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Abstract

Data compression and encryption are key components of commonly deployed platforms

such as Hadoop. Numerous data compression and encryption tools are presently available

on such platforms and the tools are characteristically applied in sequence, i.e., compression

followed by encryption or encryption followed by compression. This paper focuses on the

open-source Hadoop framework and proposes a data storage method that efficiently cou-

ples data compression with encryption. A simultaneous compression and encryption

scheme is introduced that addresses an important implementation issue of source coding

based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite preci-

sion of real numbers that result from their long products. The approach proposed here

solves the implementation issue by removing fractional components that are generated by

the long products of real numbers. Moreover, it incorporates a stealth key that performs a

cyclic shift in PWLM without compromising compression capabilities. In addition, the pro-

posed approach implements a masking pseudorandom keystream that enhances encryp-

tion quality. The proposed algorithm demonstrated a congruent fit within the Hadoop

framework, providing robust encryption security and compression.

1 Introduction

The term ‘data’ refers to symbols that are stored or transmitted. Some data symbols refer to a

sequence, a segment, or a block. An application inserts or places data within a communication

channel or in storage on a dedicated device. Data stored on storage devices or transferred over

communication channels between computers or networks contains significant redundancy.

Data compression reduces this redundancy to save physical disk space and minimize network

transmission time. Decompression retrieves original data from compressed data and can be

accomplished without data loss. Thus, data compression improves available network band-

width and storage capacity, especially when the original data contains significant redundancy.

Data compression is an important playground for information theory, relying on its core on

entropy measurement and sequences complexity measurement [1] for optimal performance.

Further, compression techniques require a pattern library and only work when both sender

and receiver understand the library that is utilized. However, in general, compression does

not employ secret key or password restrictions during compression and decompression, a
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deficiency that reduces the overall level of security. Its primary purpose is to lessen data redun-

dancy. Hence, compressed data is vulnerable to unauthorized access and illegal use.

Data encryption is needed to achieve data security and keep the data unreadable and unal-

tered. Encryption techniques usually manipulate data as a function of randomly generated

bits, bytes or blocks through a secret key. Naturally, the operational sequence can be one of

two forms; it either compresses the data before encryption or encrypts the data before com-

pression (See: Figs 1 and 2). The first form is more practically useful since the prime concern

of data compression is to remove redundant data, an operation that also improves data secu-

rity against statistical attack. The second form applies encryption first, which implies the

generation of significant randomness in data with very little redundancy; thus deeming the lat-

ter compression step ineffective. Although sequential implementation of compression and

encryption actually reduces data storage while improving data transmission bandwidth and

security, it presently requires the output of one operation to be piped to the other, a potentially

expensive operation. Hence, there is growing interest in the investigation of combined algo-

rithm for data compression and encryption. In this paper, a tightly integrated compression

and encryption scheme is presented in Hadoop that incorporates contemporary offerings

from chaos theory as well as cryptography and compression studies.

This paper is organized as follows: Section II presents related literature, Section III describes

the proposed algorithm in detail and Section IV presents experimental analysis and validation

results. Finally, Section V concludes the work.

2 Related Works

The contemporary ‘Big Data’ trend signifies an exponential and global accommodation of pre-

viously unimaginable volumes of data that are instantaneously made available at low cost. Big

Fig 1. Legacy compression first approach.

doi:10.1371/journal.pone.0168207.g001

Fig 2. Legacy encryption first approach.

doi:10.1371/journal.pone.0168207.g002
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Data can be structured or unstructured and generally exceeds the processing capabilities of

stand-alone systems. User and market demands promise to ensure the unabated continuance

of this trend with greater expectations and even more diverse application domains [2–12].

Platform-wise, the Hadoop framework has been playing a leading role in supporting Big Data

needs. As an open source Apache Project, it implements a MR (MapReduce) processing para-

digm together with the Hadoop Distributed File System (HDFS) [13] [14], a combination that

enables massive data processing by thousands of hardware commodities.

The Hadoop framework is designed to ensure highly fault-tolerant and scalable access to

application data. Datasets are distributed over a large commodity cluster [15] in small blocks

for both storage and processing. These data blocks are replicated for fault tolerance. Security,

however, has been lacking and solely dependent on operating systems’ access controls and per-

mission protocols [15]. Such security measures are grossly inadequate when challenged by

sophisticated, targeted attacks and insider threats. Hadoop is commonly deployed in public

cloud services such as Yahoo, Amazon, and Google. Given the popularity of such services and

the tremendous volumes of confidential data stored, it is critically necessary for Hadoop to

provide sufficient security guarantees for both data storage and processing.

Another significant challenge is that of network bottlenecks caused by large volumes of I/O

data processing. MR jobs for such large datasets require considerable time due to massive

numbers of I/O operations during data transfers between cluster nodes. Enabling data com-

pression throughout the MR process pipeline can be useful in reducing I/O operations costs

and consumption of network resources [16]. Hence, both data compression and encryption

are critical in Hadoop. However, compression and encryption as separate processes should

be avoided to prevent significant data volumes being piped between both operations. An algo-

rithm that seamlessly combines data compression and encryption is therefore worth pursuing,

especially in the context of the Hadoop platform, which is the main contribution of this paper.

2.1 Encryption

Basic security features are already available for the Hadoop framework. These include file and

directory permissions along with required user authentication and group resolution when

accessing a Hadoop cluster [17]. However, user authentication and group access controls still

do not guarantee a vigorous level of security. Users can still access each other’s resources dur-

ing Hadoop execution. Thus, more sophisticated security measures based on data encryption

are essential but relatively few works have focused on data encryption in Hadoop [17–21]. A

security design proposed by [17] for Hadoop provided for strong mutual authentication and

access controls using Kerberos. This approach buffered data in encrypted clusters before send-

ing them to HDFS for a write operation. Another group [18] proposed an application-level

encryption service for MR to support a file system that assumed pre-uploaded plaintext in

HDFS. Security architecture for a private storage cloud based on HDFS was proposed by [20]

to encrypt sensitive data for accommodation within a private storage cluster based on security

protocols from the Trusted Platform Module (TPM). In [22], a differential privacy protection

scheme was presented that removed the ability of deleting data by an attacker. Nevertheless,

these techniques cannot be considered ‘protected’ because the data is stored in clear text for-

mat within a centralized server.

