and seed-based methods [Hipp et al., 2011]. Addi-
tional research has demonstrated that oscillations in a wide
range of frequencies contribute to individual networks.
Brookes et al. demonstrated that individual ICA-derived
networks showed differing contributions across the spectral
bands [Brookes et al., 2012a]. For example, a bilateral insular
network was strongly biased towards beta and gamma fre-
quencies, while a bilateral visual network was primarily
driven by beta oscillations. In the same study, the authors
demonstrated that individual nodes within a network may
show task-related changes in differing frequency bands.
Using atlas-based methods, Brookes et al. [2016] demon-
strated that frequency-specific network abnormalities and
alterations in crossfrequency amplitude-amplitude coupling
can contribute to the pathophysiology of schizophrenia
[Brookes et al., 2016]. In addition, Hillebrand et al. [2016]
found differences in the direction and magnitude of phase
transfer entropy coupling across frequencies [Hillebrand
et al., 2016]. However, these prior studies required either the
use of canonical seeds or regions of interest (ROIs), or made
the assumption that the spatial pattern of the network was

constant across frequencies. Canonical seeds and ROIs may
be problematic in that they make a priori assumptions about
where activity is localized. ROIs may span multiple func-
tional areas, giving ambiguous results. In addition, the
assumption may be questionable, especially given ample
evidence that task-related activations localize to different
areas across frequencies [e.g., Palva et al. 2011; Singh et al.,
2002].

Given the high likelihood that the spatial profile of RSNs
differs across frequencies, we sought to develop a technique
to address this directly. This study sought to investigate the
spatial spectral patterns of RSNs as revealed by ICA. We
present a novel ICA method in which we first assume that
the ICA mixing parameters are consistent across subjects
and frequency bands; we then derive separate spatial maps
for individual frequencies. We refer to this new method as
“multiband ICA,” and used the recovered individual spatial
maps to determine whether there were spatial differences in
the network patterns across frequency bands. Importantly,
our technique requires no a priori assumptions regarding
spatial localization, either within or across frequency bands,
and is entirely data-driven. The methods employed herein
can be applied to broaden our understanding of the spatial
spectral architecture of the human brain in both healthy and
diseased states.

MATERIALS AND METHODS

Subjects

Twenty-two medically healthy volunteers with no per-
sonal or first-degree family history of psychiatric disorders
were included in this study; the sample included all sub-
jects from a previous publication [Nugent et al., 2015] as
well as subjects who had been excluded from that final
analysis in order to achieve adequate age/gender match-
ing. Subjects were evaluated on the basis of medical histo-
ry, physical exam, blood tests, electrocardiogram,
urinalysis, and a structured clinical interview for the DSM-
IV-TR (SCID). Subjects were not taking any psychiatric
medications or any other medications expected to affect
brain function or metabolism. Subjects who were pregnant
or lactating, met DSM-IV-TR criteria for substance abuse
in the last three months, or had contraindications to mag-
netic resonance imaging (MRI) were excluded. This study
was approved by the NIH combined CNS IRB, and all
participants signed written informed consent.

Data Acquisition

MEG recordings were acquired at a 1,200 Hz sampling
rate for 250 s on a 275 channel CTF system (MEG Interna-
tional Services, Ltd., Coquitlam, BC, Canada). During the
recording, subjects were not presented with stimuli and
were instructed only to relax with their eyes closed. For
each subject, fiducial head coils marked the naison and
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left and right periauricular points. During recording, head
position was monitored dynamically for all but two sub-
jects. For the two subjects without dynamic head localiza-
tion, head position at the end of the recording was
compared to the initial position to infer that the subject
did not move more than 5 mm. For anatomical localiza-
tion, T1 weighted MRI scans were also acquired on a GE
3T platform. To ensure accurate coregistration, photo-
graphs, and measurements taken from anatomical land-
marks were used to place MRI visible fiducials in the
same location as the MEG fiducial head coils.

Data Analysis

This work used the computational resources of the NIH
high performance computing (HPC) Biowulf cluster
(http://hpc.nih.gov). Structural MRI images were proc-
essed using Analysis of Functional Neuroimages (AFNI;
NIMH, NIH, Bethesda, MD). Images were skull stripped
to obtain a brain surface for use in calculating the forward
solution using a multisphere model. Transformations were
derived to rotate the anatomical MRI image to the plane of
the fiducial markers and to spatially normalize the image
to the TT_N27 atlas provided within AFNI. This atlas, in
Talairach coordinates, results from 27 coregistered images
taken from a single participant and is widely used in the
neuroimaging community (see https://www.mcgill.ca/
bic/resources/brain-atlases/human). MEG recordings
were processed using CTF software (http://www.ctf.com)
as well as software developed in-house. MEG signals: (1)
were corrected for DC offset by removing the mean over
the entire recording; (2) high pass-filtered at 0.61 Hz (an
arbitrary figure used for viewing purposes only); and (3)
band stop-filtered with a filter width of 3 Hz to reject
powerline interference at 60 Hz and higher harmonics (120
Hz, 180 Hz, and 240 Hz). Following this initial preprocess-
ing, recordings were visually inspected to ensure that no
severe artifacts were present.