A bi-hybrid data encryption scheme for Hadoop (i.e., HDFS-RSA with HDFS-Pairing) was

proposed by [19]. However, both components required considerable reading and writing over-

head, far more than generic HDFS, especially during writing operations for encrypted HDFS

where performance cost doubled compared to generic HDFS writing ops. A secure Hadoop

with encrypted HDFS was proposed by [21] that added standard AES encryption and
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decryption modules as ‘built-in’ HDFS classes. This approach secured MR jobs in HDFS but

increased performance overhead by 7% compared to generic HDFS–I/O ops. Overall, native

encryption modules for the Hadoop framework have not been fully employed or tested [21]. It

has also been reported that future Hadoop software releases will include encryption [23].

2.2 Compression

Since data compression techniques eliminate redundancy and data duplication [24], encrypted

or random data cannot be compressed further. Compression techniques involve three pro-

cessing stages: 1) data preprocessing, 2) removal of data duplication, and 3) bits’ reduction.

Hadoop supports multiple compression formats for all I/O data and compression is applied

when the MR reads or writes data, which has some advantages. It reduces the I/O operation

load, which is important since MR jobs are almost always I/O bound. Furthermore, it

improves cluster utilization via space reduction and speeds data transfers across the network.

However, these benefits hold data compression and decompression CPU overhead costs.

The CPU usage increases when MR jobs run compressed data [25] because decompression is

required before Mapper and Reducer processing. Hence, tradeoffs are required between

storage savings, faster I/O, and enhanced network bandwidth increases in CPU loads [26].

Nonetheless, enabling data compression in multiple phases of an MR Job has been shown to

increase overall Hadoop application performance by ~65% [16]. In Hadoop, a codec—a com-

piled Java class invoked by MR classes—is used for compression and decompression. Hadoop

also supports many compression codecs, each with different characteristics and methods of

eliminating data redundancy and duplication. Hadoop’s standard built-in codecs include

Deflate, Gzip, Bzip2, LZ4, and Snappy [27].

2.3 Non-Hadoop Simultaneous Data Compression and Encryption

Hadoop’s framework was designed without any support for simultaneous data compression

and encryption. In fact, simultaneous compression and encryption is a relatively new area of

research. Its objective is to avoid separate operations for compression and encryption. Current

state-of-the-art research in simultaneous data compression and encryption utilizing non-linear

dynamic systems is now discussed.

From the 1990s, chaos theory in nonlinear dynamical systems had been applied in the

development of low complexity cryptosystems. The intrinsic properties of non-linear dy-

namical systems such as ergodicity, mixing, sensitivity to the initial condition, control parame-

ters, odd behaviors, etc., [28–30] are useful for the practical implementation of cryptosystems.

These properties are directly linked to the confusion and diffusion properties of classical cryp-

tosystems [31]. However, unlike chaos-based cryptography, which has widely accepted, the

chaos-based simultaneous source coding and encryption is insufficiently studied [32–34]. Nev-

ertheless, the realities of overcrowded networks combined with inadequate data storage capac-

ity as well as growing network vulnerabilities, attacks, intrusions, big data challenges and

various security threats have contributed to rising interests in investigating joint compression

and encryption operations. Therefore, many chaos-based joint compression and encryption

algorithms have been designed. Among them, low-dimensional chaotic maps are usually em-

ployed to protect the compressed data due to their high operating efficiency.

There are two different research tracks in the field of simultaneous compression and

encryption. The first approach embeds encryption within compression algorithms while the

second incorporates compression within cryptographic schemes. Both have limitations.

Approaches based on Huffman coding—which uses tree mutation to increase the number of

Huffman tables for simultaneous compression and encryption—have been presented in the
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literature [35–37]. The Huffman coder is readily used for encryption without complexity. Its

encryption process introduces a secret key to control the Huffman tree and the same key is

required to correctly decode encrypted data. Thus, the embedding of encryption features

mainly attends the control of tree branch swapping by using the key. Wu and Kuo [35] pre-

sented an integrated compression and encryption approach that swapped Huffman tree

branches, left and right, using the control key. Later, multiple code word issues were overcome

by an improved approach that employed chaotically mutated Huffman trees [36]. This scheme

also served to enlarge the main space and solve security issues [35]. The work of [36] was fur-

ther improved by [37]. However, the length of the code word obtained by the statistical model

remained unchanged and the resulting system was vulnerable to known-plaintext attack

(KPA).

Research on embedding encryption into arithmetic coding has also been done, with notable

examples [38–42]. A modified version of arithmetic coding was presented by [40] using key-

based interval splitting to achieve simultaneous data compression and encryption. However,

its vulnerability to known-plaintext attack was exposed by [43]. An improved approach was

then presented by [39] who removed the interval constraint by splitting the AC interval,

whereby two permutations were implemented for diffusion to enhance the security of the

compression process. Also, chaotic systems were employed by [41,42] for key control that

achieved simultaneous data compression and encryption. However, the chaotic system can

only be used as a pseudorandom bitstream generator that incorporates key control. In another

related work, a randomized arithmetic coding RAC algorithm [38] was proposed for the JPEG

2000 standard that inserted randomization protocols into the conventional arithmetic coding

operation for purposes of encryption. However, both approaches by [43,44] demonstrated

inferior output compared to the standard approach. These algorithms still posed serious secu-

rity issues [41,43,44], as the relationship between chaos, encryption and compression had not

been thoroughly investigated. Chaos systems were only used as pseudorandom bitstream gen-

erators that incorporated key controls.