Following initial preprocessing and inspection, the
recordings were projected into source space using synthet-
ic aperture magnetometry (SAM) [Robinson and Vrba,
1999] on a 5 mm grid. We identified six frequency bands
over which to obtain source space projected time series
images: delta (2–4 Hz, d); theta (4–8 Hz, h); alpha (8–14
Hz, a); beta (14–30 Hz, b); gamma (30–50 Hz, c); and high
gamma (50–100 Hz, c0). In contrast to the meta-ICA meth-
od of Brookes et al. [2012a,b] we calculated the covariance
matrix and beamformer weights for a wide band (2–100
Hz), as has been done in recent work examining connec-
tivity across multiple frequency bands [Brookes et al.,
2016]. By using broad band weights, we eliminated the
possibility that correlations between voxel time courses
varied across frequency bands simply due to differing
amounts of “signal leakage,” or crosstalk between voxels
originating from the ill-posed nature of the MEG inverse
problem (see [Brookes et al., 2011a,b] for a comprehensive

discussion of signal leakage). The disadvantage, however,
is that the beamformer weights are biased towards locali-
zation in the frequencies with the greatest signal-to-noise
ratio (SNR). We would expect these weights to be least
optimal for the c and c0 bands, due to the 1/f relationship
between spectral power and frequency. Regularization
equal to four times the estimated sensor noise was
applied. The final time series was calculated for the six fre-
quency bands of interest and normalized by the projected
noise variance. The beamformer weights were calculated
over the entire 250-s recording. Following SAM, the
Hilbert envelope was calculated and sampled at 1 Hz. For
the d, h, a, and b bands, datasets were transformed to
Talairach space and mean centered, and the variance was
normalized.

For the c and c0 datasets, an additional confound was
the presence of muscular artifacts, a key issue discussed in
depth by Muthukumaraswamy [2013]. Due to the high
sensitivity of the MEG superconducting quantum interfer-
ence device (SQUID) sensors, even minute facial muscle
movements appear as artifacts, particularly in the c and c0

bands. In order to minimize these artifacts, we calculated
additional images of power in the band from 200 to 250
Hz, which is greater than most neuronal sources of activity
but will show muscle-related artifacts. We then used a
simple voxel-wise linear regression to remove the contri-
bution of this “artifact” signal from the primary signal of
interest in both the c and c0 bands. The residuals were
then used for further analysis, a technique previously used
in the relevant literature [Brookes et al., 2016; O’Neill
et al., 2015]. To maintain consistency, we estimated this c0

signal using beamformer weights derived from 2 to 100
Hz filtered data. An illustration of the efficacy of this tech-
nique is shown in Supporting Information Figures 2 and 3.

Following this regression step, we carried out a second
stage of artifact removal for our c and c0 band images. The
c and c0 band residual images were transformed to Talair-
ach space, and loaded into Matlab (Mathworks, Natick,
MA). Each dataset was mean centered and variance nor-
malized (over all voxels), and outlying time points exceed-
ing 10 times the standard deviation (a threshold deemed
high enough to avoid removing any neurophysiological
increases in c activity) were identified. If outliers were
found, they were removed and replaced by simple inter-
polation. Data were then once again mean centered and
normalized using recalculated values, and the process was
iterated three times. To minimize interpolation errors, an
additional constraint was that there could be no more than
three outlying points in a row.

We performed extensive quality control to ensure that any
differences in connectivity across frequency bands did not
result from artifacts. Our previous study [Nugent et al.,
2015] used a single seed, placed in the motor cortex, to com-
pute the mean correlation of that voxel’s time course with all
other voxels in the brain (the global correlation). We carried
out the same procedure here, separately for all bands. It

r Multiband ICA for Resting State MEG r

r 781 r

http://hpc.nih.gov
http://https://www.mcgill.ca/bic/resources/brain-atlases/human
http://https://www.mcgill.ca/bic/resources/brain-atlases/human
http://www.ctf.com


should be noted that this was performed using a larger data-
set, including a sample of subjects with major depressive
disorder, in order to maintain the consistency of groups in
future between-subjects analyses, as well as to better esti-
mate the normal distribution of global connectivity. The pre-
sent study included 39 subjects with MDD detailed in our
prior publication [Nugent et al., 2015] as well as all those
excluded from that prior study because of age- and gender-
matching constraints, with the exception of one subject who
had a suboptimal MRI scan. For each band, we calculated
the mean global correlation across all subjects, and excluded
all subjects for whom the mean correlation in any band was
greater than three standard deviations above the mean. In
order to be particularly conservative, for the c and c0 signals
this was performed on the residuals after regression of the c0

signal, but before the second stage of spike removal. After
excluding subjects, we recalculated the mean and standard
deviation and again excluded any subjects with a global cor-
relation in any band greater than three standard deviations
above the mean. While this is an imperfect method, and we
do not presume to state that the distribution of the global
correlation was Gaussian, we believe this was an unbiased
way to exclude subjects with artifactually high correlations.