2.3.1 Source Coding using Generalized Luroth Series (GLS). The relationship between

source coding and chaos was studied by [32,34]. A non-linear chaotic dynamic system referred

to as the Generalized Luroth Series (GLS) was proposed by [32] and proved to be Shannon

optimal. For the purpose of source coding [32], the Tent map was defined as follows:

f ðxÞ ¼

(
x=p x�½0; p�

ð1 � xÞ=ð1 � pÞ x�½p; 1�
ð1Þ

Where p is a probability between (0 and 1) and compression is attained by the inverse of

the Tent map [32]:

Ifig ¼

(
pðIfi � 1gÞ if 0

1 � pðIfi � 1gÞ if 1
ð2Þ

Where p is probability and I{i} is the interval for the ith symbol. Initially, I{0} = [0,1]. Binary

sequence encoding is performed by an iterative application of Eq (2) until the first symbol is

encountered. At the end of the encoding process, the final interval [START, END] is obtained.

Any value between the final interval, e.g. (START + END)/2, is converted into a binary com-

pressed sequence. During decoding, the decoder requires this value to map through iterations

of Eq (1) until the first symbol is encountered.

The GLS coding is conceptually simple, but its implementation is challenging due to the

infinite precision of real numbers that result from the long products of real numbers. It
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requires splitting of the interval between (0 and 1) at every iteration of Eq (2). This division oper-

ation shrinks the range so fast it makes GLS coding unfeasible for encoding a larger sequence of

1000 bits. The experiments are conducted by implementing GLS coding over single-precision

(32-bit) and double-precision (64-bit) IEEE 754 floating point formats to determine the maxi-

mum length of the binary sequence that can be encoded using GLS coding. The criteria is very

simple, the maximum length of binary sequences that can be encoded should be greater than

32-bit or 64-bit in the case of single or double precision implementation, respectively.

The 100 binary sequences are generated with a length of 1000 bits where each sequence has

a different probability from 0 to 1. Results are shown in Fig 3 for computed means and stan-

dard deviations of all obtained binary sequence lengths at a specific probability. The maximum

received bitstream length is relatively better for extreme probabilities that are p 2 (0,0.1) or
(0.9,1) and which remain greater than 32-bit and 100-bit in single and double precision imple-

mentation, respectively. However, maximum obtained bitstreams remain less than the desired

lengths for both single and double precisions implementation for probabilities p 2 (0.11,0.89).

Thus, GLS Coding cannot be applied for compression purposes.

2.3.2 Source Coding Using a Chaotic Symbolic Approach. A new theoretical concept for

source coding based on chaotic modulation was presented by [34] for multiple symbols that

demonstrated optimal entropy criteria for data compression. They introduced the probabilistic

Bernoulli generator as a piecewise linear Markov map (PWLM) to map a sequence into an

initial condition associated with the generator. In [45,46], this concept was implemented to

achieve simultaneous source coding and encryption for a message sequence of n distinct sym-

bols (s1,s2,. . .. . .,sn) with probabilities (p1,p2,. . .. . .,pn), respectively. Based on input data, a

complex PWLM was constructed [34] as follows:

f xð Þ ¼

(
x
p1

� �

x�I1

x � p1

p2

� �

x�I2

� � �

ðx �
Pn� 1

i¼1
piÞ

pn

� � x�In

ð3Þ

Where i = (1,2,3,. . .. . .. . .,n); pi = probabilities; and intervals Ii are given as:

I1 ¼ ½0; p1� ð4Þ

Ii ¼ ½
Pi� 1

j¼1
pj;
Pi

j¼1
pj�; i ¼ 2; 3; . . . . . . . . . ; n ð5Þ

Intervals Ii associate with message sequence symbols si where i = 2,3,. . .. . .. . .,n.

Compression is achieved by reverse interval mapping [34] as follows:

Ifig ¼ f � 1

p ðIfi � 1gÞ ¼ pnðIfi � 1gÞ þ
Pn� 1

i¼1
pi ð6Þ

Where I{i} is the obtained interval of the ith symbol (i = 1,2,3. . .. . .. . .), and the initial inter-

val is I{0} = [0,1]. To demonstrate the algorithm’s functionality, let M = EFGH be the sub mes-

sage sequence to be encoded where the original message consists of 100 different symbols

where each symbol has the same 0.01 probability. By this means, the first symbol has range of

0 to 0.01; the second from 0.01 to 0.02 and so on.

Chaos-Based SCE for Hadoop
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Fig 3. Experiment results to determine the maximum binary sequence length that can be encoded using GLS coding. (A) GLS coding results

on a 32 bit floating point format. (B) GLS coding results on a 64 bit floating point format.

doi:10.1371/journal.pone.0168207.g003
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Message reading starts in reverse order from the last symbol (H) where the initial interval

[0,1] is used to obtain the new interval, i.e. (0.07,0.08). The second last symbol is (G); hence, the

interval (0.07,0.08) becomes (0.0607,0.0608). The third last symbol is (F) and the new interval

(0.050607,0.050608) derives from (0.0607,0.0608). The message encoding process continues

until the first symbol (E) is reached and the final interval is obtained (0.04050607,0.04050608).

Any value within the final interval, e.g., (START + END)/2 = 0.040506075 can be stored as a

compressed binary sequence. To perform decoding, the binary compressed sequence is con-

verted to its original form. Furthermore, the obtained value is used as the initial value to iterate

Eq (5) of PWLM and correctly determine the original message sequence, M.

The implementation problem of infinite precision real numbers also exists in the PWLM

source coding method. This requires a splitting of intervals between 0 & 1 for each iteration of Eq

(6). This division operation shrinks the range so fast it makes PWLM coding unfeasible for the

encoding of larger byte sequences. Experiments are conducted by implementing PWLM coding

over single-precision (32-bit) and double-precision (64-bit) IEEE 754 floating point formats to

determine the maximum length of byte sequences that can be encoded with PWLM coding. The

criteria are very simple: the maximum length of byte sequences that can be encoded should be

greater than 32-bits or 64-bits in the case of single or double precision implementation, respec-

tively. Fig 4 shows mean and standard deviation results for selected files from norm Calgary Cor-

pus files [47]. The maximum obtained byte sequence length is higher than 4-bytes and 8-bytes for

single and double precision implementation, respectively, but the error bar indicates inconsistency.