The Multiband ICA Technique

Following artifact removal and quality assurance proce-
dures, AFNI was used to mean center and variance nor-
malize the datasets. Data were temporally concatenated
(within frequency bands), and the concatenated datasets

were normalized again to ensure that the variance over all
voxels was one. All datasets in all frequency bands were
then resampled to an 8 mm grid using AFNI for ICA esti-
mation. Finally, the concatenated datasets for each fre-
quency band were themselves concatenated to produce a
matrix of dimensions:

Nvoxels X Nbands �Nsubjects �Ntime

� �

As noted above, we refer to an ICA performed on this
matrix as “multiband ICA,” and illustrate it in Figure 1.
This method assumes that the mixing matrix is consistent
across subjects and frequency bands, similar to multimodal
joint ICA, which assumes that the mixing matrix is station-
ary across modalities [Calhoun et al., 2006]. In essence, the
resulting components will reveal frequency-specific net-
works that share joint information and similar loadings
across subjects. All ICAs took place within Matlab (Math-
works, Natick MA) using the Icasso procedure [Himberg
and Hyvarinen, 2003]. After an initial principle components
analysis (PCA) data reduction to 25 components, the ICA
was run 500 times, producing 25 independent component
(IC) estimates on each iteration. The resulting estimates
were clustered, and the final IC is given as the centrotype
of each cluster. A quality factor (Iq) that expresses the com-
pactness of a cluster was estimated for each cluster. The
component representing the sensorimotor network was
identified visually and carried on for further analysis.

Following the ICA, the temporal IC representing the
bilateral sensorimotor network was split into vectors corre-
sponding to each of the six frequency bands for each

Figure 1.

Schematic illustration of the multiband independent components analysis (ICA) procedure, show-

ing time series concatenation over both subjects and frequency band. [Color figure can be

viewed at wileyonlinelibrary.com]

r Nugent et al. r

r 782 r

http://wileyonlinelibrary.com


individual subject. Linear regression (using AFNI’s 3dDe-
convolve routine) was used to obtain individual subject/
frequency spatial maps using the original 5 mm source
space images. Because individual temporal ICs are pro-
duced by this ICA method, only a single-step regression
(or correlation) is necessary, as implemented in prior stud-
ies [Brookes et al., 2011a,b; Nugent et al., 2015]. The resul-
tant b coefficient maps were then entered into an ANOVA
(using AFNI’s 3dANOVA) to determine if there was a
main effect of frequency. We had two primary hypotheses:
first, that some ICs would show a difference in the
strength of the node representation across frequencies, and
second, that the precise localization of the node would
change across frequencies. Voxel-wise tests such as the
ANOVA used herein are well suited for the former, but
suboptimal for the latter. In order to determine if the
ANOVA could potentially be useful in revealing differ-
ences in node localization, we conducted a simulation
analysis (presented in the Supporting Information Meth-
ods and Supporting Information Results). For the ANOVA
results, the main effect of frequency maps were thresh-
olded at P< 0.0001, corrected for false discovery rate. To
present only the most salient results, we applied an addi-
tional constraint of a cluster mass greater than or equal to
25 voxels. Although no additional control should be
required to control for the false positive rate, this would
correspond to a family-wise error cluster-corrected thresh-
old much less than 0.01.

Validation of the Multiband ICA Technique

Several additional analyses were performed to demon-
strate the validity of the multiband ICA technique. First,
we identified canonical left and right motor cortex seeds
from previously published work [Raichle, 2011] [Talairach
coordinates (239, 23, 47) and (38, 23, 45) for left and right
motor cortex, respectively]. Using the original SAM time
series from each subject and for each frequency band, we
extracted the pairwise correlations between these seeds.
We then performed an ANOVA across frequencies on the
Z-transformed correlation coefficient across subjects. Next,
we compared the bilateral seed-based motor network con-
nectivity for each frequency band against the beta weights
in the bilateral motor cortex voxel derived from multiband
ICA in order to validate that the multiband ICA technique
accurately captured the natural correlations present in the
raw data without imposing spurious correlation structures.

Next, we generated a series of seed-based correlation spa-
tial maps for each frequency. These maps were created using
the Hilbert envelope datasets for each band concatenated
temporally across subjects as well as AFNI’s InstaCorr func-
tion. First, we plotted seed-based connectivity maps for each
frequency band using the canonical left motor cortex seed
voxel. We compared this to a similar map where the seed
was derived from the peak in the frequency-specific ICA
map derived from the multiband ICA. This was done to

illustrate that a single canonical motor cortex seed may suf-
fice to describe connectivity across frequency bands, and
that the multiband ICA method may identify network subre-
gions demonstrating a prevalence of synchronized activity
in a particular frequency band.

Because single-band ICA techniques have been well
studied in the literature [Brookes et al., 2011a,b, 2012a,b;
Luckhoo et al., 2012], we performed additional analyses on
specific frequency bands to further validate our multiband
ICA technique. These additional analyses were performed
on frequency bands where multiband ICA revealed bilater-
al connectivity. Temporal ICA was performed on the indi-
vidual frequency voxel by time matrices, using identical
methods to those in the multiband ICA technique. Spatial
maps were generated by linear regression of the IC
time course on the frequency-specific dataset temporally
concatenated across subjects. As additional verification, we
performed the same analysis with raw datasets where the
SAM source localization was performed using beamformer
weights derived from data filtered to the band of interest
rather than the broad band (2–100 Hz). This was done to
demonstrate that bilateral connectivity was not artificially
imposed by the broad band weights, particularly for fre-
quency bands with relatively low SNRs (i.e., c and c0).

Lastly, we calculated matrices of between-frequency
band amplitude-amplitude coupling for left motor cortex
and right motor cortex by obtaining the mean Z-trans-
formed pairwise correlation coefficients, averaged over all
subjects. We tested for significant amplitude-amplitude
correlations by performing one-sample t-tests on the Z-
transformed correlation matrices for each subject. We then
compared this to the within-frequency amplitude-ampli-
tude correlation matrix derived from the multiband ICA
motor network time courses. Significance for amplitude-
amplitude correlations was set at P< 0.05/15 5 .0033 (Bon-
ferroni corrected for multiple comparisons). We also pre-
sent amplitude-amplitude correlation matrices derived
from single-band ICA calculated with both narrow and
broad band beamformer weights.

Additional Analyses

The Supporting Information contain the methods and
results of a simulation demonstrating how a systematic
change in the position of a network node across frequency
bands would appear in a resulting ANOVA examining the
main effect of frequency. In addition, Supporting Information
Figures 7–10 present additional networks identified using
multiband ICA. Of particular note are the ICs shown in Sup-
porting Information Figure 7. These ICs exhibited no main
effect of frequency, at least not at our significance threshold.
Importantly, the ability of the multiband ICA technique
to recover both frequency-dependent and nonfrequency-
dependent nodes speaks to its versatility. In addition, ICs that
do not show frequency dependence may nevertheless be
quite informative; that is, nonfrequency-dependent ICs may
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operate differently from a neurobiological perspective than
ICs with a strong frequency dependence.

RESULTS

Subjects

Of the original 22 healthy subjects, three were removed
after visual inspection revealed obvious c0 (i.e., muscle) arti-
facts. An additional subject was removed from the analysis
due to an extreme global correlation with a motor seed. The
final cohort of 18 healthy subjects had a mean age of 37 6 8.7
years, nine were female, and all were right-handed.

Multiband ICA Results

Figure 2 illustrates the bilateral sensory motor network,
which was readily apparent in the group of ICs. Mean IC
maps are shown for each of the frequency bands in

Figure 2A. The bilateral nature of the network is clearly evi-
dent in the a, b, and c bands. The ANOVA results showed
significant clusters in bilateral primary motor cortex and
bilateral superior frontal gyrus, as well as supplementary
motor area (SMA), thalamus, and orbital cortex. The supple-
mental simulations (see Supporting Information Fig. 1)
allowed us to interpret the ANOVA findings; clusters on the
periphery of the sources in the mean images suggest a sys-
tematic shift in the location of the nodes in the sensorimotor
network across the frequency bands. Intuitively, given the
spatial spread of network nodes due in part to signal leak-
age, the spatial shift of a node would not appreciably alter
connectivity values within the cluster but would instead
show up as effects on the cluster’s boundary. It is important
to note that although the ANOVA analysis used here may be
suboptimal for detecting node positional shifts, it provided
a consistent manner of determining the statistical signifi-
cance of differences across frequency band.

Figure 2C shows the plots of the beta weights at peaks of
the F map shown in Figure 2B. Although the beta weights

Figure 2.

Illustration of the sensorimotor network extracted with the multiband independent components

analysis (ICA) technique. (A) Mean regression weight maps over the six frequency bands, thresh-

olded at b 5 0.5. (B) ANOVA for the main effect of frequency, thresholded at pFDR <.0001. (C)

Plot of beta weights at peak locations from the ANOVA map. Images are presented in radiologi-

cal orientation. [Color figure can be viewed at wileyonlinelibrary.com]
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for the motor cortex sharply peak at a and b, this is a some-
what imprecise reflection of the shift in localization between
the a, b, and c frequencies. Additional clusters were present
outside the motor network, including those with peaks in
the orbital cortex and thalamus, which showed nearly
equivalent contributions from the h, a, and b frequencies,
suggesting that connectivity between these areas and the
motor cortex is potentially frequency-dependent. Because
these additional clusters are both outside the motor cortex
and are also in deep areas of the brain that demonstrate
lower signal-to-noise on MEG reconstructions, these results
should be considered preliminary.