Experimental results confirmed it was possible to implement PWLM coding over 32-bit or 64-bit

floating-point formats but in either case compression efficiency remained inadequate. Compres-

sion ratio results are reported in Section 4 for PWLM coding over a 64-bit floating-point format.

Both GLS and PWLM coding techniques are conceptually simple but their implementation

is challenging due to the infinite precision of real numbers that result from the reverse interval

mapping of real numbers. The obvious solution is to perform approximate computations and

express these numbers as mantissa and exponents [48]. However, this leads to carry-over and

positioning issues. Another solution, as introduced by the present work, is to add range cod-

ing, i.e., to bring all fractions to a common denominator.

3 Preliminaries

3.1 Skew Tent Map

The Skew Tent map (STM) has attracted substantial research focus in the past few years due to

its high sensitivity to the initial condition and control parameter with good pseudo-random-

ness and ergodicity. It is a one-dimensional chaotic map that satisfies uniform distribution,

invariant density and non-invertible transformation of the unit interval onto itself [49–51]. Eq

(7) defines the iterative function of STM:

xnþ1 ¼ Fl xnð Þ ¼

( xn

l
if xn � l

1 � xn

1 � l
if xn � l

ð7Þ

Where λ 2 (0,1) is a control parameter xn 2 (0,1), and x0 represents the initial value at

(n = 0). The orbits fxng
1

n¼0
of STM are uniformly distributed over the interval [0, 1] and it has

a positive Lyapunov exponent that validates its chaotic behavior [51]. The chaotic property of

CTM is shown in bifurcation and the Lyapunov Exponent analysis in Figs 5 and 6, respectively.

Both analyses results demonstrate that the transformation of the STM is continuous and piece-

wise linear and that its chaotic range is λ 2 (0,1). However, work by [52,53] showed that STM
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Fig 4. Experiment results to determine the maximum binary sequence length that can be encoded using PWLM coding. (A) PWLM coding

results on a 32 bit floating-point format. (B) PWLM coding results on a 64 bit floating-point format.a 64 bit floating point format.

doi:10.1371/journal.pone.0168207.g004
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is insufficiently random under finite precision. They then suggested a λ value from (0.25,0.49)

or (0.51,0.75) to achieve sufficient randomness in STM output. Due to previously mentioned

properties, the design proposed in the present paper utilizes the suggested value (λ) to generate

a pseudorandom keystream for the chaotic masking operation.

3.2 The Chaotic Logistic Map

The chaotic Logistic map (CLM) is a well-known one-dimensional map that satisfies uniform

distribution and invariant density. It demonstrates complex chaotic behavior and has strong

cryptographic properties such as initial value sensitivity, erratic behavior and unpredictability,

etc. [49,54,55]. Eq (8) defines CLM:

xnþ1 ¼ FlðxnÞ ¼ lxnð1 � xnÞ ð8Þ

Where xn 2 (0,1); n = 0,1,2. . ...; λ 2 (0,4); x0 is initial value when n = 0. Figs 7 and 8 show

diagrams for bifurcation and the Lyapunov Exponent analysis, respectively. Both analyses

show that the CLM exhibits chaotic behavior beyond λ = 3.57. However, certain isolated values

of (λ) have non-chaotic behavior. The orbits fxng
1

n¼0
of CLM are uniformly distributed over

Fig 5. Bifurcation diagram of the STM.

doi:10.1371/journal.pone.0168207.g005
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the interval [0, 1]. Based on these results, the design proposed in the present work utilizes the

suggested value of (λ) to generate a pseudorandom keystream to the perform cyclic shift opera-

tion for the proposed source coding method without affecting its compression capabilities.

4 The Proposed Work

4.1 Source Coding Using Modified PWLM

The present work addresses the implementation of source coding using PWLM [34], which

is a problem due to the infinite precision of real numbers consequent to the reverse interval

mapping of real numbers. An improved source coding method is presented that increases the

range from [0,1] to [0,r], where r is defined as r = bn − 1, where b is base and n is the largest

base-b number that the algorithm can conveniently handle. Performing interval re-scaling for

each PWLM iteration into its last obtained interval can solve the second issue of reverse inter-

val mapping. A detailed description now follows:

Let n be distinct symbols (s1,s2,. . .. . .,sn) in a message sequence with probabilities (p1,p2,. . .

. . .,pn), respectively, where
Pn� 1

i¼1
rpi ¼ r and r = bn − 1; and where b is base and n is the largest

number of base b that the algorithm can conveniently handle. Based on data, a PWLM is

Fig 6. Lyapunov Exponent of the STM.

doi:10.1371/journal.pone.0168207.g006
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constructed as follows:

f xð Þ ¼

(
x

rp1

� �

r x�I1

x � rp1

rp2

� �

r x�I2

� � �

ðx �
Pn� 1

i¼1
rpiÞ

rpn

� � r x�In

ð9Þ

Where i = (1,2,3,. . .. . .. . .,n); pi are probabilities; Intervals Ii associate with plaintext sym-

bols si are given as:

I1 ¼ ½0; rp1� ð10Þ

Ii ¼ ½
Pi� 1

j¼1
rpj;
Pi

j¼1
rpj�; i ¼ 2; 3; . . . . . . . . . ; n ð11Þ

Fig 7. Bifurcation diagram of the CLM.

doi:10.1371/journal.pone.0168207.g007
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The compression is achieved by the forward interval mapping method as follows:

Ifig ¼ f � 1

rp ðIfi � 1gÞ ¼ ai þ ðbi � aiÞ � rpnðIfi � 1gÞ þ
Pn� 1

i¼1
rpi ð12Þ

Where (i = 1,2,3 . . .. . .. . .); I{i} is the obtained interval of the ith symbol; and where ai and

bi are upper and upper values of the intervals, respectively. Here is where a major problem can

occur while selecting the initial range, which must be sufficiently large regardless of how many

symbols need encoding. Thus, the algorithm’s current range should be broad enough to allow

division into a non-zero sub-range. As a solution for practical implementation, the encoder

begins with a large range. For 32-bit implementation, the range calculation assumes r = bn − 1,

where b = 2 and n = 32, which means the starting range should be r = 232 − 1.