Evidence Supporting the Multiband ICA

Technique

Figure 3A shows the mean correlation between our left
and right motor seeds across subjects for each frequency
band. The ANOVA was significant for a main effect of fre-
quency (F(5,102)529.28, P< 0.001). Figure 3B plots the
regression coefficient reflecting the covariance of the voxel
time course with the IC time course; ANOVA was signifi-
cant for the main effect of frequency (F(5,102)510.71
P< 0.001 and F(5,102)57.337, P< 0.001 for right and left
motor cortices, respectively). Because they measure funda-
mentally different quantities, the data presented in Figure

3A,B cannot be compared directly; however, the overall
spectral profiles are consistent. The multiband ICA beta
weight in the right motor cortex peaked in a, and the beta
weight for left motor cortex was greatest in the b band;
nevertheless, a linear mixed model showed no significant
region by frequency interaction. Regression weights were
generally higher for left motor cortex, showing that the IC
slightly favored the left hemisphere. This is likely due to
the fact that all subjects were right-handed.

To explore spatial patterns of correlation, we obtained
seed-based correlation maps using AFNI’s InstaCorr. Figure
4A shows the seed-based correlation maps for the canonical
left motor cortex seed (located at the crosshairs). These spa-
tial maps reflect the bilateral correlation results in Figure
3A. Bilateral motor cortex connectivity was evident only in
the a and b bands and was particularly reduced in the c
band frequencies. Note that the beamformer weights were
calculated on the broadband (2–100 Hz) signal, and the dif-
ferences seen in spatial extent cannot be attributed to differ-
ences in signal leakage across frequencies.

Figure 4B presents similar seed-based correlation maps,
but this time using the peak voxel from the multiband
ICA frequency maps in Figure 2 as the seed; the crosshairs
were located at the seed location for all bands. Notably, at
the a band, the peak from the multiband ICA was almost
identical to the canonical left motor cortex seed. In con-
trast, the b and c peaks were shifted medially. Interesting-
ly, within these three frequency bands (a, b, and c, which
exhibit significant bilateral connectivity), the peak location
from the multiband ICA seemed to maximize bilateral con-
nectivity. For the canonical left motor cortex seed, the cor-
relations to the right canonical motor cortex seed were
0.37, 0.50, and 0.19 for the a, b, and c frequency bands,
respectively. In contrast, if the peaks from the multiband
ICA frequency specific maps were used as the seeds, the
correlations to the contralateral voxel were 0.37, 0.67, and
0.31, for the a, b, and c frequency bands, respectively,
which is a substantial enhancement for both b and c.
Thus, the left motor cortex peaks resulting from the multi-
band ICA appeared to optimize interhemispheric motor
cortex connectivity, suggesting that frequency-specific
functional subnetworks are present. It should be noted
that the images in Figure 4B are not identical to the mean
IC maps in Figure 2. The IC maps are more balanced left-
right, indicating that the ICA procedure selected a time
series that was a roughly even mixture of left and right
motor cortex activity, suggesting that these temporal sig-
natures possessed equivalent mixing matrices across sub-
jects. In addition, in the d, h, and c0 frequency bands, the
spatial pattern revealed by multiband ICA was arguably
not a “network,” but rather a single node localized to a
related cortical area with a similar mixing matrix across
subjects. It should be emphasized that in contrast to the
seed-based correlation maps in Figure 4, the IC maps rep-
resent the mean across all subjects. Differences in localiza-
tion of the peak across subjects will tend to magnify the
spatial extent of the IC source in the mean image.

Figure 3.

(A) Plot of the mean Z-transformed Pearson correlation

between canonical seeds in left and right motor cortex. (B) Plot

of mean multiband independent components analysis (ICA)

regression weights in the same canonical left and right motor

cortex locations. [Color figure can be viewed at wileyonlineli-

brary.com]
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Figure 5 compares the multiband ICA results to those from
more standard ICAs in a single frequency band. This analysis
was performed only in the a, b, and c maps, where two peaks
in the left and right motor cortex were readily appreciated. It is
apparent that the results from the multiband ICA were consis-
tent with results from individual frequency-specific ICAs. The
multiband ICA time courses correlated significantly with the
individual frequency IC time courses at R 5 0.62, R 5 0.64, and
R 5 0.76 for a, b, and c, respectively. In addition, the use of
broadband beamformer weights over weights derived from
data filtered to each frequency band did not substantially alter
the IC components. When a narrow band was used to derive
the beamformer weights, IC time courses from the individual
frequency analysis significantly correlated with the multiband
IC time courses at R 5 0.58, R 5 0.42, and R 5 0.48 for a, b, and

c, respectively. Notably, the ICAs performed using data from a
single frequency band tended to fractionate networks into mul-
tiple ICs. The same Figure 5 is shown with additional sensori-
motor IC components identified from the single-band analyses
in Supporting Information Figures 4 and 5, which correlate
with the multiband ICA time course at R> 0.2.