To demonstrate the algorithm’s functionality and effective forward interval mapping, we

encode the example taken from Section 2.3.2 using the proposed method with an initial range

of I{0} = [0,1000000000]. For convenience, range r = bn is calculated in the base 10 decimal sys-

tem where b = 10 and n = 9. Let, M = EFGH be the sub-message sequence to be encoded where

the original message consists of 100 different symbols. Thus, each symbol has a 10000000

probability. Thus, the first symbol ranges 0 to 10000000, second from 10000000 to 20000000

Fig 8. Lyapunov Exponent of CLM.

doi:10.1371/journal.pone.0168207.g008
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and so on. Message reading begins in forward order from the first symbol (E), where the initial

interval [0,1000000000] obtains the new interval, i.e., (40000000,50000000). The second sym-

bol is (F); hence, the interval (40000000,50000000) becomes (40500000,40600000). The third

symbol is (G) and the new interval (40506000,40507000) derives from (40500000,40600000).

The message encoding process continues until the last symbol (H) is reached and the final

interval is obtained (40506070,40506080). Any value within the final interval; e.g., (START +

END)/2 = 40506075 and can be stored as a compressed binary sequence. For decoding, the

binary compressed sequence is converted to its original form. Furthermore, the obtained value

is used as the initial value to iterate Eq (9) of PWLM and correctly determine the original mes-

sage sequence, M.

Of interest, the final interval obtained from PWLM coding is the same as the proposed

method but without any fractional component. Secondly, it becomes evident that after encod-

ing a number of symbols the leftmost digits of the range do not change. Thus, the encoder

repeatedly checks the leftmost digits within the range for adjustments, after which scale num-

bers are changed on the right as figures on the left are removed. The decoder applies the same

approach and remembers current values retrieved from Eq (9) of PWLM. The decoder simply

removes the value and inserts a new value retrieved from Eq (9) of PWLM. Hence, and based

on experimental studies, the proposed method confirms the correspondence and generaliza-

tion of arithmetic coding. The source coding method presented in [34] is similar to the pro-

posed method but has an implementation issue of infinite precision for real numbers that

result from the reverse interval mapping of real numbers. The method proposed herein solves

the implementation issue by introducing forward interval mapping and the removal of frac-

tional components generated by the long products of real numbers. Moreover, the proposed

method incorporates a stealth key that performs a cyclic shift in PWLM without compromis-

ing compression capabilities. In addition, the proposed approach implements a masking pseu-

dorandom keystream that enhances encryption quality.

4.2 Pseudorandom Keystream Generator

The Logistic and Tent maps were selected as underlying chaotic maps for pseudorandom key-

stream generators to introduce confusion and diffusion in the proposed method. Both Tent

and Logistic maps are iterative (starts from an initial condition) and obtain xn values from Eqs

(7) and (8), respectively. Obtained xn values are converted into binary sequences by defining a

threshold or t value. Here, the fair coin model is adopted to generate binary sequences from

both chaotic maps. Based on the fair coin model, the probability of each symbol is 0.5, thus the

threshold value is set as t = 0.5 and defined by Eq (13):

Bn ¼

(
0 0 � xn < t

1 t � xn � 1
ð13Þ

Binary sequences are obtained from real values (xn) of both Logistic and Tent maps by com-

parison with thresholds (See: Figs 9 and 10). Finally, a statistical analysis is performed on gener-

ated binary sequences using the stringent NIST statistical test suite for randomness to detect

specific characteristics that mark truly random sequences. The latter allows them as excellent

choices for pseudorandom keystream generation. Analyses results are reported in Section 5.2.4.

4.3 Simultaneous Data Compression and Encryption

Data encoding is performed using Eq (12) of PWLM and by introducing two secret keys (K1,

K2) that control the PWLM mode as it performs the masking operation where each key is a

Chaos-Based SCE for Hadoop
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combination of x0 and λ. This process generates keystreams by using the pseudorandom key-

stream generator. The encoder begins with a larger number range r = 232 − 1 (as mentioned in

section 4.1) and is further adjusted during encoding or decoding. Data encoding steps are

defined as follows:

1. Encoding begins with reading (scanning) bytes of plaintext (P) to determine n number of

distinct symbols (s1,s2,. . .. . .,sn) and corresponding probabilities (p1,p2,. . .. . .,pn), respec-

tively. The plaintext is then divided into N blocks of 1024 bytes where the last block can

contain B� 1024 bytes. The numbers of blocks, distinct symbols and corresponding proba-

bilities are then stored in a compressed file as header data.

2. Importantly, one must select an initial range that is sufficiently broad to encompass all pos-

sible symbols that require encoding. Hence, this range should be sizeable enough for divi-

sion into a non-zero sub-range.

3. Next, the first secret key (K1) generates a keystream by using the pseudorandom keystream

generator (size N × 8 bits) according to N number of blocks in plaintext, P. The keystream

is then divided into N bytes that generate cyclic shift keys (KC1,KC2,. . .. . .,KCN) or (KCi)

where (i = 1,2,. . .. . .,N). The key (KCi) is then used to control the PWLM mode. The (KCi)

is taken as a secret number (KCi � 0,1,. . .. . .. . .,255) to cyclic-shift the position. Fig 11 pres-

ents a simple example of PWLM mode control.

4. Based on plaintext statistical analysis, the first block is then encoded for each symbol via a for-

ward interval function beginning with the first symbol, whereby compression and encryption

Fig 9. Illustration of two binary sequences using Tent Map. Trajectories indicated by x0 = 0.1758 and x0 = 0.2563, where λ = 0.4995.

doi:10.1371/journal.pone.0168207.g009
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are simultaneously completed until reaching the last symbol. The process adjusts the range

by repeatedly checking the leftmost digits of the range for adjustments, after which scale

numbers are changed on the right as figures on the left are removed. After the block’s 1024

symbols are processed, the final [START, END] interval is determined. Values with binary

representation within this final range are selected to encode data; e.g., (END+START)/2.