As an additional exploratory analysis and to demonstrate
consistency between methods, we examined the amplitude-
amplitude crossfrequency correlation matrices for our left
and right canonical motor cortex seeds, and compared these
with a similar matrix derived from the IC time courses for
each frequency. These matrices are shown in Figure 6.
Although the matrices are not identical, it is evident that the
overall correlation structure is preserved. The d-to-a
amplitude-amplitude correlation was significant for the

Figure 4.

Seed-based correlation maps across temporally concatenated Hilbert envelope time series data.

(A) Correlation maps using the canonical left motor cortex seed. (B) Correlation maps using the

peak voxel for each frequency band resulting from the multiband independent components analy-

sis (ICA). All maps are thresholded at a regression weight greater than 0.3 or 20.3. Images are

presented in radiological orientation. [Color figure can be viewed at wileyonlinelibrary.com]
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multiband ICA time courses, but the right motor and left
motor seed-based correlations were not. Figure 6D,E also
illustrate similar correlation matrices derived from the single-
band ICA derived using both narrow- and broad-band beam-
former weights. Components were matched on the basis of
temporal correlation with the multiband ICA motor network
time course. The multiband ICA frequency-frequency cou-
pling matrix clearly captured the intrinsic coupling structure
better than the single-band ICAs, further supporting its
validity.

Mutiband ICA Outside the Sensorimotor

Network

Results from ICs other than the sensorimotor network
are shown in Supporting Information Figures 7–10. Of the
25 estimated ICs, 23 had a quality factor Iq> 0.8. Of these,
in general, most IC networks with cortical nodes showed
peak contributions from either the a or b bands.

Bilaterality of the networks was in general more promi-
nent in the b band maps. Interestingly, cortical nodes in
the visual cortex were grouped with cerebellar nodes most
prominently in the c and c0 ranges. See the Supporting
Information for a full discussion of these results.

DISCUSSION

This manuscript presents a novel technique, which we
termed multiband ICA, for investigating the spatial spectral
structure of task-independent networks in MEG. We select-
ed the sensorimotor network for exploration, as it is well
characterized and robustly bilateral. We demonstrated that
the multiband ICA results mirrored those from ICAs of a
single frequency band, and are largely consistent with
canonical seed-based approaches. Multiband ICA, however,
offers several important advantages. While ICAs in each
frequency band individually may reveal several sensorimo-
tor networks (see Supporting Information Figs. 4 and 5),

Figure 5.

Multiband independent components analysis (ICA) maps for a,

b, and g alongside maps from ICAs performed independently

for each band. (A) Multiband ICA maps for a, b, and g, where a

left and right lateralized motor cortex peak were evident. (B)

Spatial maps of ICAs carried out for a, b, and g bands

independently. Hilbert envelope time series data for the ICA

was derived using broad band beamformer weights (2–100 Hz).

(C) Same as (B), but the Hilbert envelope time series data were

derived using beamformer weights optimized for each frequency

of interest. Images are presented in radiological orientation.
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only multiband ICA can determine which have shared
loadings across subjects, indicating functional integration
across oscillatory frequency bands. Multiband ICA also
appears to optimize interhemispheric connectivity, poten-
tially indicating frequency-specific functional subnetworks
within the sensorimotor cortex. This finding highlights the
potential power of multiband ICA—specifically its ability to
connect distinct functional networks across frequency bands
to reveal the underlying architecture of these networks. We
know of no other technique that can demonstrate the
frequency-dependent spatial patterns in intrinsic connectivi-
ty networks in a model-free, data-driven manner.

A related line of research involves studies attempting to
characterize the spectral signatures of fixed spatial net-
works. Crucially, in these studies, the spatial signature of
the network is assumed not to vary across all frequency
bands in which the network is expressed. This is the prima-
ry method of Meta-ICA [Brookes et al., 2012a,b], used by
Brookes et al. to demonstrate the spectral profiles of several
RSNs. Consistent with our findings herein, Brookes et al.
demonstrated maximum contributions to the sensorimotor
network from the a, b, and c bands. The relatively higher
contribution from c band data found in that study likely
resulted from the fact that the beamformer weights were

Figure 6.

Crossfrequency amplitude-amplitude coupling matrices. (A) A

matrix showing the mean Z-transformed correlation across sub-

jects of the left motor seed time course at each frequency with

every other frequency. Mean correlations significant by one-

sample t-test at P< 0.0033 are denoted by asterisks in the lower

diagonal of the matrix. (B) Identical to (A), but for the right

motor cortex. (C) Z-transformed correlation matrix between

the multiband independent components analysis (ICA) time

courses for each frequency with all other frequencies. (D) and

(E) Z-transformed correlation matrix between the single-band

ICA time courses for source projections derived from narrow-

band and wide-band beamformer weights, respectively. Single-

band ICA components were chosen based on temporal correla-

tion with motor network multiband ICA time courses. Spatial

maps of the chosen single-band ICs are shown in Supporting

Information Figure 6. In all panels, significant correlations are

denoted by asterisks in the lower diagonal of the matrix. [Color

figure can be viewed at wileyonlinelibrary.com]
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calculated separately for each frequency band of interest,
while our broad-band beamformer weights were likely sub-
optimal for our c band data. Nevertheless, our study clearly
demonstrated that the assumption of a spatially invariant
network across frequency bands is an oversimplification.