Also, an “End” character is placed at the end of the processed block and then scanned to

determine n number of distinct blocks. Here, a special character (011111111) comprising one

“0” and eight “1s” is added at the end of the binary sequence. If a sequence has seven con-

secutive “1s”, a “0” is then added after the seventh “1”. Subsequently, remaining blocks are

encoded in the same manner until all blocks are completed.

5. Finally, the second key (K2) generates a pseudorandom keystream and masks the com-

pleted compressed file that now comprises header data and compressed blocks. The

masking operation is performed by a simple XOR operation, which augments the overall

randomness of encoded data and further secures header data.

4.4 Simultaneous Data Decompression and Decryption

Decoding reverses the order of the encoding process. The initial decoding range begins at

r = 232 − 1 and is further adjusted as described in the encoding section. The process proceeds

as follows:

Fig 10. Illustration of two binary sequences using Logistic Map. Trajectories indicated by x0 = 0.1856 and x0 = 0.3695, where λ = 3.99.

doi:10.1371/journal.pone.0168207.g010
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Fig 11. Trajectory of PWLM. (A) Trajectory without cyclic-shift when KCi = 0. (B) Trajectory with cyclic-shift when KCi = i.

doi:10.1371/journal.pone.0168207.g011
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1. Initially, the second key (K2) generates a pseudorandom keystream and unmasks the

completely compressed file. Header data is then read to identify distinct plaintext symbols

(s1,s2,. . .. . .,sn) as well as corresponding probabilities (p0,p1,. . .. . .p255) and N number of

blocks.

2. Next, the secret key (K1) generates a keystream using the pseudorandom keystream genera-

tor of N × 8 bits according to N number of plaintext (P) blocks. This keystream is then

divided into N bytes to generate cyclic shift keys (KC1,KC2,. . .. . .,KCN or KCi), where

(i = 1,2,. . .. . .,N).

The decoder now reads all compressed data and scans all binary data for code words. When

it encounters the first “0111111111” character, code words for the first block are retrieved and

the next sequence with “0” (after seven consecutive “1”s) is removed. Based on the first block’s

statistical properties, it is now simultaneously decompressed and decoded according to the for-

ward iteration of Eq (9). This rendering follows the cyclic shift key (KCi), by which the corre-

sponding block and each symbol are adjusted for range. All remaining blocks are similarly

decoded until the plaintext (P) is fully recovered.

5 Experiment Analysis

5.1 Comparison with Source Coding using PWLM

Tests for source coding between PWLM and the proposed algorithm utilized a Pentium-IV 2.4

MHz PC (Windows 7 and 3 GB RAM) without the Hadoop framework to determine the effec-

tiveness of the proposed algorithm by bringing all fractions to a common denominator. Both

algorithms employed Java and were benchmarked with Calgary Corpus files [47]. Measured

performance parameters were ‘compression ratio’ and ‘execution time.’

5.1.1 Compression Ratio. Table 1 shows compression ratio results for selected files from

the standard Calgary Corpus. Eq (14) was used to calculate all compression ratios:

Ratio ¼ 1 �
ciphertext length
plaintext length

� 100% ð14Þ

Computed average compression ratios were 38.46 for the proposed algorithm vs. 8.46 for

source coding with PWLM. Experimental results demonstrated that the enhancement of

PWLM source coding improved compression capabilities.

5.1.2 Algorithm Speed. Table 2 summarizes both encryption and decryption periods for

both algorithms. Averaged execution periods clearly indicated a performance edge for the pro-

posed algorithm, which took less time for both encryption and decryption processes.

5.1.3 Results and Discussion. This section presents our comparison of results between

Source Coding using PWLM and those of the proposed algorithm. Both algorithms were

Table 1. Comparison of compression ratios.

File Size KB Proposed Algorithm % PWLM Coding %

book1 768771 40.84 13.19

book2 610856 37.78 8.93

paper2 82199 39.82 10.27

paper3 46526 38.88 7.66

progl 71646 37.36 6.60

progp 49379 36.10 4.14

Avg. Compression ratio 38.46 8.46

doi:10.1371/journal.pone.0168207.t001
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successfully implemented and thoroughly tested using selected Calgary Corpus files [47].

Experimental results validated an acceptable compression ratio for the proposed algorithm.

Moreover, the enhanced version addressed the implementation issue of infinite precision real

numbers by eliminating fractional components generated by the long products of real num-

bers in Source Coding using PWLM; thus representing an improvement that increased both

speed and resource efficiency.

5.2 Security Analysis

5.2.1 Key Space Analysis. The proposed algorithm utilizes two chaotic maps to generate

pseudorandom keystreams. Each chaotic map requires two input parameters, an initial value

(x0) and a control parameter (λ) to perform required operations. If both chaotic maps are real-

ized in a finite precision system based on the double precision of floating point representation,

then the secret key size is ~212 bits considering only the mantissa where the size of each input

parameter is 53 bits. Thus, the size of the given secret key is large enough to resist brute-force

attacks and fulfill cryptographic requirements.

5.2.2 Key Sensitivity and Plaintext Sensitivity. A cryptographic algorithm should be

highly sensitive to key and plaintext so that the slightest change in key or plaintext is reflected

in its output. The changing of (x0 = 0.30896) to ðx0
0
¼ 0:30897Þ assessed the secret key’s

(K1) sensitivity. Trials were performed with Calgary Corpus files [47] where ciphertext files

obtained from the same plaintext were compared, bit-by-bit, using two different keys as

described above. Table 3 provides a comparison of results for key sensitivity trials. Similarly,

plaintext sensitivity was evaluated by randomly toggling one bit while performing encryption

with the same key. Finally, ciphertext files were compared bit-by-bit (See: Table 4). Moreover,

bit-change-percentages for key and plaintext sensitivity were very close to the ideal value

(50%); thus demonstrating that the proposed algorithm is highly sensitive to both key and

plaintext as well as secure from cryptanalysis attacks.