Other related approaches use spectral ICA in a variety
of specific techniques, including spatial or temporal Fouri-
er ICA (SFICA or TFICA), or envelope Fourier ICA
(eFICA). Fourier ICA techniques generally divide the time
series using either sliding windows or epochs, computing
either the complex-valued Fourier transform [Hyvarinen
et al., 2010] or the power spectrum (eFICA) for each seg-
ment. The resultant channel/voxel-by-time-by-frequency
matrix can then be decomposed using either spatial or
temporal ICA. Ramkumar et al. [2014] used the eFICA
approach to derive multiple subnetworks within the senso-
rimotor cortex, each with peaks in the a or b range [Ram-
kumar et al., 2014]. It is important to point out that while
this method may yield multiple subnetworks expressing
specific spectral peaks, it does not reveal the relationship
between these networks, for example, which networks in
different frequency bands group together based on similar
loadings across subjects. The multiband ICA technique,
due to the constraints imposed by the shared mixing
matrix, may reveal only one primary sensorimotor net-
work, but nevertheless show subnetworks that are func-
tionally linked in that they share similar relationships
across subjects. Spectral group ICA has also been applied
in EEG with largely consistent results, although localiza-
tion to source space is generally prohibitive due to volume
conduction [Bridwell et al., 2013].

Notably, a recent EEG study performed a somewhat simi-
lar analysis. Sockeel et al. [2016] performed a high dimen-
sional spatial ICA on source localized EEG data [Sockeel
et al., 2016]. Similar to multiband ICA, the time series of
spectral power in five frequency bands were temporally
concatenated before the ICA decomposition. In contrast to
our method, however, the ICA was performed at the indi-
vidual subject level, with the resultant components clustered
to identify common networks. Additionally, although EEG
technology is far more accessible, volume conduction of the
electric fields limits the accuracy of spatial localization.
Finally, the use of a spatial ICA derives a single spatial map
for all of the frequency bands assessed, eliminating the abili-
ty to compare the spatial profile of the network across fre-
quency bands. Nevertheless, Sockeel et al. reported that
power was evenly distributed over the five frequency bands
for a somato-motor network [Sockeel et al., 2016]. This con-
trasts with both results from our present study as well as the
meta-ICA by Brookeset al. [2012], both of which showed
greatest power in the a and b bands.

The idea that functional subnetworks exist within larger
networks has been investigated using both fMRI and MEG.
Spatial ICAs of task-free fMRI data found that increasing
model order fractionated large-scale networks into subnet-
works [Kiviniemi et al., 2009; Ray et al., 2013], and that

alterations due to disease states may be confined primarily
to specific subnetworks [Abou Elseoud et al., 2011; Dipas-
quale et al., 2015]. Another fMRI study demonstrated the
functional relevance of these smaller subnetworks by dem-
onstrating their relationship to transient synchrony events
[Allan et al., 2015]. Recently, O’Neill et al. [2015] used a mul-
tivariate sliding window analysis of MEG data to demon-
strate that the sensorimotor network is composed of
dynamically switching subnetworks [O’Neill et al., 2015].
Although this analysis was limited to the b band, it never-
theless illustrated the presence of distinct subnetworks that
have behavioral significance in task performance. Another
study reported that, consistent with our results, left to right
motor cortex connectivity peaked in the a and b bands; that
study also demonstrated temporal fluctuations in connectiv-
ity as well as alterations in the spatial subnetworks involved
[Brookes et al., 2014]. Given those results, one limitation of
our work is that our method only reflects static connectivity
rather than dynamic connectivity.

The results reported here can also be discussed in the
context of the known properties of motor function. Our
finding that the sensorimotor network exhibited peaks in
connectivity in the a and b bands is neither new nor sur-
prising. The motor cortical mu-rhythm (which is in the a
range) has been studied since the 1930s, and oscillations in
the a, b, and c ranges have been implicated in motor func-
tion [reviewed in Pfurtscheller and Lopes da Silva, 1999].
A variety of tasks have been used to localize oscillatory
changes in response to movement; notably, it has been
shown that mu-rhythm responses are localized more pos-
teriorly in the somatosensory cortex, whereas the b rhythm
is generally localized more anteriorly in the motor cortex
[Cheyne et al., 2003; Pfurtscheller et al., 1994; Salmelin
et al., 1995]. It is thus noteworthy that our peak in the a
band (Talairach coordinates 37.5, 27.5, 42.5) was located in
the primary sensory cortex, slightly posterior and medial
to the peak in b band connectivity (22.5, 22.5, 47.5). Fur-
ther work will be necessary, however, to establish the reli-
ability of the precise localization of the multiband ICA
findings and to determine if this reflects the same phe-
nomenon as the movement task findings reported above.
In addition, and as mentioned above, use of a voxel-wise
ANOVA is not the ideal statistical test to demonstrate a
shift in peak localization across frequency bands. Never-
theless, our results strongly suggest a frequency-specific
localization of intrinsic—rather than task-induced—
fluctuations in the power of sensorimotor cortical oscilla-
tions, which is a novel result. In practice, our technique
could also be used during task performance, where it
could be used to demonstrate how frequency-specific sub-
networks differentially respond to stimuli.