Table 2. Comparison of encryption and decryption periods.

Encryption time (seconds) Decryption time (seconds)

Filename Proposed Algorithm PWLM Coding Proposed Algorithm PWLM Coding

book1 312 441 400 1844

book2 130 340 320 1440

paper2 20 40 40 210

paper3 10 20 30 110

progl 10 30 40 170

progp 10 30 20 122

Avg. Time 82 150.17 141 649.33

doi:10.1371/journal.pone.0168207.t002

Table 3. Key sensitivity analysis.

Filename beginning middle end complete

book1 49.415 49.413 49.411 49.413

book2 49.413 49.413 49.412 49.413

paper2 49.414 49.412 49.412 49.413

paper3 49.574 49.412 49.410 49.415

progl 49.418 49.412 49.411 49.414

progp 49.415 49.414 49.411 49.413

doi:10.1371/journal.pone.0168207.t003
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5.2.3 Randomness Analysis of the Proposed Algorithm. The NIST SP800-22 [56] and

DIEHARD [57] statistical test suites are the two most popular tools for randomness analysis.

Their purpose is to rigorously analyze the binary sequence or ciphertext for randomness or

non-randomness statistics. This study employed the NIST (National Institute of Standards

and Technology) statistic test suite to evaluate the proposed algorithm’s security level. This

suite comprises sixteen statistical tests; each test produces probability (p) values between zero

and one to provide randomness statistics for the binary sequence or ciphertext. This probabil-

ity value is used to determine acceptance or rejection by defining the level of significance (α).

For example, when p< α, the binary sequence or ciphertext is non-random, if otherwise, the

binary sequence or ciphertext is considered random. Here, the significance level (α) is adjusted

to 0.01 to ensure 99% confidence for the randomness of the binary sequence or ciphertext gen-

erated by the proposed algorithm. Table 5 lists all computed p values for all tests. The proposed

algorithm successfully passed all NIST tests and proved secure with a 99% confidence level.

5.2.4 Randomness Analysis of Chaotic Pseudorandom Generators. The randomness

analysis of both chaotic pseudorandom keystream generators was performed by generating

300 binary sequences of length L = 1,000,000 bits from each generator to evaluate required

cryptographic properties of randomness for generated binary sequences. The control parame-

ter (λ) values were taken randomly between λ 2 (0.25,0.75) for the Tent map and λ 2 (3.6,4)

Table 4. Plaintext sensitivity analysis.

Filename beginning middle end Percentage

book1 49.137 49.134 49.066 49.112

book2 49.030 51.190 49.020 49.013

paper2 51.101 51.116 51.217 51.128

paper3 50.165 51.208 51.184 50.986

progl 49.056 50.487 49.004 51.149

progp 49.139 50.922 50.928 50.996

doi:10.1371/journal.pone.0168207.t004

Table 5. NIST Randomness test results.

Statistical test Parameter p-value Result

Frequency 0.4399 Pass

Block frequency M = 128 0.5486 Pass

Runs 0.7328 Pass

Long runs of one’s 0.2514 Pass

Binary Matrix Rank 0.7039 Pass

Spectral DFT 0.9076 Pass

No overlapping templates M = 73023, N = 8, M = 9 0.0318 Pass

Overlapping templates M = 9, M = 1032, N = 566 0.6905 Pass

Universal 0.6772 Pass

Linear complexity M = 500, N = 1168 0.1248 Pass

Serial m = 8, p_value1 0.6527 Pass

m = 8, p_value1 0.1478 Pass

Approximate entropy m = 10 0.9800 Pass

Cumulative sums Forward 0.611 Pass

Reverse 0.7767 Pass

Random excursions x = -1 0.2855 Pass

Random excursions variant x = -1 0.2142 Pass

doi:10.1371/journal.pone.0168207.t005
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Table 6. Results of randomness analysis.

Logistic map generator Tent map generator

Statistical test Parameter Passing % Decision Passing % Decision

Frequency 99.67 Pass 99 Pass

Block frequency M = 128 98.67 Pass 99.67 Pass

Runs 99.99 Pass 97.33 Pass

Long runs of one’s 99.33 Pass 99 Pass

Binary Matrix Rank 99.33 Pass 98.67 Pass

Spectral DFT 97.33 Pass 99 Pass

No overlapping templates M = 73023, N = 8, M = 9 99.17 Pass 98.14 Pass

Overlapping templates M = 9, M = 1032, N = 566 98.67 Pass 99 Pass

Universal 98.33 Pass 98.33 Pass

Linear complexity M = 500, N = 1168 98.33 Pass 99.67 Pass

Serial m = 8, p_value1 99.33 Pass 90.83 Pass

Approximate entropy m = 10 99 Pass 98.33 Pass

Cumulative sums Forward 100 Pass 99.33 Pass

Random excursions x = -1 99.09 Pass 98.69 Pass

Random excursions variant x = -1 98.85 Pass 99.11 Pass

doi:10.1371/journal.pone.0168207.t006

Fig 12. Block diagram describing the integration of the proposed algorithm in HDFS to read and write data.

doi:10.1371/journal.pone.0168207.g012
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for the Logistic map. The initial values (x0) were taken randomly between x0 2 (0,1) for both

generators. The significance level was adjusted to α = 0.01 to ensure 99% confidence for the

randomness of pseudorandom binary sequences generated by Logistic and Tent maps. The

range of the passing percentage for each test was determined using Eq (15):

P � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 � PÞ=N

p
ð15Þ

Where P = 1 − α and N is the number of binary sequences. In our case, α = 0.01, P = 0.99

and N = 300; thus, the acceptable percentage range is between [97.28, 100]. If any test produced

less than 97.28%, then binary sequences were considered non-random. Table 6 presents per-

centages for each test of pseudorandom binary sequences generators. All pseudorandom

binary sequences were generated by using Logistic and Tent maps and successfully passed all

NIST SP800-22 tests, as percentages remained between [97.28, 100]. Further, statistical analysis

revealed that all generated binary sequences were independent and identically distributed ran-

dom sequences with 99% confidence levels.

5.3 Experimental Analysis in Hadoop

The proposed algorithm was integrated into Hadoop using Java’s CompressionCodec to dem-

onstrate the application of simultaneous data compression and encryption for Big Data. The

new SCECodec (Simultaneous data compression and encryption codec) class was introduced

to the codec library of Hadoop’s source code to perform simultaneous data compression and

Fig 13. Compression ratio results.

doi:10.1371/journal.pone.0168207.g013
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encryption. Fig 12 shows a block diagram of the proposed algorithm’s integration in HDFS to

read and write data. A benchmarking suite was created to simulate read/write operations in

HDFS to determine the compression ratio as well as performance metrics and security levels

for the proposed algorithm’s handling of simultaneous data compression and encryption. A

second objective was to identify whether or not MR jobs recognized all formats in HDFS by

testing various file formats; e.g., text and compressed data with the proposed algorithm with

Bzip2, Gzip and Lz4 algorithms. Experiments were performed with metocean data, which

refers to forecasting and recording meteorological and oceanographic conditions at a specified

location. This data format typically comprises well-defined parameters (wind speed, wind

direction, atmospheric pressure, air temperature, waves, ocean currents, levels of water salin-

ity, water temperature, sea level, etc.) [58]. Metocean data banks are vast, complex and contin-

uous and rapidly grow; hence, their data storage requirements and transmission volumes are

serious considerations.

5.3.1 Compression Settings and Results. Experiments were performed with 10GB of

metocean data to evaluate the proposed algorithm’s compression capabilities compared with

Hadoop’s Bzip2, Gzip, LZ4 and Deflate algorithms. The compression ratio was calculated

using Eq (10). The same source files were used to run all trials without customizing either algo-

rithms or default parameters while using default file extensions for the compressed files. Fig 13

shows experimental results and compression ratios for each codec. Results clearly demon-

strated that all compressed file formats were recognized and accurately processed by HDFS

without code changes.

Fig 14. Processing times for compression.

doi:10.1371/journal.pone.0168207.g014
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5.3.2 Processing Time Analysis. Apart from compression analysis, another important

issue is processing time. Moreover, compression algorithms were optimized for either speed

or compression but not both. Figs 14 and 15 show a comparison of compression and decom-

pression processing times between the proposed algorithm and Bzip2, Gzip, LZ4 and Deflate

algorithms on Hadoop for trials running metocean data sizes of 1, 2, 5 and 10 GB, respectively.

Results showed that LZ4 and the proposed algorithm were the speediest. Comparatively speak-

ing, Gzip, Deflate, and Bzip2 had better compression ratios. However, the latter algorithms

cannot simultaneously compress and encrypt data.

Test data was also compressed and encrypted by Bzip2, Gzip, LZ4 and Deflate algorithms

with AES. Figs 16 and 17 show experimental results for different data sizes (1, 2, 5 and 10 GB).

These results verified that the proposed algorithm was the fastest program compared to AES,

Bzip2+AES, Gzip+AES, LZ4+AES, and Deflate+AES, and took less time to perform simulta-

neous data compression and encryption compared to two separate operations.

5.3.3 Results and Discussion. Experimental results showed that LZ4 and the proposed

algorithm had the fastest compression speeds, with Gzip in third place. Deflate, and Bzip2 had

the slowest processing times for both compression and decompression but showed better com-

pression ratios (See: Fig 18); thus showing a space-time tradeoff. It is important to note that

Bzip2, Gzip, LZ4 and Deflate are limited to compression and are not considered secure, as

they do not support simultaneous data compression and encryption. Furthermore, test data

was compressed and encrypted by Bzip2, Gzip, LZ4 and Deflate algorithms followed by AES.

Results clearly identified the proposed algorithm was superior, as it used less time while also

Fig 15. Processing times for decompression.

doi:10.1371/journal.pone.0168207.g015
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providing adequate security and compression. Performing separate operations (compression

and encryption) in Hadoop requires significant volumes of data piped between both opera-

tions. Hence, combining data compression with encryption as a single procedure reduces

required data space and I/O network resource consumption during the process while also real-

izing data encryption.

Conclusion

This work addressed the problem of implementing source coding with Tent Map and the Piece

Wise Linear Markov map (PWLM), which require infinite precision real numbers consequent

to long products of real numbers. A chaos-based simultaneous compression and encryption

scheme for Hadoop was proposed to solve the implementation issue by removing fractional

parts generated by long products of real numbers. The enhancement subsequently increased the

algorithm’s speed and efficiency. In addition, a chaotic pseudorandom keystream generator

controlled PWLM mode without compromising its compression capability. This approach

incorporates a secret key by performing a cyclic shift operation in PWLM. Furthermore, intro-

ducing a masking pseudorandom keystream also enhanced encryption quality and the proposed

algorithm also fit well within Hadoop’s framework to provide robust encryption security and

compression while storing data. Experimental results established that the performance of sepa-

rate operations for compression and encryption in Hadoop requires the piping of significant

volumes of data between both processes, which degrades overall performance of the cluster. The

proposed algorithm decisively achieved simultaneous data compression and encryption; thus

Fig 16. Processing times: compression and encryption.

doi:10.1371/journal.pone.0168207.g016
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Fig 17. Processing times: decompression and decryption.

doi:10.1371/journal.pone.0168207.g017

Fig 18. Space-Time tradeoff comparison.

doi:10.1371/journal.pone.0168207.g018
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proving useful during MapReduce jobs by reducing required data space and I/O cum network

resource consumption. Our security analysis also revealed that the proposed algorithm is highly

sensitive to both key and plaintext and that generated ciphertexts successfully passed all NIST

SP800-22 assays; thus proving it is random with a 99% confidence interval.
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