This study has several important limitations and cav-
eats. First, the entire study is based on the assumption
that it is possible to find networks that span multiple fre-
quency bands and share similar loadings onto individual
subjects. This is the same assumption upon which the
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well-validated joint-ICA technique is based. Given the
consistency of our results with those from single-band
ICAs, it would appear that this assumption is sufficiently
met, at least in the sensorimotor network.

A related concern is that our temporal ICA assumes spa-
tial consistency, and could therefore induce spurious con-
nectivity in bands where there is none. We do not believe
that this is the case for several reasons. First, distinct bilat-
eral nodes were only evident in a, b, and c, but not in d, h,
or c0. If the temporal ICA had imposed spurious correla-
tion structure, all bands would have shown bilateral
nodes. Second, it has been demonstrated that group ICA is
quite robust to intersubject differences. For instance, Allen
and colleagues used exhaustive simulations to demon-
strate that spatial ICA, using temporally concatenated sub-
ject data with an assumption of spatial consistency, is
remarkably robust at recovering individual subject vari-
ability in the location and strength of sources [Allen et al.,
2012]. While that study examined spatial ICA, the results
can be reasonably extrapolated to temporal group ICAs as
well as our multiband ICA design where the different
frequency bands are effectively treated like individual sub-
jects. Our findings are also consistent with others that sup-
port multiple subnetworks within the motor cortex that
may operate on separate frequency scales.

An alternative iteration of multiband ICA that would
circumvent the assumption of spatial consistency across
bands would be to spatially rather than temporally concat-
enate across frequency bands. Under these circumstances,
the mixing matrix would thus contain spatial components
unique to each frequency band. The primary issue with
this alternative approach is that it would assume temporal
consistency across all frequency bands with a single IC
time series for all bands. The correlation matrices pre-
sented in Figure 6A,B for the motor cortex seeds would
suggest that this is not a valid assumption. An additional
investigation into this method (results not presented) dem-
onstrated that this iteration produced IC components that
were heavily biased towards a single frequency band to the
exclusion of all other bands. Overall, results for this method
were frequently inconsistent with single-band ICAs, sugges-
ting that our approach is the most appropriate.

Finally, another minor limitation to the study is that an
eyes-closed resting state condition was used. While this
condition minimizes artifacts due to eye blinks, it does not
eliminate all eye movement-related artifacts and increases
the likelihood that subjects will fall asleep. However, given
the relatively short recording times, we believe that sub-
jects remained alert throughout the recording, though we
cannot eliminate the possibility of sleep. Nevertheless, it is
unlikely that sleep would affect motor cortex connectivity
or impair the internal validity of the technique. Additional
caveats include the relatively small sample size, short
MEG recording time, and the lack of replication data. Rep-
lication with a larger sample is planned for future investi-
gations into the multiband ICA technique; longer
recording times are also being investigated.

Another interesting and potentially fruitful future analy-
sis would be to compare the results herein with those in a
patient group, to determine if alterations in the underlying
spatial-spectral architecture of brain regions are involved
in psychopathology. Interestingly, a study comparing task
versus rest states as a proxy for the default mode network
in patients with schizophrenia found reductions in coher-
ence primarily in the c band, as well as frequency-specific
differences in spectral power dependent on the brain
region assessed [Kim et al., 2014]. Given that the results
hinted at a complex relationship between oscillatory pow-
er and connectivity, the study of psychiatric disorders may
benefit from the multiband ICA technique.

CONCLUSION

Here, we introduced and explored a novel technique,
multiband ICA, for exploring the spatial-spectral architec-
ture of the human brain. An extension of traditional tem-
poral ICA applied to Hilbert envelope MEG data, our
technique requires no a priori selection of the frequency
band of interest. We found that this method revealed
frequency-dependent alterations in the spatial patterns of
intrinsic connectivity networks without imposing an artifi-
cial correlation structure, as shown by the parallel results
with single-band ICA. While it is possible that carrying
out separate ICAs in each frequency band and comparing
the results may convey similar information, multiband
ICA has the added advantage of linking together the spa-
tial networks that carry similar loading across subjects by
way of the shared mixing matrix. Although we verified
the technique using the sensorimotor network, the tech-
nique can be applied to all intrinsic connectivity networks.
In addition, this technique can potentially be used to
reveal differences in the underlying spatial-spectral archi-
tecture of networks implicated in an array of neurological
and psychiatric disorders, potentially leading to improved
diagnosis and treatment.
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